Properties

Label 380.2.k.d.267.10
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.10
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.d.343.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.287770 - 1.38463i) q^{2} +(-1.15541 - 1.15541i) q^{3} +(-1.83438 + 0.796907i) q^{4} +(-0.283261 - 2.21805i) q^{5} +(-1.26732 + 1.93230i) q^{6} +(3.26325 - 3.26325i) q^{7} +(1.63130 + 2.31060i) q^{8} -0.330062i q^{9} +O(q^{10})\) \(q+(-0.287770 - 1.38463i) q^{2} +(-1.15541 - 1.15541i) q^{3} +(-1.83438 + 0.796907i) q^{4} +(-0.283261 - 2.21805i) q^{5} +(-1.26732 + 1.93230i) q^{6} +(3.26325 - 3.26325i) q^{7} +(1.63130 + 2.31060i) q^{8} -0.330062i q^{9} +(-2.98966 + 1.03050i) q^{10} -4.56912i q^{11} +(3.04021 + 1.19870i) q^{12} +(-3.90789 + 3.90789i) q^{13} +(-5.45745 - 3.57932i) q^{14} +(-2.23548 + 2.89004i) q^{15} +(2.72988 - 2.92365i) q^{16} +(3.68739 + 3.68739i) q^{17} +(-0.457012 + 0.0949818i) q^{18} -1.00000 q^{19} +(2.28719 + 3.84301i) q^{20} -7.54078 q^{21} +(-6.32652 + 1.31485i) q^{22} +(0.671647 + 0.671647i) q^{23} +(0.784875 - 4.55450i) q^{24} +(-4.83953 + 1.25658i) q^{25} +(6.53553 + 4.28639i) q^{26} +(-3.84758 + 3.84758i) q^{27} +(-3.38553 + 8.58655i) q^{28} +1.43401i q^{29} +(4.64493 + 2.26363i) q^{30} -2.10503i q^{31} +(-4.83374 - 2.93852i) q^{32} +(-5.27920 + 5.27920i) q^{33} +(4.04454 - 6.16678i) q^{34} +(-8.16243 - 6.31372i) q^{35} +(0.263028 + 0.605458i) q^{36} +(3.01280 + 3.01280i) q^{37} +(0.287770 + 1.38463i) q^{38} +9.03041 q^{39} +(4.66295 - 4.27281i) q^{40} +3.51686 q^{41} +(2.17001 + 10.4412i) q^{42} +(1.49689 + 1.49689i) q^{43} +(3.64116 + 8.38148i) q^{44} +(-0.732095 + 0.0934937i) q^{45} +(0.736700 - 1.12326i) q^{46} +(5.49969 - 5.49969i) q^{47} +(-6.53214 + 0.223890i) q^{48} -14.2977i q^{49} +(3.13256 + 6.33933i) q^{50} -8.52089i q^{51} +(4.05432 - 10.2828i) q^{52} +(5.92537 - 5.92537i) q^{53} +(6.43468 + 4.22024i) q^{54} +(-10.1345 + 1.29425i) q^{55} +(12.8634 + 2.21674i) q^{56} +(1.15541 + 1.15541i) q^{57} +(1.98557 - 0.412665i) q^{58} -1.07843 q^{59} +(1.79761 - 7.08289i) q^{60} -11.0480 q^{61} +(-2.91467 + 0.605762i) q^{62} +(-1.07708 - 1.07708i) q^{63} +(-2.67775 + 7.53855i) q^{64} +(9.77486 + 7.56095i) q^{65} +(8.82890 + 5.79052i) q^{66} +(1.29688 - 1.29688i) q^{67} +(-9.70258 - 3.82556i) q^{68} -1.55205i q^{69} +(-6.39324 + 13.1188i) q^{70} +1.88311i q^{71} +(0.762641 - 0.538428i) q^{72} +(-3.20108 + 3.20108i) q^{73} +(3.30461 - 5.03859i) q^{74} +(7.04349 + 4.13977i) q^{75} +(1.83438 - 0.796907i) q^{76} +(-14.9102 - 14.9102i) q^{77} +(-2.59868 - 12.5037i) q^{78} -2.07546 q^{79} +(-7.25809 - 5.22686i) q^{80} +7.90087 q^{81} +(-1.01205 - 4.86954i) q^{82} +(2.08842 + 2.08842i) q^{83} +(13.8326 - 6.00930i) q^{84} +(7.13434 - 9.22333i) q^{85} +(1.64187 - 2.50339i) q^{86} +(1.65687 - 1.65687i) q^{87} +(10.5574 - 7.45358i) q^{88} -10.9661i q^{89} +(0.340129 + 0.986773i) q^{90} +25.5049i q^{91} +(-1.76729 - 0.696814i) q^{92} +(-2.43216 + 2.43216i) q^{93} +(-9.19765 - 6.03237i) q^{94} +(0.283261 + 2.21805i) q^{95} +(2.18976 + 8.98014i) q^{96} +(1.72131 + 1.72131i) q^{97} +(-19.7969 + 4.11443i) q^{98} -1.50809 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 2 q^{10} + 22 q^{12} - 2 q^{13} - 2 q^{15} + 16 q^{16} - 20 q^{17} - 2 q^{18} - 52 q^{19} - 12 q^{20} - 16 q^{21} - 36 q^{22} - 20 q^{23} - 16 q^{25} + 8 q^{27} - 24 q^{28} + 40 q^{30} + 2 q^{32} + 8 q^{33} + 20 q^{34} - 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} + 64 q^{39} - 36 q^{40} - 4 q^{41} - 60 q^{42} + 28 q^{43} - 8 q^{44} + 12 q^{45} - 8 q^{46} + 4 q^{47} - 2 q^{48} + 46 q^{50} + 74 q^{52} - 2 q^{53} + 24 q^{54} + 12 q^{56} - 2 q^{57} - 20 q^{58} - 28 q^{59} - 110 q^{60} - 4 q^{61} - 32 q^{62} - 44 q^{63} - 24 q^{64} + 10 q^{65} + 36 q^{66} - 6 q^{67} + 28 q^{68} + 124 q^{70} + 124 q^{72} + 8 q^{73} + 88 q^{74} - 2 q^{75} + 12 q^{77} - 40 q^{78} + 52 q^{79} - 120 q^{80} - 24 q^{81} - 80 q^{82} + 76 q^{83} - 40 q^{84} + 12 q^{85} - 8 q^{86} - 12 q^{87} + 20 q^{88} + 78 q^{90} + 8 q^{92} + 24 q^{93} + 32 q^{94} - 4 q^{95} - 4 q^{96} - 10 q^{97} - 122 q^{98} - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.287770 1.38463i −0.203484 0.979078i
\(3\) −1.15541 1.15541i −0.667075 0.667075i 0.289963 0.957038i \(-0.406357\pi\)
−0.957038 + 0.289963i \(0.906357\pi\)
\(4\) −1.83438 + 0.796907i −0.917189 + 0.398453i
\(5\) −0.283261 2.21805i −0.126678 0.991944i
\(6\) −1.26732 + 1.93230i −0.517380 + 0.788858i
\(7\) 3.26325 3.26325i 1.23339 1.23339i 0.270742 0.962652i \(-0.412731\pi\)
0.962652 0.270742i \(-0.0872691\pi\)
\(8\) 1.63130 + 2.31060i 0.576750 + 0.816921i
\(9\) 0.330062i 0.110021i
\(10\) −2.98966 + 1.03050i −0.945414 + 0.325873i
\(11\) 4.56912i 1.37764i −0.724932 0.688820i \(-0.758129\pi\)
0.724932 0.688820i \(-0.241871\pi\)
\(12\) 3.04021 + 1.19870i 0.877632 + 0.346036i
\(13\) −3.90789 + 3.90789i −1.08385 + 1.08385i −0.0877064 + 0.996146i \(0.527954\pi\)
−0.996146 + 0.0877064i \(0.972046\pi\)
\(14\) −5.45745 3.57932i −1.45857 0.956613i
\(15\) −2.23548 + 2.89004i −0.577197 + 0.746205i
\(16\) 2.72988 2.92365i 0.682470 0.730914i
\(17\) 3.68739 + 3.68739i 0.894324 + 0.894324i 0.994927 0.100602i \(-0.0320770\pi\)
−0.100602 + 0.994927i \(0.532077\pi\)
\(18\) −0.457012 + 0.0949818i −0.107719 + 0.0223874i
\(19\) −1.00000 −0.229416
\(20\) 2.28719 + 3.84301i 0.511431 + 0.859324i
\(21\) −7.54078 −1.64553
\(22\) −6.32652 + 1.31485i −1.34882 + 0.280328i
\(23\) 0.671647 + 0.671647i 0.140048 + 0.140048i 0.773655 0.633607i \(-0.218426\pi\)
−0.633607 + 0.773655i \(0.718426\pi\)
\(24\) 0.784875 4.55450i 0.160212 0.929684i
\(25\) −4.83953 + 1.25658i −0.967905 + 0.251315i
\(26\) 6.53553 + 4.28639i 1.28172 + 0.840630i
\(27\) −3.84758 + 3.84758i −0.740468 + 0.740468i
\(28\) −3.38553 + 8.58655i −0.639805 + 1.62270i
\(29\) 1.43401i 0.266289i 0.991097 + 0.133145i \(0.0425074\pi\)
−0.991097 + 0.133145i \(0.957493\pi\)
\(30\) 4.64493 + 2.26363i 0.848044 + 0.413281i
\(31\) 2.10503i 0.378074i −0.981970 0.189037i \(-0.939463\pi\)
0.981970 0.189037i \(-0.0605366\pi\)
\(32\) −4.83374 2.93852i −0.854493 0.519462i
\(33\) −5.27920 + 5.27920i −0.918990 + 0.918990i
\(34\) 4.04454 6.16678i 0.693633 1.05759i
\(35\) −8.16243 6.31372i −1.37970 1.06721i
\(36\) 0.263028 + 0.605458i 0.0438381 + 0.100910i
\(37\) 3.01280 + 3.01280i 0.495301 + 0.495301i 0.909972 0.414670i \(-0.136103\pi\)
−0.414670 + 0.909972i \(0.636103\pi\)
\(38\) 0.287770 + 1.38463i 0.0466824 + 0.224616i
\(39\) 9.03041 1.44602
\(40\) 4.66295 4.27281i 0.737278 0.675590i
\(41\) 3.51686 0.549241 0.274621 0.961553i \(-0.411448\pi\)
0.274621 + 0.961553i \(0.411448\pi\)
\(42\) 2.17001 + 10.4412i 0.334840 + 1.61111i
\(43\) 1.49689 + 1.49689i 0.228273 + 0.228273i 0.811971 0.583698i \(-0.198395\pi\)
−0.583698 + 0.811971i \(0.698395\pi\)
\(44\) 3.64116 + 8.38148i 0.548925 + 1.26356i
\(45\) −0.732095 + 0.0934937i −0.109134 + 0.0139372i
\(46\) 0.736700 1.12326i 0.108621 0.165616i
\(47\) 5.49969 5.49969i 0.802212 0.802212i −0.181229 0.983441i \(-0.558007\pi\)
0.983441 + 0.181229i \(0.0580075\pi\)
\(48\) −6.53214 + 0.223890i −0.942834 + 0.0323157i
\(49\) 14.2977i 2.04252i
\(50\) 3.13256 + 6.33933i 0.443011 + 0.896516i
\(51\) 8.52089i 1.19316i
\(52\) 4.05432 10.2828i 0.562233 1.42596i
\(53\) 5.92537 5.92537i 0.813913 0.813913i −0.171305 0.985218i \(-0.554798\pi\)
0.985218 + 0.171305i \(0.0547985\pi\)
\(54\) 6.43468 + 4.22024i 0.875649 + 0.574302i
\(55\) −10.1345 + 1.29425i −1.36654 + 0.174517i
\(56\) 12.8634 + 2.21674i 1.71895 + 0.296225i
\(57\) 1.15541 + 1.15541i 0.153038 + 0.153038i
\(58\) 1.98557 0.412665i 0.260718 0.0541855i
\(59\) −1.07843 −0.140400 −0.0702000 0.997533i \(-0.522364\pi\)
−0.0702000 + 0.997533i \(0.522364\pi\)
\(60\) 1.79761 7.08289i 0.232071 0.914397i
\(61\) −11.0480 −1.41455 −0.707277 0.706936i \(-0.750077\pi\)
−0.707277 + 0.706936i \(0.750077\pi\)
\(62\) −2.91467 + 0.605762i −0.370164 + 0.0769319i
\(63\) −1.07708 1.07708i −0.135699 0.135699i
\(64\) −2.67775 + 7.53855i −0.334719 + 0.942318i
\(65\) 9.77486 + 7.56095i 1.21242 + 0.937820i
\(66\) 8.82890 + 5.79052i 1.08676 + 0.712763i
\(67\) 1.29688 1.29688i 0.158439 0.158439i −0.623436 0.781875i \(-0.714264\pi\)
0.781875 + 0.623436i \(0.214264\pi\)
\(68\) −9.70258 3.82556i −1.17661 0.463918i
\(69\) 1.55205i 0.186845i
\(70\) −6.39324 + 13.1188i −0.764138 + 1.56800i
\(71\) 1.88311i 0.223484i 0.993737 + 0.111742i \(0.0356430\pi\)
−0.993737 + 0.111742i \(0.964357\pi\)
\(72\) 0.762641 0.538428i 0.0898781 0.0634544i
\(73\) −3.20108 + 3.20108i −0.374659 + 0.374659i −0.869171 0.494512i \(-0.835347\pi\)
0.494512 + 0.869171i \(0.335347\pi\)
\(74\) 3.30461 5.03859i 0.384153 0.585725i
\(75\) 7.04349 + 4.13977i 0.813312 + 0.478019i
\(76\) 1.83438 0.796907i 0.210417 0.0914115i
\(77\) −14.9102 14.9102i −1.69917 1.69917i
\(78\) −2.59868 12.5037i −0.294242 1.41577i
\(79\) −2.07546 −0.233507 −0.116753 0.993161i \(-0.537249\pi\)
−0.116753 + 0.993161i \(0.537249\pi\)
\(80\) −7.25809 5.22686i −0.811479 0.584381i
\(81\) 7.90087 0.877875
\(82\) −1.01205 4.86954i −0.111762 0.537750i
\(83\) 2.08842 + 2.08842i 0.229234 + 0.229234i 0.812373 0.583139i \(-0.198176\pi\)
−0.583139 + 0.812373i \(0.698176\pi\)
\(84\) 13.8326 6.00930i 1.50926 0.655668i
\(85\) 7.13434 9.22333i 0.773828 1.00041i
\(86\) 1.64187 2.50339i 0.177048 0.269948i
\(87\) 1.65687 1.65687i 0.177635 0.177635i
\(88\) 10.5574 7.45358i 1.12542 0.794554i
\(89\) 10.9661i 1.16240i −0.813759 0.581202i \(-0.802583\pi\)
0.813759 0.581202i \(-0.197417\pi\)
\(90\) 0.340129 + 0.986773i 0.0358527 + 0.104015i
\(91\) 25.5049i 2.67363i
\(92\) −1.76729 0.696814i −0.184253 0.0726479i
\(93\) −2.43216 + 2.43216i −0.252204 + 0.252204i
\(94\) −9.19765 6.03237i −0.948666 0.622191i
\(95\) 0.283261 + 2.21805i 0.0290620 + 0.227568i
\(96\) 2.18976 + 8.98014i 0.223491 + 0.916532i
\(97\) 1.72131 + 1.72131i 0.174773 + 0.174773i 0.789073 0.614300i \(-0.210561\pi\)
−0.614300 + 0.789073i \(0.710561\pi\)
\(98\) −19.7969 + 4.11443i −1.99979 + 0.415620i
\(99\) −1.50809 −0.151569
\(100\) 7.87614 6.16169i 0.787614 0.616169i
\(101\) 15.3995 1.53231 0.766154 0.642658i \(-0.222168\pi\)
0.766154 + 0.642658i \(0.222168\pi\)
\(102\) −11.7982 + 2.45205i −1.16820 + 0.242790i
\(103\) 0.538076 + 0.538076i 0.0530182 + 0.0530182i 0.733119 0.680101i \(-0.238064\pi\)
−0.680101 + 0.733119i \(0.738064\pi\)
\(104\) −15.4045 2.65465i −1.51053 0.260309i
\(105\) 2.13601 + 16.7259i 0.208453 + 1.63228i
\(106\) −9.90957 6.49928i −0.962502 0.631266i
\(107\) 2.15177 2.15177i 0.208019 0.208019i −0.595406 0.803425i \(-0.703009\pi\)
0.803425 + 0.595406i \(0.203009\pi\)
\(108\) 3.99175 10.1241i 0.384107 0.974190i
\(109\) 12.9951i 1.24471i −0.782737 0.622353i \(-0.786177\pi\)
0.782737 0.622353i \(-0.213823\pi\)
\(110\) 4.70847 + 13.6601i 0.448935 + 1.30244i
\(111\) 6.96203i 0.660807i
\(112\) −0.632338 18.4489i −0.0597503 1.74326i
\(113\) 4.57006 4.57006i 0.429915 0.429915i −0.458685 0.888599i \(-0.651679\pi\)
0.888599 + 0.458685i \(0.151679\pi\)
\(114\) 1.26732 1.93230i 0.118695 0.180976i
\(115\) 1.29950 1.68000i 0.121179 0.156661i
\(116\) −1.14277 2.63052i −0.106104 0.244237i
\(117\) 1.28984 + 1.28984i 0.119246 + 0.119246i
\(118\) 0.310340 + 1.49323i 0.0285692 + 0.137463i
\(119\) 24.0658 2.20611
\(120\) −10.3245 0.450781i −0.942489 0.0411505i
\(121\) −9.87682 −0.897892
\(122\) 3.17929 + 15.2974i 0.287839 + 1.38496i
\(123\) −4.06341 4.06341i −0.366385 0.366385i
\(124\) 1.67751 + 3.86141i 0.150645 + 0.346765i
\(125\) 4.15801 + 10.3784i 0.371903 + 0.928271i
\(126\) −1.18140 + 1.80130i −0.105247 + 0.160472i
\(127\) −6.46266 + 6.46266i −0.573468 + 0.573468i −0.933096 0.359628i \(-0.882904\pi\)
0.359628 + 0.933096i \(0.382904\pi\)
\(128\) 11.2086 + 1.53832i 0.990713 + 0.135969i
\(129\) 3.45904i 0.304551i
\(130\) 7.65618 15.7103i 0.671491 1.37789i
\(131\) 11.2765i 0.985230i −0.870247 0.492615i \(-0.836041\pi\)
0.870247 0.492615i \(-0.163959\pi\)
\(132\) 5.47701 13.8911i 0.476713 1.20906i
\(133\) −3.26325 + 3.26325i −0.282960 + 0.282960i
\(134\) −2.16889 1.42249i −0.187364 0.122884i
\(135\) 9.62402 + 7.44427i 0.828303 + 0.640701i
\(136\) −2.50486 + 14.5353i −0.214790 + 1.24639i
\(137\) 4.91194 + 4.91194i 0.419655 + 0.419655i 0.885085 0.465430i \(-0.154100\pi\)
−0.465430 + 0.885085i \(0.654100\pi\)
\(138\) −2.14901 + 0.446634i −0.182936 + 0.0380200i
\(139\) −13.9325 −1.18174 −0.590870 0.806767i \(-0.701215\pi\)
−0.590870 + 0.806767i \(0.701215\pi\)
\(140\) 20.0044 + 5.07705i 1.69068 + 0.429089i
\(141\) −12.7088 −1.07027
\(142\) 2.60740 0.541902i 0.218808 0.0454754i
\(143\) 17.8556 + 17.8556i 1.49316 + 1.49316i
\(144\) −0.964987 0.901029i −0.0804156 0.0750858i
\(145\) 3.18071 0.406200i 0.264144 0.0337330i
\(146\) 5.35348 + 3.51113i 0.443057 + 0.290583i
\(147\) −16.5196 + 16.5196i −1.36252 + 1.36252i
\(148\) −7.92753 3.12569i −0.651639 0.256930i
\(149\) 16.9391i 1.38771i 0.720116 + 0.693853i \(0.244088\pi\)
−0.720116 + 0.693853i \(0.755912\pi\)
\(150\) 3.70513 10.9439i 0.302523 0.893566i
\(151\) 23.4511i 1.90842i −0.299137 0.954210i \(-0.596699\pi\)
0.299137 0.954210i \(-0.403301\pi\)
\(152\) −1.63130 2.31060i −0.132316 0.187414i
\(153\) 1.21707 1.21707i 0.0983941 0.0983941i
\(154\) −16.3543 + 24.9357i −1.31787 + 2.00938i
\(155\) −4.66906 + 0.596272i −0.375028 + 0.0478937i
\(156\) −16.5652 + 7.19640i −1.32628 + 0.576173i
\(157\) 14.2678 + 14.2678i 1.13869 + 1.13869i 0.988684 + 0.150010i \(0.0479307\pi\)
0.150010 + 0.988684i \(0.452069\pi\)
\(158\) 0.597253 + 2.87373i 0.0475149 + 0.228622i
\(159\) −13.6925 −1.08588
\(160\) −5.14859 + 11.5539i −0.407032 + 0.913414i
\(161\) 4.38351 0.345469
\(162\) −2.27363 10.9398i −0.178633 0.859508i
\(163\) −9.47832 9.47832i −0.742400 0.742400i 0.230640 0.973039i \(-0.425918\pi\)
−0.973039 + 0.230640i \(0.925918\pi\)
\(164\) −6.45125 + 2.80261i −0.503758 + 0.218847i
\(165\) 13.2049 + 10.2141i 1.02800 + 0.795170i
\(166\) 2.29069 3.49266i 0.177792 0.271083i
\(167\) −13.9319 + 13.9319i −1.07808 + 1.07808i −0.0814021 + 0.996681i \(0.525940\pi\)
−0.996681 + 0.0814021i \(0.974060\pi\)
\(168\) −12.3012 17.4237i −0.949062 1.34427i
\(169\) 17.5432i 1.34947i
\(170\) −14.8239 7.22420i −1.13694 0.554071i
\(171\) 0.330062i 0.0252405i
\(172\) −3.93874 1.55298i −0.300326 0.118414i
\(173\) 1.27870 1.27870i 0.0972178 0.0972178i −0.656825 0.754043i \(-0.728101\pi\)
0.754043 + 0.656825i \(0.228101\pi\)
\(174\) −2.77094 1.81735i −0.210064 0.137773i
\(175\) −11.6921 + 19.8931i −0.883838 + 1.50378i
\(176\) −13.3585 12.4731i −1.00694 0.940198i
\(177\) 1.24603 + 1.24603i 0.0936575 + 0.0936575i
\(178\) −15.1839 + 3.15571i −1.13808 + 0.236530i
\(179\) −3.98743 −0.298034 −0.149017 0.988835i \(-0.547611\pi\)
−0.149017 + 0.988835i \(0.547611\pi\)
\(180\) 1.26843 0.754914i 0.0945434 0.0562680i
\(181\) 19.3398 1.43752 0.718758 0.695261i \(-0.244711\pi\)
0.718758 + 0.695261i \(0.244711\pi\)
\(182\) 35.3147 7.33952i 2.61770 0.544042i
\(183\) 12.7650 + 12.7650i 0.943615 + 0.943615i
\(184\) −0.456253 + 2.64756i −0.0336354 + 0.195181i
\(185\) 5.82914 7.53596i 0.428567 0.554055i
\(186\) 4.06754 + 2.66773i 0.298247 + 0.195608i
\(187\) 16.8481 16.8481i 1.23206 1.23206i
\(188\) −5.70576 + 14.4712i −0.416136 + 1.05542i
\(189\) 25.1113i 1.82658i
\(190\) 2.98966 1.03050i 0.216893 0.0747603i
\(191\) 1.41454i 0.102352i 0.998690 + 0.0511761i \(0.0162970\pi\)
−0.998690 + 0.0511761i \(0.983703\pi\)
\(192\) 11.8040 5.61621i 0.851880 0.405315i
\(193\) −7.89499 + 7.89499i −0.568294 + 0.568294i −0.931650 0.363356i \(-0.881631\pi\)
0.363356 + 0.931650i \(0.381631\pi\)
\(194\) 1.88803 2.87871i 0.135553 0.206680i
\(195\) −2.55797 20.0299i −0.183180 1.43437i
\(196\) 11.3939 + 26.2273i 0.813850 + 1.87338i
\(197\) −17.3505 17.3505i −1.23617 1.23617i −0.961554 0.274617i \(-0.911449\pi\)
−0.274617 0.961554i \(-0.588551\pi\)
\(198\) 0.433983 + 2.08814i 0.0308418 + 0.148398i
\(199\) 22.0059 1.55996 0.779979 0.625805i \(-0.215230\pi\)
0.779979 + 0.625805i \(0.215230\pi\)
\(200\) −10.7981 9.13236i −0.763544 0.645756i
\(201\) −2.99685 −0.211382
\(202\) −4.43151 21.3225i −0.311800 1.50025i
\(203\) 4.67954 + 4.67954i 0.328439 + 0.328439i
\(204\) 6.79036 + 15.6305i 0.475420 + 1.09436i
\(205\) −0.996190 7.80059i −0.0695769 0.544817i
\(206\) 0.590192 0.899876i 0.0411206 0.0626974i
\(207\) 0.221685 0.221685i 0.0154082 0.0154082i
\(208\) 0.757252 + 22.0934i 0.0525060 + 1.53190i
\(209\) 4.56912i 0.316052i
\(210\) 22.5444 7.77077i 1.55571 0.536234i
\(211\) 13.2621i 0.913002i −0.889723 0.456501i \(-0.849102\pi\)
0.889723 0.456501i \(-0.150898\pi\)
\(212\) −6.14740 + 15.5913i −0.422205 + 1.07082i
\(213\) 2.17576 2.17576i 0.149081 0.149081i
\(214\) −3.59860 2.36018i −0.245995 0.161338i
\(215\) 2.89617 3.74419i 0.197517 0.255352i
\(216\) −15.1668 2.61368i −1.03197 0.177838i
\(217\) −6.86923 6.86923i −0.466314 0.466314i
\(218\) −17.9934 + 3.73960i −1.21866 + 0.253278i
\(219\) 7.39712 0.499851
\(220\) 17.5592 10.4504i 1.18384 0.704568i
\(221\) −28.8198 −1.93863
\(222\) −9.63981 + 2.00346i −0.646981 + 0.134464i
\(223\) 6.10795 + 6.10795i 0.409019 + 0.409019i 0.881396 0.472378i \(-0.156604\pi\)
−0.472378 + 0.881396i \(0.656604\pi\)
\(224\) −25.3629 + 6.18459i −1.69463 + 0.413225i
\(225\) 0.414748 + 1.59734i 0.0276499 + 0.106490i
\(226\) −7.64294 5.01269i −0.508401 0.333439i
\(227\) −14.8986 + 14.8986i −0.988853 + 0.988853i −0.999939 0.0110855i \(-0.996471\pi\)
0.0110855 + 0.999939i \(0.496471\pi\)
\(228\) −3.04021 1.19870i −0.201343 0.0793860i
\(229\) 25.6102i 1.69237i 0.532888 + 0.846186i \(0.321107\pi\)
−0.532888 + 0.846186i \(0.678893\pi\)
\(230\) −2.70013 1.31586i −0.178041 0.0867656i
\(231\) 34.4547i 2.26695i
\(232\) −3.31343 + 2.33930i −0.217537 + 0.153582i
\(233\) 10.2855 10.2855i 0.673827 0.673827i −0.284769 0.958596i \(-0.591917\pi\)
0.958596 + 0.284769i \(0.0919169\pi\)
\(234\) 1.41477 2.15713i 0.0924866 0.141016i
\(235\) −13.7565 10.6408i −0.897372 0.694126i
\(236\) 1.97825 0.859411i 0.128773 0.0559429i
\(237\) 2.39800 + 2.39800i 0.155767 + 0.155767i
\(238\) −6.92541 33.3221i −0.448908 2.15995i
\(239\) 3.19293 0.206534 0.103267 0.994654i \(-0.467070\pi\)
0.103267 + 0.994654i \(0.467070\pi\)
\(240\) 2.34690 + 14.4252i 0.151492 + 0.931144i
\(241\) −11.7591 −0.757470 −0.378735 0.925505i \(-0.623641\pi\)
−0.378735 + 0.925505i \(0.623641\pi\)
\(242\) 2.84225 + 13.6757i 0.182707 + 0.879107i
\(243\) 2.41401 + 2.41401i 0.154859 + 0.154859i
\(244\) 20.2662 8.80425i 1.29741 0.563634i
\(245\) −31.7130 + 4.04997i −2.02607 + 0.258743i
\(246\) −4.45698 + 6.79563i −0.284167 + 0.433274i
\(247\) 3.90789 3.90789i 0.248653 0.248653i
\(248\) 4.86387 3.43392i 0.308856 0.218054i
\(249\) 4.82595i 0.305832i
\(250\) 13.1736 8.74387i 0.833174 0.553011i
\(251\) 14.5530i 0.918575i −0.888288 0.459287i \(-0.848105\pi\)
0.888288 0.459287i \(-0.151895\pi\)
\(252\) 2.83409 + 1.11743i 0.178531 + 0.0703917i
\(253\) 3.06883 3.06883i 0.192936 0.192936i
\(254\) 10.8081 + 7.08861i 0.678162 + 0.444779i
\(255\) −18.8998 + 2.41364i −1.18355 + 0.151148i
\(256\) −1.09552 15.9625i −0.0684697 0.997653i
\(257\) −11.5648 11.5648i −0.721392 0.721392i 0.247496 0.968889i \(-0.420392\pi\)
−0.968889 + 0.247496i \(0.920392\pi\)
\(258\) −4.78947 + 0.995406i −0.298180 + 0.0619713i
\(259\) 19.6631 1.22180
\(260\) −23.9561 6.07999i −1.48570 0.377065i
\(261\) 0.473312 0.0292973
\(262\) −15.6137 + 3.24503i −0.964618 + 0.200478i
\(263\) 0.240407 + 0.240407i 0.0148241 + 0.0148241i 0.714480 0.699656i \(-0.246663\pi\)
−0.699656 + 0.714480i \(0.746663\pi\)
\(264\) −20.8100 3.58618i −1.28077 0.220714i
\(265\) −14.8212 11.4644i −0.910461 0.704251i
\(266\) 5.45745 + 3.57932i 0.334618 + 0.219462i
\(267\) −12.6703 + 12.6703i −0.775411 + 0.775411i
\(268\) −1.34547 + 3.41246i −0.0821879 + 0.208449i
\(269\) 5.22590i 0.318629i 0.987228 + 0.159314i \(0.0509283\pi\)
−0.987228 + 0.159314i \(0.949072\pi\)
\(270\) 7.53803 15.4679i 0.458750 0.941346i
\(271\) 10.0441i 0.610137i 0.952330 + 0.305069i \(0.0986794\pi\)
−0.952330 + 0.305069i \(0.901321\pi\)
\(272\) 20.8468 0.714526i 1.26402 0.0433245i
\(273\) 29.4685 29.4685i 1.78352 1.78352i
\(274\) 5.38769 8.21471i 0.325482 0.496269i
\(275\) 5.74145 + 22.1124i 0.346222 + 1.33343i
\(276\) 1.23684 + 2.84705i 0.0744491 + 0.171372i
\(277\) −1.69900 1.69900i −0.102083 0.102083i 0.654221 0.756304i \(-0.272997\pi\)
−0.756304 + 0.654221i \(0.772997\pi\)
\(278\) 4.00935 + 19.2913i 0.240465 + 1.15702i
\(279\) −0.694788 −0.0415959
\(280\) 1.27315 29.1596i 0.0760854 1.74262i
\(281\) −8.96932 −0.535065 −0.267532 0.963549i \(-0.586208\pi\)
−0.267532 + 0.963549i \(0.586208\pi\)
\(282\) 3.65720 + 17.5969i 0.217783 + 1.04788i
\(283\) −10.6254 10.6254i −0.631617 0.631617i 0.316856 0.948474i \(-0.397373\pi\)
−0.948474 + 0.316856i \(0.897373\pi\)
\(284\) −1.50066 3.45434i −0.0890480 0.204977i
\(285\) 2.23548 2.89004i 0.132418 0.171191i
\(286\) 19.5850 29.8616i 1.15809 1.76575i
\(287\) 11.4764 11.4764i 0.677431 0.677431i
\(288\) −0.969894 + 1.59543i −0.0571516 + 0.0940119i
\(289\) 10.1937i 0.599632i
\(290\) −1.47775 4.28720i −0.0867763 0.251753i
\(291\) 3.97764i 0.233173i
\(292\) 3.32103 8.42296i 0.194349 0.492917i
\(293\) 21.8787 21.8787i 1.27817 1.27817i 0.336476 0.941692i \(-0.390765\pi\)
0.941692 0.336476i \(-0.109235\pi\)
\(294\) 27.6274 + 18.1197i 1.61126 + 1.05676i
\(295\) 0.305478 + 2.39202i 0.0177856 + 0.139269i
\(296\) −2.04661 + 11.8761i −0.118957 + 0.690287i
\(297\) 17.5800 + 17.5800i 1.02010 + 1.02010i
\(298\) 23.4543 4.87457i 1.35867 0.282376i
\(299\) −5.24944 −0.303583
\(300\) −16.2194 1.98090i −0.936429 0.114367i
\(301\) 9.76946 0.563102
\(302\) −32.4709 + 6.74850i −1.86849 + 0.388333i
\(303\) −17.7927 17.7927i −1.02216 1.02216i
\(304\) −2.72988 + 2.92365i −0.156569 + 0.167683i
\(305\) 3.12948 + 24.5051i 0.179193 + 1.40316i
\(306\) −2.03542 1.33495i −0.116357 0.0763139i
\(307\) 16.5064 16.5064i 0.942071 0.942071i −0.0563407 0.998412i \(-0.517943\pi\)
0.998412 + 0.0563407i \(0.0179433\pi\)
\(308\) 39.2329 + 15.4689i 2.23550 + 0.881421i
\(309\) 1.24340i 0.0707343i
\(310\) 2.16923 + 6.29331i 0.123204 + 0.357436i
\(311\) 19.4406i 1.10238i 0.834381 + 0.551188i \(0.185825\pi\)
−0.834381 + 0.551188i \(0.814175\pi\)
\(312\) 14.7313 + 20.8657i 0.833994 + 1.18129i
\(313\) −8.63499 + 8.63499i −0.488079 + 0.488079i −0.907699 0.419621i \(-0.862163\pi\)
0.419621 + 0.907699i \(0.362163\pi\)
\(314\) 15.6497 23.8614i 0.883165 1.34658i
\(315\) −2.08392 + 2.69411i −0.117415 + 0.151796i
\(316\) 3.80717 1.65394i 0.214170 0.0930416i
\(317\) 13.6017 + 13.6017i 0.763949 + 0.763949i 0.977034 0.213085i \(-0.0683510\pi\)
−0.213085 + 0.977034i \(0.568351\pi\)
\(318\) 3.94027 + 18.9589i 0.220960 + 1.06316i
\(319\) 6.55216 0.366850
\(320\) 17.4794 + 3.80401i 0.977128 + 0.212651i
\(321\) −4.97234 −0.277529
\(322\) −1.26144 6.06952i −0.0702974 0.338241i
\(323\) −3.68739 3.68739i −0.205172 0.205172i
\(324\) −14.4932 + 6.29626i −0.805177 + 0.349792i
\(325\) 14.0018 23.8229i 0.776678 1.32146i
\(326\) −10.3964 + 15.8515i −0.575801 + 0.877934i
\(327\) −15.0147 + 15.0147i −0.830313 + 0.830313i
\(328\) 5.73704 + 8.12606i 0.316775 + 0.448687i
\(329\) 35.8938i 1.97889i
\(330\) 10.3428 21.2232i 0.569352 1.16830i
\(331\) 21.6643i 1.19078i −0.803437 0.595390i \(-0.796998\pi\)
0.803437 0.595390i \(-0.203002\pi\)
\(332\) −5.49522 2.16667i −0.301589 0.118912i
\(333\) 0.994410 0.994410i 0.0544934 0.0544934i
\(334\) 23.2997 + 15.2813i 1.27490 + 0.836155i
\(335\) −3.24390 2.50919i −0.177233 0.137092i
\(336\) −20.5854 + 22.0466i −1.12303 + 1.20274i
\(337\) 0.169255 + 0.169255i 0.00921991 + 0.00921991i 0.711702 0.702482i \(-0.247925\pi\)
−0.702482 + 0.711702i \(0.747925\pi\)
\(338\) −24.2907 + 5.04839i −1.32124 + 0.274596i
\(339\) −10.5606 −0.573571
\(340\) −5.73694 + 22.6045i −0.311129 + 1.22590i
\(341\) −9.61810 −0.520849
\(342\) 0.457012 0.0949818i 0.0247124 0.00513603i
\(343\) −23.8141 23.8141i −1.28584 1.28584i
\(344\) −1.01684 + 5.90058i −0.0548246 + 0.318138i
\(345\) −3.44254 + 0.439637i −0.185340 + 0.0236692i
\(346\) −2.13849 1.40255i −0.114966 0.0754016i
\(347\) 22.3067 22.3067i 1.19749 1.19749i 0.222569 0.974917i \(-0.428556\pi\)
0.974917 0.222569i \(-0.0714443\pi\)
\(348\) −1.71895 + 4.35969i −0.0921455 + 0.233704i
\(349\) 19.1551i 1.02535i 0.858583 + 0.512674i \(0.171345\pi\)
−0.858583 + 0.512674i \(0.828655\pi\)
\(350\) 30.9092 + 10.4645i 1.65216 + 0.559351i
\(351\) 30.0718i 1.60512i
\(352\) −13.4264 + 22.0859i −0.715632 + 1.17718i
\(353\) 0.692765 0.692765i 0.0368721 0.0368721i −0.688430 0.725302i \(-0.741700\pi\)
0.725302 + 0.688430i \(0.241700\pi\)
\(354\) 1.36672 2.08386i 0.0726402 0.110756i
\(355\) 4.17684 0.533412i 0.221684 0.0283106i
\(356\) 8.73896 + 20.1160i 0.463164 + 1.06614i
\(357\) −27.8058 27.8058i −1.47164 1.47164i
\(358\) 1.14746 + 5.52109i 0.0606452 + 0.291799i
\(359\) 13.0487 0.688684 0.344342 0.938844i \(-0.388102\pi\)
0.344342 + 0.938844i \(0.388102\pi\)
\(360\) −1.41029 1.53906i −0.0743288 0.0811157i
\(361\) 1.00000 0.0526316
\(362\) −5.56541 26.7784i −0.292511 1.40744i
\(363\) 11.4118 + 11.4118i 0.598962 + 0.598962i
\(364\) −20.3250 46.7855i −1.06532 2.45223i
\(365\) 8.00692 + 6.19343i 0.419101 + 0.324179i
\(366\) 14.0014 21.3481i 0.731862 1.11588i
\(367\) −12.7436 + 12.7436i −0.665208 + 0.665208i −0.956603 0.291395i \(-0.905881\pi\)
0.291395 + 0.956603i \(0.405881\pi\)
\(368\) 3.79718 0.130149i 0.197942 0.00678447i
\(369\) 1.16078i 0.0604279i
\(370\) −12.1119 5.90256i −0.629670 0.306860i
\(371\) 38.6720i 2.00775i
\(372\) 2.52330 6.39971i 0.130827 0.331810i
\(373\) 15.6699 15.6699i 0.811354 0.811354i −0.173483 0.984837i \(-0.555502\pi\)
0.984837 + 0.173483i \(0.0555021\pi\)
\(374\) −28.1767 18.4800i −1.45698 0.955576i
\(375\) 7.18709 16.7955i 0.371139 0.867315i
\(376\) 21.6792 + 3.73596i 1.11802 + 0.192668i
\(377\) −5.60395 5.60395i −0.288618 0.288618i
\(378\) 34.7697 7.22626i 1.78836 0.371679i
\(379\) −4.20942 −0.216223 −0.108112 0.994139i \(-0.534480\pi\)
−0.108112 + 0.994139i \(0.534480\pi\)
\(380\) −2.28719 3.84301i −0.117330 0.197142i
\(381\) 14.9340 0.765093
\(382\) 1.95860 0.407061i 0.100211 0.0208270i
\(383\) 23.3914 + 23.3914i 1.19524 + 1.19524i 0.975574 + 0.219671i \(0.0704983\pi\)
0.219671 + 0.975574i \(0.429502\pi\)
\(384\) −11.1732 14.7279i −0.570179 0.751582i
\(385\) −28.8481 + 37.2951i −1.47024 + 1.90073i
\(386\) 13.2036 + 8.65967i 0.672043 + 0.440766i
\(387\) 0.494066 0.494066i 0.0251148 0.0251148i
\(388\) −4.52926 1.78581i −0.229938 0.0906608i
\(389\) 12.7135i 0.644603i −0.946637 0.322301i \(-0.895544\pi\)
0.946637 0.322301i \(-0.104456\pi\)
\(390\) −26.9979 + 9.30583i −1.36709 + 0.471219i
\(391\) 4.95325i 0.250497i
\(392\) 33.0362 23.3237i 1.66858 1.17802i
\(393\) −13.0289 + 13.0289i −0.657223 + 0.657223i
\(394\) −19.0310 + 29.0169i −0.958767 + 1.46185i
\(395\) 0.587896 + 4.60347i 0.0295803 + 0.231626i
\(396\) 2.76641 1.20181i 0.139017 0.0603931i
\(397\) 25.9638 + 25.9638i 1.30308 + 1.30308i 0.926302 + 0.376783i \(0.122970\pi\)
0.376783 + 0.926302i \(0.377030\pi\)
\(398\) −6.33264 30.4700i −0.317426 1.52732i
\(399\) 7.54078 0.377511
\(400\) −9.53753 + 17.5794i −0.476876 + 0.878970i
\(401\) 11.2570 0.562146 0.281073 0.959686i \(-0.409310\pi\)
0.281073 + 0.959686i \(0.409310\pi\)
\(402\) 0.862403 + 4.14952i 0.0430127 + 0.206959i
\(403\) 8.22620 + 8.22620i 0.409776 + 0.409776i
\(404\) −28.2485 + 12.2720i −1.40541 + 0.610553i
\(405\) −2.23801 17.5246i −0.111208 0.870803i
\(406\) 5.13278 7.82604i 0.254736 0.388400i
\(407\) 13.7658 13.7658i 0.682347 0.682347i
\(408\) 19.6884 13.9001i 0.974720 0.688157i
\(409\) 31.3473i 1.55003i 0.631945 + 0.775013i \(0.282257\pi\)
−0.631945 + 0.775013i \(0.717743\pi\)
\(410\) −10.5142 + 3.62412i −0.519260 + 0.178983i
\(411\) 11.3506i 0.559884i
\(412\) −1.41583 0.558238i −0.0697530 0.0275024i
\(413\) −3.51920 + 3.51920i −0.173169 + 0.173169i
\(414\) −0.370745 0.243157i −0.0182211 0.0119505i
\(415\) 4.04066 5.22379i 0.198348 0.256426i
\(416\) 30.3731 7.40631i 1.48917 0.363124i
\(417\) 16.0977 + 16.0977i 0.788310 + 0.788310i
\(418\) 6.32652 1.31485i 0.309440 0.0643116i
\(419\) −14.6694 −0.716648 −0.358324 0.933597i \(-0.616652\pi\)
−0.358324 + 0.933597i \(0.616652\pi\)
\(420\) −17.2472 28.9793i −0.841577 1.41405i
\(421\) −2.62268 −0.127822 −0.0639108 0.997956i \(-0.520357\pi\)
−0.0639108 + 0.997956i \(0.520357\pi\)
\(422\) −18.3631 + 3.81644i −0.893901 + 0.185781i
\(423\) −1.81524 1.81524i −0.0882599 0.0882599i
\(424\) 23.3572 + 4.02513i 1.13433 + 0.195478i
\(425\) −22.4787 13.2117i −1.09038 0.640864i
\(426\) −3.63874 2.38650i −0.176297 0.115626i
\(427\) −36.0525 + 36.0525i −1.74470 + 1.74470i
\(428\) −2.23239 + 5.66191i −0.107907 + 0.273679i
\(429\) 41.2610i 1.99210i
\(430\) −6.01773 2.93265i −0.290201 0.141425i
\(431\) 16.4900i 0.794295i 0.917755 + 0.397148i \(0.130000\pi\)
−0.917755 + 0.397148i \(0.870000\pi\)
\(432\) 0.745567 + 21.7524i 0.0358711 + 1.04656i
\(433\) −2.04849 + 2.04849i −0.0984443 + 0.0984443i −0.754614 0.656169i \(-0.772176\pi\)
0.656169 + 0.754614i \(0.272176\pi\)
\(434\) −7.53456 + 11.4881i −0.361670 + 0.551445i
\(435\) −4.14435 3.20570i −0.198706 0.153701i
\(436\) 10.3559 + 23.8379i 0.495957 + 1.14163i
\(437\) −0.671647 0.671647i −0.0321292 0.0321292i
\(438\) −2.12867 10.2422i −0.101712 0.489393i
\(439\) −21.5207 −1.02712 −0.513562 0.858052i \(-0.671675\pi\)
−0.513562 + 0.858052i \(0.671675\pi\)
\(440\) −19.5229 21.3056i −0.930720 1.01570i
\(441\) −4.71911 −0.224719
\(442\) 8.29347 + 39.9047i 0.394480 + 1.89807i
\(443\) 3.24964 + 3.24964i 0.154395 + 0.154395i 0.780078 0.625683i \(-0.215180\pi\)
−0.625683 + 0.780078i \(0.715180\pi\)
\(444\) 5.54809 + 12.7710i 0.263301 + 0.606084i
\(445\) −24.3234 + 3.10627i −1.15304 + 0.147251i
\(446\) 6.69954 10.2149i 0.317233 0.483690i
\(447\) 19.5716 19.5716i 0.925705 0.925705i
\(448\) 15.8620 + 33.3384i 0.749410 + 1.57509i
\(449\) 37.4922i 1.76937i 0.466193 + 0.884683i \(0.345625\pi\)
−0.466193 + 0.884683i \(0.654375\pi\)
\(450\) 2.09237 1.03394i 0.0986353 0.0487403i
\(451\) 16.0689i 0.756657i
\(452\) −4.74130 + 12.0251i −0.223012 + 0.565614i
\(453\) −27.0956 + 27.0956i −1.27306 + 1.27306i
\(454\) 24.9163 + 16.3416i 1.16938 + 0.766949i
\(455\) 56.5711 7.22454i 2.65210 0.338691i
\(456\) −0.784875 + 4.55450i −0.0367551 + 0.213284i
\(457\) 4.61218 + 4.61218i 0.215749 + 0.215749i 0.806704 0.590956i \(-0.201249\pi\)
−0.590956 + 0.806704i \(0.701249\pi\)
\(458\) 35.4606 7.36985i 1.65696 0.344370i
\(459\) −28.3751 −1.32444
\(460\) −1.04497 + 4.11733i −0.0487218 + 0.191972i
\(461\) 15.1656 0.706330 0.353165 0.935561i \(-0.385105\pi\)
0.353165 + 0.935561i \(0.385105\pi\)
\(462\) 47.7069 9.91502i 2.21952 0.461289i
\(463\) 23.1697 + 23.1697i 1.07679 + 1.07679i 0.996795 + 0.0799921i \(0.0254895\pi\)
0.0799921 + 0.996795i \(0.474510\pi\)
\(464\) 4.19255 + 3.91468i 0.194634 + 0.181734i
\(465\) 6.08361 + 4.70573i 0.282121 + 0.218223i
\(466\) −17.2015 11.2817i −0.796842 0.522616i
\(467\) 20.1047 20.1047i 0.930336 0.930336i −0.0673906 0.997727i \(-0.521467\pi\)
0.997727 + 0.0673906i \(0.0214674\pi\)
\(468\) −3.39395 1.33818i −0.156885 0.0618572i
\(469\) 8.46409i 0.390835i
\(470\) −10.7748 + 22.1096i −0.497003 + 1.01984i
\(471\) 32.9703i 1.51919i
\(472\) −1.75924 2.49183i −0.0809758 0.114696i
\(473\) 6.83946 6.83946i 0.314479 0.314479i
\(474\) 2.63026 4.01040i 0.120812 0.184204i
\(475\) 4.83953 1.25658i 0.222053 0.0576557i
\(476\) −44.1458 + 19.1782i −2.02342 + 0.879031i
\(477\) −1.95574 1.95574i −0.0895472 0.0895472i
\(478\) −0.918829 4.42102i −0.0420263 0.202213i
\(479\) 10.8855 0.497370 0.248685 0.968584i \(-0.420002\pi\)
0.248685 + 0.968584i \(0.420002\pi\)
\(480\) 19.2982 7.40072i 0.880837 0.337795i
\(481\) −23.5474 −1.07367
\(482\) 3.38391 + 16.2820i 0.154133 + 0.741623i
\(483\) −5.06474 5.06474i −0.230454 0.230454i
\(484\) 18.1178 7.87090i 0.823537 0.357768i
\(485\) 3.33038 4.30554i 0.151225 0.195505i
\(486\) 2.64782 4.03718i 0.120108 0.183130i
\(487\) −21.7783 + 21.7783i −0.986867 + 0.986867i −0.999915 0.0130478i \(-0.995847\pi\)
0.0130478 + 0.999915i \(0.495847\pi\)
\(488\) −18.0226 25.5276i −0.815845 1.15558i
\(489\) 21.9027i 0.990473i
\(490\) 14.7337 + 42.7451i 0.665602 + 1.93103i
\(491\) 2.46368i 0.111185i −0.998454 0.0555923i \(-0.982295\pi\)
0.998454 0.0555923i \(-0.0177047\pi\)
\(492\) 10.6920 + 4.21567i 0.482032 + 0.190057i
\(493\) −5.28776 + 5.28776i −0.238149 + 0.238149i
\(494\) −6.53553 4.28639i −0.294047 0.192854i
\(495\) 0.427184 + 3.34503i 0.0192005 + 0.150348i
\(496\) −6.15437 5.74647i −0.276339 0.258024i
\(497\) 6.14507 + 6.14507i 0.275644 + 0.275644i
\(498\) −6.68214 + 1.38876i −0.299434 + 0.0622320i
\(499\) 23.3731 1.04632 0.523161 0.852234i \(-0.324753\pi\)
0.523161 + 0.852234i \(0.324753\pi\)
\(500\) −15.8980 15.7243i −0.710978 0.703214i
\(501\) 32.1941 1.43833
\(502\) −20.1504 + 4.18790i −0.899357 + 0.186915i
\(503\) −10.6038 10.6038i −0.472800 0.472800i 0.430019 0.902820i \(-0.358507\pi\)
−0.902820 + 0.430019i \(0.858507\pi\)
\(504\) 0.731663 4.24572i 0.0325908 0.189119i
\(505\) −4.36208 34.1569i −0.194110 1.51996i
\(506\) −5.13230 3.36607i −0.228159 0.149640i
\(507\) −20.2695 + 20.2695i −0.900201 + 0.900201i
\(508\) 6.70482 17.0051i 0.297478 0.754479i
\(509\) 17.1016i 0.758015i −0.925394 0.379007i \(-0.876266\pi\)
0.925394 0.379007i \(-0.123734\pi\)
\(510\) 8.78077 + 25.4746i 0.388819 + 1.12803i
\(511\) 20.8919i 0.924203i
\(512\) −21.7868 + 6.11039i −0.962848 + 0.270044i
\(513\) 3.84758 3.84758i 0.169875 0.169875i
\(514\) −12.6849 + 19.3409i −0.559508 + 0.853091i
\(515\) 1.04107 1.34590i 0.0458748 0.0593074i
\(516\) 2.75653 + 6.34518i 0.121349 + 0.279331i
\(517\) −25.1287 25.1287i −1.10516 1.10516i
\(518\) −5.65843 27.2260i −0.248617 1.19624i
\(519\) −2.95484 −0.129703
\(520\) −1.52465 + 34.9199i −0.0668605 + 1.53134i
\(521\) −4.34873 −0.190521 −0.0952606 0.995452i \(-0.530368\pi\)
−0.0952606 + 0.995452i \(0.530368\pi\)
\(522\) −0.136205 0.655360i −0.00596153 0.0286843i
\(523\) 27.4034 + 27.4034i 1.19827 + 1.19827i 0.974685 + 0.223581i \(0.0717747\pi\)
0.223581 + 0.974685i \(0.428225\pi\)
\(524\) 8.98630 + 20.6853i 0.392568 + 0.903642i
\(525\) 36.4938 9.47558i 1.59272 0.413548i
\(526\) 0.263692 0.402056i 0.0114975 0.0175305i
\(527\) 7.76206 7.76206i 0.338120 0.338120i
\(528\) 1.02298 + 29.8461i 0.0445194 + 1.29889i
\(529\) 22.0978i 0.960773i
\(530\) −11.6088 + 23.8210i −0.504252 + 1.03472i
\(531\) 0.355950i 0.0154469i
\(532\) 3.38553 8.58655i 0.146781 0.372274i
\(533\) −13.7435 + 13.7435i −0.595297 + 0.595297i
\(534\) 21.1898 + 13.8975i 0.916972 + 0.601405i
\(535\) −5.38224 4.16322i −0.232695 0.179992i
\(536\) 5.11216 + 0.880976i 0.220812 + 0.0380524i
\(537\) 4.60711 + 4.60711i 0.198811 + 0.198811i
\(538\) 7.23591 1.50386i 0.311962 0.0648358i
\(539\) −65.3276 −2.81386
\(540\) −23.5865 5.98616i −1.01500 0.257603i
\(541\) 15.7990 0.679254 0.339627 0.940560i \(-0.389699\pi\)
0.339627 + 0.940560i \(0.389699\pi\)
\(542\) 13.9074 2.89040i 0.597372 0.124153i
\(543\) −22.3454 22.3454i −0.958931 0.958931i
\(544\) −6.98843 28.6594i −0.299626 1.22876i
\(545\) −28.8239 + 3.68101i −1.23468 + 0.157677i
\(546\) −49.2830 32.3227i −2.10912 1.38329i
\(547\) −15.7388 + 15.7388i −0.672943 + 0.672943i −0.958394 0.285450i \(-0.907857\pi\)
0.285450 + 0.958394i \(0.407857\pi\)
\(548\) −12.9247 5.09599i −0.552116 0.217690i
\(549\) 3.64653i 0.155630i
\(550\) 28.9651 14.3130i 1.23508 0.610309i
\(551\) 1.43401i 0.0610909i
\(552\) 3.58618 2.53186i 0.152638 0.107763i
\(553\) −6.77274 + 6.77274i −0.288006 + 0.288006i
\(554\) −1.86356 + 2.84140i −0.0791749 + 0.120719i
\(555\) −15.4422 + 1.97207i −0.655483 + 0.0837098i
\(556\) 25.5575 11.1029i 1.08388 0.470868i
\(557\) −17.9451 17.9451i −0.760359 0.760359i 0.216029 0.976387i \(-0.430690\pi\)
−0.976387 + 0.216029i \(0.930690\pi\)
\(558\) 0.199939 + 0.962022i 0.00846410 + 0.0407256i
\(559\) −11.6993 −0.494830
\(560\) −40.7416 + 6.62842i −1.72165 + 0.280102i
\(561\) −38.9329 −1.64375
\(562\) 2.58110 + 12.4192i 0.108877 + 0.523870i
\(563\) −20.3784 20.3784i −0.858847 0.858847i 0.132355 0.991202i \(-0.457746\pi\)
−0.991202 + 0.132355i \(0.957746\pi\)
\(564\) 23.3127 10.1277i 0.981641 0.426453i
\(565\) −11.4311 8.84211i −0.480912 0.371990i
\(566\) −11.6546 + 17.7699i −0.489879 + 0.746927i
\(567\) 25.7826 25.7826i 1.08277 1.08277i
\(568\) −4.35112 + 3.07191i −0.182569 + 0.128895i
\(569\) 15.5685i 0.652665i −0.945255 0.326333i \(-0.894187\pi\)
0.945255 0.326333i \(-0.105813\pi\)
\(570\) −4.64493 2.26363i −0.194555 0.0948131i
\(571\) 21.2800i 0.890540i 0.895396 + 0.445270i \(0.146892\pi\)
−0.895396 + 0.445270i \(0.853108\pi\)
\(572\) −46.9831 18.5246i −1.96446 0.774554i
\(573\) 1.63437 1.63437i 0.0682767 0.0682767i
\(574\) −19.1931 12.5880i −0.801104 0.525412i
\(575\) −4.09443 2.40648i −0.170750 0.100357i
\(576\) 2.48819 + 0.883823i 0.103674 + 0.0368259i
\(577\) 7.89632 + 7.89632i 0.328728 + 0.328728i 0.852103 0.523375i \(-0.175327\pi\)
−0.523375 + 0.852103i \(0.675327\pi\)
\(578\) 14.1145 2.93345i 0.587086 0.122015i
\(579\) 18.2439 0.758190
\(580\) −5.51092 + 3.27985i −0.228829 + 0.136189i
\(581\) 13.6301 0.565471
\(582\) −5.50754 + 1.14464i −0.228295 + 0.0474470i
\(583\) −27.0737 27.0737i −1.12128 1.12128i
\(584\) −12.6183 2.17451i −0.522151 0.0899819i
\(585\) 2.49558 3.22631i 0.103180 0.133391i
\(586\) −36.5899 23.9978i −1.51151 0.991340i
\(587\) −20.8805 + 20.8805i −0.861831 + 0.861831i −0.991551 0.129720i \(-0.958592\pi\)
0.129720 + 0.991551i \(0.458592\pi\)
\(588\) 17.1386 43.4678i 0.706785 1.79258i
\(589\) 2.10503i 0.0867361i
\(590\) 3.22415 1.11133i 0.132736 0.0457525i
\(591\) 40.0938i 1.64924i
\(592\) 17.0330 0.583806i 0.700051 0.0239943i
\(593\) 4.40488 4.40488i 0.180887 0.180887i −0.610855 0.791742i \(-0.709174\pi\)
0.791742 + 0.610855i \(0.209174\pi\)
\(594\) 19.2828 29.4008i 0.791182 1.20633i
\(595\) −6.81691 53.3792i −0.279466 2.18834i
\(596\) −13.4989 31.0727i −0.552936 1.27279i
\(597\) −25.4258 25.4258i −1.04061 1.04061i
\(598\) 1.51063 + 7.26851i 0.0617743 + 0.297232i
\(599\) 22.4494 0.917256 0.458628 0.888628i \(-0.348341\pi\)
0.458628 + 0.888628i \(0.348341\pi\)
\(600\) 1.92466 + 23.0279i 0.0785740 + 0.940109i
\(601\) −2.44752 −0.0998364 −0.0499182 0.998753i \(-0.515896\pi\)
−0.0499182 + 0.998753i \(0.515896\pi\)
\(602\) −2.81135 13.5270i −0.114582 0.551321i
\(603\) −0.428050 0.428050i −0.0174316 0.0174316i
\(604\) 18.6883 + 43.0181i 0.760416 + 1.75038i
\(605\) 2.79772 + 21.9073i 0.113743 + 0.890659i
\(606\) −19.5160 + 29.7564i −0.792785 + 1.20877i
\(607\) −8.33475 + 8.33475i −0.338297 + 0.338297i −0.855726 0.517429i \(-0.826889\pi\)
0.517429 + 0.855726i \(0.326889\pi\)
\(608\) 4.83374 + 2.93852i 0.196034 + 0.119173i
\(609\) 10.8136i 0.438188i
\(610\) 33.0299 11.3850i 1.33734 0.460965i
\(611\) 42.9843i 1.73896i
\(612\) −1.26267 + 3.20245i −0.0510405 + 0.129451i
\(613\) −24.6735 + 24.6735i −0.996555 + 0.996555i −0.999994 0.00343930i \(-0.998905\pi\)
0.00343930 + 0.999994i \(0.498905\pi\)
\(614\) −27.6053 18.1052i −1.11406 0.730665i
\(615\) −7.86186 + 10.1639i −0.317021 + 0.409847i
\(616\) 10.1286 58.7744i 0.408091 2.36809i
\(617\) −2.72052 2.72052i −0.109524 0.109524i 0.650221 0.759745i \(-0.274676\pi\)
−0.759745 + 0.650221i \(0.774676\pi\)
\(618\) −1.72164 + 0.357812i −0.0692544 + 0.0143933i
\(619\) −21.6528 −0.870300 −0.435150 0.900358i \(-0.643305\pi\)
−0.435150 + 0.900358i \(0.643305\pi\)
\(620\) 8.08964 4.81459i 0.324888 0.193359i
\(621\) −5.16843 −0.207402
\(622\) 26.9179 5.59441i 1.07931 0.224316i
\(623\) −35.7852 35.7852i −1.43370 1.43370i
\(624\) 24.6519 26.4018i 0.986867 1.05692i
\(625\) 21.8420 12.1625i 0.873681 0.486499i
\(626\) 14.4411 + 9.47134i 0.577183 + 0.378551i
\(627\) 5.27920 5.27920i 0.210831 0.210831i
\(628\) −37.5426 14.8024i −1.49811 0.590681i
\(629\) 22.2188i 0.885920i
\(630\) 4.33002 + 2.11016i 0.172512 + 0.0840710i
\(631\) 31.3301i 1.24723i 0.781731 + 0.623616i \(0.214337\pi\)
−0.781731 + 0.623616i \(0.785663\pi\)
\(632\) −3.38568 4.79555i −0.134675 0.190757i
\(633\) −15.3232 + 15.3232i −0.609041 + 0.609041i
\(634\) 14.9191 22.7475i 0.592515 0.903417i
\(635\) 16.1652 + 12.5039i 0.641494 + 0.496202i
\(636\) 25.1171 10.9116i 0.995959 0.432673i
\(637\) 55.8736 + 55.8736i 2.21379 + 2.21379i
\(638\) −1.88551 9.07229i −0.0746482 0.359175i
\(639\) 0.621543 0.0245879
\(640\) 0.237093 25.2971i 0.00937193 0.999956i
\(641\) −38.8191 −1.53326 −0.766631 0.642088i \(-0.778068\pi\)
−0.766631 + 0.642088i \(0.778068\pi\)
\(642\) 1.43089 + 6.88483i 0.0564727 + 0.271722i
\(643\) 30.5752 + 30.5752i 1.20577 + 1.20577i 0.972385 + 0.233384i \(0.0749800\pi\)
0.233384 + 0.972385i \(0.425020\pi\)
\(644\) −8.04101 + 3.49325i −0.316860 + 0.137653i
\(645\) −7.67233 + 0.979811i −0.302098 + 0.0385800i
\(646\) −4.04454 + 6.16678i −0.159130 + 0.242629i
\(647\) 21.3825 21.3825i 0.840632 0.840632i −0.148309 0.988941i \(-0.547383\pi\)
0.988941 + 0.148309i \(0.0473831\pi\)
\(648\) 12.8887 + 18.2558i 0.506314 + 0.717154i
\(649\) 4.92749i 0.193421i
\(650\) −37.0151 12.5317i −1.45185 0.491533i
\(651\) 15.8735i 0.622133i
\(652\) 24.9402 + 9.83348i 0.976732 + 0.385109i
\(653\) 9.46388 9.46388i 0.370350 0.370350i −0.497255 0.867605i \(-0.665658\pi\)
0.867605 + 0.497255i \(0.165658\pi\)
\(654\) 25.1105 + 16.4689i 0.981897 + 0.643986i
\(655\) −25.0118 + 3.19419i −0.977293 + 0.124807i
\(656\) 9.60061 10.2821i 0.374841 0.401448i
\(657\) 1.05656 + 1.05656i 0.0412202 + 0.0412202i
\(658\) −49.6994 + 10.3291i −1.93749 + 0.402672i
\(659\) 14.8386 0.578029 0.289014 0.957325i \(-0.406672\pi\)
0.289014 + 0.957325i \(0.406672\pi\)
\(660\) −32.3625 8.21350i −1.25971 0.319710i
\(661\) 31.5760 1.22817 0.614083 0.789242i \(-0.289526\pi\)
0.614083 + 0.789242i \(0.289526\pi\)
\(662\) −29.9970 + 6.23434i −1.16587 + 0.242305i
\(663\) 33.2987 + 33.2987i 1.29321 + 1.29321i
\(664\) −1.41867 + 8.23233i −0.0550552 + 0.319476i
\(665\) 8.16243 + 6.31372i 0.316525 + 0.244836i
\(666\) −1.66305 1.09073i −0.0644418 0.0422647i
\(667\) −0.963149 + 0.963149i −0.0372933 + 0.0372933i
\(668\) 14.4539 36.6588i 0.559240 1.41837i
\(669\) 14.1144i 0.545693i
\(670\) −2.54080 + 5.21366i −0.0981595 + 0.201421i
\(671\) 50.4797i 1.94875i
\(672\) 36.4502 + 22.1588i 1.40610 + 0.854793i
\(673\) 18.0004 18.0004i 0.693866 0.693866i −0.269215 0.963080i \(-0.586764\pi\)
0.963080 + 0.269215i \(0.0867641\pi\)
\(674\) 0.185648 0.283061i 0.00715091 0.0109031i
\(675\) 13.7857 23.4553i 0.530611 0.902793i
\(676\) 13.9803 + 32.1808i 0.537702 + 1.23772i
\(677\) 20.3423 + 20.3423i 0.781819 + 0.781819i 0.980138 0.198319i \(-0.0635481\pi\)
−0.198319 + 0.980138i \(0.563548\pi\)
\(678\) 3.03901 + 14.6224i 0.116712 + 0.561571i
\(679\) 11.2342 0.431127
\(680\) 32.9497 + 1.43863i 1.26356 + 0.0551689i
\(681\) 34.4279 1.31928
\(682\) 2.76780 + 13.3175i 0.105984 + 0.509952i
\(683\) 31.7484 + 31.7484i 1.21482 + 1.21482i 0.969423 + 0.245396i \(0.0789181\pi\)
0.245396 + 0.969423i \(0.421082\pi\)
\(684\) −0.263028 0.605458i −0.0100571 0.0231503i
\(685\) 9.50359 12.2863i 0.363113 0.469436i
\(686\) −26.1206 + 39.8266i −0.997290 + 1.52059i
\(687\) 29.5903 29.5903i 1.12894 1.12894i
\(688\) 8.46272 0.290060i 0.322638 0.0110584i
\(689\) 46.3114i 1.76432i
\(690\) 1.59939 + 4.64011i 0.0608877 + 0.176646i
\(691\) 2.26449i 0.0861453i −0.999072 0.0430727i \(-0.986285\pi\)
0.999072 0.0430727i \(-0.0137147\pi\)
\(692\) −1.32661 + 3.36463i −0.0504303 + 0.127904i
\(693\) −4.92128 + 4.92128i −0.186944 + 0.186944i
\(694\) −37.3056 24.4672i −1.41610 0.928763i
\(695\) 3.94654 + 30.9031i 0.149701 + 1.17222i
\(696\) 6.53120 + 1.12552i 0.247565 + 0.0426627i
\(697\) 12.9680 + 12.9680i 0.491200 + 0.491200i
\(698\) 26.5226 5.51225i 1.00390 0.208642i
\(699\) −23.7680 −0.898987
\(700\) 5.59470 45.8090i 0.211460 1.73142i
\(701\) 1.89491 0.0715697 0.0357849 0.999360i \(-0.488607\pi\)
0.0357849 + 0.999360i \(0.488607\pi\)
\(702\) −41.6382 + 8.65376i −1.57153 + 0.326615i
\(703\) −3.01280 3.01280i −0.113630 0.113630i
\(704\) 34.4445 + 12.2349i 1.29818 + 0.461122i
\(705\) 3.59990 + 28.1887i 0.135580 + 1.06165i
\(706\) −1.15858 0.759863i −0.0436036 0.0285978i
\(707\) 50.2525 50.2525i 1.88994 1.88994i
\(708\) −3.27866 1.29272i −0.123220 0.0485834i
\(709\) 6.93479i 0.260442i 0.991485 + 0.130221i \(0.0415686\pi\)
−0.991485 + 0.130221i \(0.958431\pi\)
\(710\) −1.94054 5.62986i −0.0728274 0.211285i
\(711\) 0.685029i 0.0256906i
\(712\) 25.3383 17.8889i 0.949592 0.670417i
\(713\) 1.41383 1.41383i 0.0529485 0.0529485i
\(714\) −30.4990 + 46.5024i −1.14140 + 1.74031i
\(715\) 34.5469 44.6624i 1.29198 1.67028i
\(716\) 7.31444 3.17761i 0.273354 0.118753i
\(717\) −3.68914 3.68914i −0.137773 0.137773i
\(718\) −3.75502 18.0676i −0.140136 0.674276i
\(719\) −37.3420 −1.39262 −0.696311 0.717740i \(-0.745177\pi\)
−0.696311 + 0.717740i \(0.745177\pi\)
\(720\) −1.72519 + 2.39562i −0.0642939 + 0.0892795i
\(721\) 3.51176 0.130785
\(722\) −0.287770 1.38463i −0.0107097 0.0515304i
\(723\) 13.5866 + 13.5866i 0.505290 + 0.505290i
\(724\) −35.4765 + 15.4120i −1.31847 + 0.572783i
\(725\) −1.80194 6.93993i −0.0669226 0.257743i
\(726\) 12.5171 19.0850i 0.464552 0.708310i
\(727\) 17.4875 17.4875i 0.648575 0.648575i −0.304074 0.952649i \(-0.598347\pi\)
0.952649 + 0.304074i \(0.0983469\pi\)
\(728\) −58.9315 + 41.6060i −2.18415 + 1.54202i
\(729\) 29.2810i 1.08448i
\(730\) 6.27144 12.8689i 0.232116 0.476298i
\(731\) 11.0392i 0.408301i
\(732\) −33.5883 13.2433i −1.24146 0.489486i
\(733\) −0.838043 + 0.838043i −0.0309538 + 0.0309538i −0.722414 0.691460i \(-0.756968\pi\)
0.691460 + 0.722414i \(0.256968\pi\)
\(734\) 21.3123 + 13.9778i 0.786650 + 0.515932i
\(735\) 41.3208 + 31.9621i 1.52414 + 1.17894i
\(736\) −1.27292 5.22022i −0.0469205 0.192420i
\(737\) −5.92559 5.92559i −0.218272 0.218272i
\(738\) −1.60725 + 0.334038i −0.0591636 + 0.0122961i
\(739\) −2.99968 −0.110345 −0.0551725 0.998477i \(-0.517571\pi\)
−0.0551725 + 0.998477i \(0.517571\pi\)
\(740\) −4.68739 + 18.4691i −0.172312 + 0.678937i
\(741\) −9.03041 −0.331740
\(742\) −53.5462 + 11.1286i −1.96574 + 0.408545i
\(743\) −29.6466 29.6466i −1.08763 1.08763i −0.995772 0.0918551i \(-0.970720\pi\)
−0.0918551 0.995772i \(-0.529280\pi\)
\(744\) −9.58734 1.65218i −0.351489 0.0605719i
\(745\) 37.5719 4.79820i 1.37653 0.175792i
\(746\) −26.2062 17.1876i −0.959477 0.629282i
\(747\) 0.689307 0.689307i 0.0252204 0.0252204i
\(748\) −17.4794 + 44.3322i −0.639111 + 1.62095i
\(749\) 14.0435i 0.513139i
\(750\) −25.3237 5.11819i −0.924690 0.186890i
\(751\) 17.4677i 0.637406i 0.947855 + 0.318703i \(0.103247\pi\)
−0.947855 + 0.318703i \(0.896753\pi\)
\(752\) −1.06570 31.0927i −0.0388622 1.13383i
\(753\) −16.8146 + 16.8146i −0.612759 + 0.612759i
\(754\) −6.14673 + 9.37202i −0.223851 + 0.341309i
\(755\) −52.0157 + 6.64278i −1.89305 + 0.241755i
\(756\) −20.0113 46.0635i −0.727805 1.67532i
\(757\) 8.92826 + 8.92826i 0.324503 + 0.324503i 0.850492 0.525988i \(-0.176305\pi\)
−0.525988 + 0.850492i \(0.676305\pi\)
\(758\) 1.21134 + 5.82847i 0.0439979 + 0.211699i
\(759\) −7.09151 −0.257406
\(760\) −4.66295 + 4.27281i −0.169143 + 0.154991i
\(761\) 21.6485 0.784756 0.392378 0.919804i \(-0.371653\pi\)
0.392378 + 0.919804i \(0.371653\pi\)
\(762\) −4.29756 20.6780i −0.155684 0.749086i
\(763\) −42.4064 42.4064i −1.53521 1.53521i
\(764\) −1.12725 2.59479i −0.0407826 0.0938763i
\(765\) −3.04427 2.35477i −0.110066 0.0851370i
\(766\) 25.6570 39.1197i 0.927025 1.41345i
\(767\) 4.21440 4.21440i 0.152173 0.152173i
\(768\) −17.1774 + 19.7089i −0.619835 + 0.711184i
\(769\) 28.9274i 1.04315i −0.853206 0.521574i \(-0.825345\pi\)
0.853206 0.521574i \(-0.174655\pi\)
\(770\) 59.9413 + 29.2115i 2.16014