Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [380,2,Mod(267,380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(380, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("380.267");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 380.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.03431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
267.1 | −1.38393 | − | 0.291109i | −1.18694 | − | 1.18694i | 1.83051 | + | 0.805748i | 1.27222 | − | 1.83887i | 1.29711 | + | 1.98816i | 1.53689 | − | 1.53689i | −2.29873 | − | 1.64798i | − | 0.182360i | −2.29598 | + | 2.17451i | |
267.2 | −1.36260 | − | 0.378581i | 1.58108 | + | 1.58108i | 1.71335 | + | 1.03171i | −1.74843 | − | 1.39392i | −1.55581 | − | 2.75294i | 1.94368 | − | 1.94368i | −1.94403 | − | 2.05445i | 1.99961i | 1.85470 | + | 2.56127i | ||
267.3 | −1.34889 | − | 0.424847i | −2.38733 | − | 2.38733i | 1.63901 | + | 1.14614i | −2.23504 | − | 0.0679064i | 2.20600 | + | 4.23450i | −0.160827 | + | 0.160827i | −1.72391 | − | 2.24235i | 8.39872i | 2.98597 | + | 1.04115i | ||
267.4 | −1.34528 | + | 0.436150i | 1.71881 | + | 1.71881i | 1.61955 | − | 1.17349i | −0.923046 | + | 2.03666i | −3.06193 | − | 1.56262i | 0.323011 | − | 0.323011i | −1.66692 | + | 2.28503i | 2.90860i | 0.353464 | − | 3.14246i | ||
267.5 | −1.23831 | + | 0.683080i | 0.494605 | + | 0.494605i | 1.06680 | − | 1.69172i | 1.31079 | − | 1.81158i | −0.950327 | − | 0.274617i | −0.327577 | + | 0.327577i | −0.165443 | + | 2.82358i | − | 2.51073i | −0.385706 | + | 3.13867i | |
267.6 | −1.14458 | − | 0.830627i | 1.85040 | + | 1.85040i | 0.620117 | + | 1.90143i | 1.13686 | + | 1.92550i | −0.580936 | − | 3.65493i | −1.96775 | + | 1.96775i | 0.869611 | − | 2.69143i | 3.84798i | 0.298148 | − | 3.14819i | ||
267.7 | −1.07073 | − | 0.923868i | −1.14885 | − | 1.14885i | 0.292934 | + | 1.97843i | 1.95382 | − | 1.08746i | 0.168724 | + | 2.29149i | −2.70883 | + | 2.70883i | 1.51416 | − | 2.38900i | − | 0.360306i | −3.09669 | − | 0.640694i | |
267.8 | −0.685298 | + | 1.23708i | −1.29571 | − | 1.29571i | −1.06073 | − | 1.69554i | 0.171865 | + | 2.22945i | 2.49084 | − | 0.714946i | −0.654476 | + | 0.654476i | 2.82443 | − | 0.150262i | 0.357708i | −2.87579 | − | 1.31523i | ||
267.9 | −0.615749 | + | 1.27313i | 1.93808 | + | 1.93808i | −1.24171 | − | 1.56785i | −0.168423 | − | 2.22972i | −3.66079 | + | 1.27405i | 2.91797 | − | 2.91797i | 2.76066 | − | 0.615446i | 4.51229i | 2.94242 | + | 1.15852i | ||
267.10 | −0.287770 | − | 1.38463i | −1.15541 | − | 1.15541i | −1.83438 | + | 0.796907i | −0.283261 | − | 2.21805i | −1.26732 | + | 1.93230i | 3.26325 | − | 3.26325i | 1.63130 | + | 2.31060i | − | 0.330062i | −2.98966 | + | 1.03050i | |
267.11 | −0.283752 | + | 1.38545i | 1.20015 | + | 1.20015i | −1.83897 | − | 0.786251i | −2.06624 | + | 0.854787i | −2.00330 | + | 1.32221i | −1.52124 | + | 1.52124i | 1.61113 | − | 2.32471i | − | 0.119262i | −0.597969 | − | 3.10523i | |
267.12 | −0.282971 | − | 1.38561i | −0.321015 | − | 0.321015i | −1.83985 | + | 0.784178i | 1.77712 | + | 1.35715i | −0.353965 | + | 0.535642i | −1.91243 | + | 1.91243i | 1.60719 | + | 2.32743i | − | 2.79390i | 1.37761 | − | 2.84643i | |
267.13 | 0.00522099 | + | 1.41420i | −0.212700 | − | 0.212700i | −1.99995 | + | 0.0147671i | 2.19176 | + | 0.442915i | 0.299691 | − | 0.301912i | 2.65088 | − | 2.65088i | −0.0313254 | − | 2.82825i | − | 2.90952i | −0.614930 | + | 3.10191i | |
267.14 | 0.0365245 | − | 1.41374i | 0.389264 | + | 0.389264i | −1.99733 | − | 0.103273i | −1.49421 | + | 1.66354i | 0.564536 | − | 0.536101i | 2.85353 | − | 2.85353i | −0.218952 | + | 2.81994i | − | 2.69695i | 2.29723 | + | 2.17318i | |
267.15 | 0.433304 | − | 1.34620i | 0.497882 | + | 0.497882i | −1.62450 | − | 1.16662i | −2.01079 | − | 0.978129i | 0.885982 | − | 0.454514i | −2.91849 | + | 2.91849i | −2.27441 | + | 1.68139i | − | 2.50423i | −2.18804 | + | 2.28309i | |
267.16 | 0.435901 | − | 1.34536i | 1.82161 | + | 1.82161i | −1.61998 | − | 1.17289i | 2.11542 | + | 0.724569i | 3.24476 | − | 1.65668i | 1.36053 | − | 1.36053i | −2.28411 | + | 1.66819i | 3.63653i | 1.89692 | − | 2.53016i | ||
267.17 | 0.647117 | + | 1.25747i | −1.78847 | − | 1.78847i | −1.16248 | + | 1.62746i | 0.0829302 | − | 2.23453i | 1.09160 | − | 3.40630i | −0.904221 | + | 0.904221i | −2.79875 | − | 0.408628i | 3.39723i | 2.86353 | − | 1.34172i | ||
267.18 | 0.707119 | + | 1.22474i | 1.27216 | + | 1.27216i | −0.999965 | + | 1.73207i | 2.08931 | − | 0.796745i | −0.658494 | + | 2.45763i | −0.691067 | + | 0.691067i | −2.82843 | 8.52354e-5i | 0.236784i | 2.45319 | + | 1.99546i | |||
267.19 | 0.912296 | + | 1.08061i | −1.34016 | − | 1.34016i | −0.335432 | + | 1.97167i | −2.21942 | − | 0.272360i | 0.225567 | − | 2.67081i | 0.697742 | − | 0.697742i | −2.43662 | + | 1.43628i | 0.592060i | −1.73045 | − | 2.64680i | ||
267.20 | 0.979881 | − | 1.01972i | −0.582309 | − | 0.582309i | −0.0796647 | − | 1.99841i | 1.46731 | + | 1.68731i | −1.16439 | + | 0.0231993i | −0.972933 | + | 0.972933i | −2.11589 | − | 1.87697i | − | 2.32183i | 3.15837 | + | 0.157113i | |
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
20.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 380.2.k.d | yes | 52 |
4.b | odd | 2 | 1 | 380.2.k.c | ✓ | 52 | |
5.c | odd | 4 | 1 | 380.2.k.c | ✓ | 52 | |
20.e | even | 4 | 1 | inner | 380.2.k.d | yes | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
380.2.k.c | ✓ | 52 | 4.b | odd | 2 | 1 | |
380.2.k.c | ✓ | 52 | 5.c | odd | 4 | 1 | |
380.2.k.d | yes | 52 | 1.a | even | 1 | 1 | trivial |
380.2.k.d | yes | 52 | 20.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{52} - 2 T_{3}^{51} + 2 T_{3}^{50} + 364 T_{3}^{48} - 768 T_{3}^{47} + 808 T_{3}^{46} + 496 T_{3}^{45} + 51686 T_{3}^{44} - 112644 T_{3}^{43} + 122716 T_{3}^{42} + 124792 T_{3}^{41} + 3705020 T_{3}^{40} + \cdots + 6553600 \)
acting on \(S_{2}^{\mathrm{new}}(380, [\chi])\).