Properties

Label 380.2.k.c.343.7
Level $380$
Weight $2$
Character 380.343
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.7
Character \(\chi\) \(=\) 380.343
Dual form 380.2.k.c.267.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923868 + 1.07073i) q^{2} +(1.14885 - 1.14885i) q^{3} +(-0.292934 - 1.97843i) q^{4} +(1.95382 + 1.08746i) q^{5} +(0.168724 + 2.29149i) q^{6} +(2.70883 + 2.70883i) q^{7} +(2.38900 + 1.51416i) q^{8} +0.360306i q^{9} +O(q^{10})\) \(q+(-0.923868 + 1.07073i) q^{2} +(1.14885 - 1.14885i) q^{3} +(-0.292934 - 1.97843i) q^{4} +(1.95382 + 1.08746i) q^{5} +(0.168724 + 2.29149i) q^{6} +(2.70883 + 2.70883i) q^{7} +(2.38900 + 1.51416i) q^{8} +0.360306i q^{9} +(-2.96946 + 1.08735i) q^{10} -4.11798i q^{11} +(-2.60945 - 1.93638i) q^{12} +(-1.95079 - 1.95079i) q^{13} +(-5.40302 + 0.397828i) q^{14} +(3.49397 - 0.995314i) q^{15} +(-3.82838 + 1.15910i) q^{16} +(-4.15549 + 4.15549i) q^{17} +(-0.385791 - 0.332875i) q^{18} +1.00000 q^{19} +(1.57913 - 4.18406i) q^{20} +6.22405 q^{21} +(4.40926 + 3.80447i) q^{22} +(3.01995 - 3.01995i) q^{23} +(4.48413 - 1.00506i) q^{24} +(2.63485 + 4.24942i) q^{25} +(3.89106 - 0.286501i) q^{26} +(3.86047 + 3.86047i) q^{27} +(4.56572 - 6.15273i) q^{28} -2.35086i q^{29} +(-2.16225 + 4.66064i) q^{30} +5.48110i q^{31} +(2.29583 - 5.17002i) q^{32} +(-4.73093 - 4.73093i) q^{33} +(-0.610291 - 8.28855i) q^{34} +(2.34682 + 8.23831i) q^{35} +(0.712840 - 0.105546i) q^{36} +(3.69981 - 3.69981i) q^{37} +(-0.923868 + 1.07073i) q^{38} -4.48233 q^{39} +(3.02110 + 5.55634i) q^{40} -9.82744 q^{41} +(-5.75020 + 6.66429i) q^{42} +(8.96408 - 8.96408i) q^{43} +(-8.14714 + 1.20630i) q^{44} +(-0.391819 + 0.703974i) q^{45} +(0.443521 + 6.02359i) q^{46} +(0.482563 + 0.482563i) q^{47} +(-3.06659 + 5.72985i) q^{48} +7.67547i q^{49} +(-6.98424 - 1.10469i) q^{50} +9.54804i q^{51} +(-3.28806 + 4.43097i) q^{52} +(-2.71437 - 2.71437i) q^{53} +(-7.70010 + 0.566964i) q^{54} +(4.47815 - 8.04581i) q^{55} +(2.36981 + 10.5730i) q^{56} +(1.14885 - 1.14885i) q^{57} +(2.51714 + 2.17189i) q^{58} -9.02322 q^{59} +(-2.99266 - 6.62102i) q^{60} -4.23945 q^{61} +(-5.86878 - 5.06381i) q^{62} +(-0.976005 + 0.976005i) q^{63} +(3.41467 + 7.23464i) q^{64} +(-1.69009 - 5.93292i) q^{65} +(9.43631 - 0.694802i) q^{66} +(-6.49679 - 6.49679i) q^{67} +(9.43864 + 7.00407i) q^{68} -6.93891i q^{69} +(-10.9892 - 5.09830i) q^{70} -14.9562i q^{71} +(-0.545559 + 0.860771i) q^{72} +(7.29798 + 7.29798i) q^{73} +(0.543368 + 7.37965i) q^{74} +(7.90896 + 1.85490i) q^{75} +(-0.292934 - 1.97843i) q^{76} +(11.1549 - 11.1549i) q^{77} +(4.14108 - 4.79937i) q^{78} -3.64828 q^{79} +(-8.74045 - 1.89854i) q^{80} +7.78926 q^{81} +(9.07926 - 10.5226i) q^{82} +(-8.32940 + 8.32940i) q^{83} +(-1.82324 - 12.3138i) q^{84} +(-12.6380 + 3.60015i) q^{85} +(1.31650 + 17.8798i) q^{86} +(-2.70078 - 2.70078i) q^{87} +(6.23527 - 9.83787i) q^{88} +9.76244i q^{89} +(-0.391778 - 1.06991i) q^{90} -10.5687i q^{91} +(-6.85941 - 5.09011i) q^{92} +(6.29693 + 6.29693i) q^{93} +(-0.962520 + 0.0708710i) q^{94} +(1.95382 + 1.08746i) q^{95} +(-3.30201 - 8.57712i) q^{96} +(0.208633 - 0.208633i) q^{97} +(-8.21837 - 7.09112i) q^{98} +1.48373 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923868 + 1.07073i −0.653274 + 0.757122i
\(3\) 1.14885 1.14885i 0.663287 0.663287i −0.292867 0.956153i \(-0.594609\pi\)
0.956153 + 0.292867i \(0.0946092\pi\)
\(4\) −0.292934 1.97843i −0.146467 0.989216i
\(5\) 1.95382 + 1.08746i 0.873776 + 0.486328i
\(6\) 0.168724 + 2.29149i 0.0688812 + 0.935496i
\(7\) 2.70883 + 2.70883i 1.02384 + 1.02384i 0.999709 + 0.0241310i \(0.00768188\pi\)
0.0241310 + 0.999709i \(0.492318\pi\)
\(8\) 2.38900 + 1.51416i 0.844640 + 0.535335i
\(9\) 0.360306i 0.120102i
\(10\) −2.96946 + 1.08735i −0.939025 + 0.343850i
\(11\) 4.11798i 1.24162i −0.783962 0.620809i \(-0.786804\pi\)
0.783962 0.620809i \(-0.213196\pi\)
\(12\) −2.60945 1.93638i −0.753283 0.558984i
\(13\) −1.95079 1.95079i −0.541053 0.541053i 0.382785 0.923838i \(-0.374965\pi\)
−0.923838 + 0.382785i \(0.874965\pi\)
\(14\) −5.40302 + 0.397828i −1.44402 + 0.106324i
\(15\) 3.49397 0.995314i 0.902139 0.256989i
\(16\) −3.82838 + 1.15910i −0.957095 + 0.289775i
\(17\) −4.15549 + 4.15549i −1.00786 + 1.00786i −0.00788621 + 0.999969i \(0.502510\pi\)
−0.999969 + 0.00788621i \(0.997490\pi\)
\(18\) −0.385791 0.332875i −0.0909318 0.0784594i
\(19\) 1.00000 0.229416
\(20\) 1.57913 4.18406i 0.353104 0.935584i
\(21\) 6.22405 1.35820
\(22\) 4.40926 + 3.80447i 0.940057 + 0.811117i
\(23\) 3.01995 3.01995i 0.629703 0.629703i −0.318291 0.947993i \(-0.603109\pi\)
0.947993 + 0.318291i \(0.103109\pi\)
\(24\) 4.48413 1.00506i 0.915319 0.205158i
\(25\) 2.63485 + 4.24942i 0.526970 + 0.849884i
\(26\) 3.89106 0.286501i 0.763099 0.0561875i
\(27\) 3.86047 + 3.86047i 0.742949 + 0.742949i
\(28\) 4.56572 6.15273i 0.862839 1.16276i
\(29\) 2.35086i 0.436544i −0.975888 0.218272i \(-0.929958\pi\)
0.975888 0.218272i \(-0.0700420\pi\)
\(30\) −2.16225 + 4.66064i −0.394772 + 0.850913i
\(31\) 5.48110i 0.984434i 0.870473 + 0.492217i \(0.163813\pi\)
−0.870473 + 0.492217i \(0.836187\pi\)
\(32\) 2.29583 5.17002i 0.405849 0.913940i
\(33\) −4.73093 4.73093i −0.823549 0.823549i
\(34\) −0.610291 8.28855i −0.104664 1.42147i
\(35\) 2.34682 + 8.23831i 0.396685 + 1.39253i
\(36\) 0.712840 0.105546i 0.118807 0.0175910i
\(37\) 3.69981 3.69981i 0.608246 0.608246i −0.334242 0.942487i \(-0.608480\pi\)
0.942487 + 0.334242i \(0.108480\pi\)
\(38\) −0.923868 + 1.07073i −0.149871 + 0.173696i
\(39\) −4.48233 −0.717746
\(40\) 3.02110 + 5.55634i 0.477678 + 0.878535i
\(41\) −9.82744 −1.53479 −0.767394 0.641176i \(-0.778447\pi\)
−0.767394 + 0.641176i \(0.778447\pi\)
\(42\) −5.75020 + 6.66429i −0.887275 + 1.02832i
\(43\) 8.96408 8.96408i 1.36701 1.36701i 0.502339 0.864671i \(-0.332473\pi\)
0.864671 0.502339i \(-0.167527\pi\)
\(44\) −8.14714 + 1.20630i −1.22823 + 0.181856i
\(45\) −0.391819 + 0.703974i −0.0584090 + 0.104942i
\(46\) 0.443521 + 6.02359i 0.0653936 + 0.888130i
\(47\) 0.482563 + 0.482563i 0.0703891 + 0.0703891i 0.741425 0.671036i \(-0.234150\pi\)
−0.671036 + 0.741425i \(0.734150\pi\)
\(48\) −3.06659 + 5.72985i −0.442624 + 0.827032i
\(49\) 7.67547i 1.09650i
\(50\) −6.98424 1.10469i −0.987721 0.156227i
\(51\) 9.54804i 1.33699i
\(52\) −3.28806 + 4.43097i −0.455972 + 0.614465i
\(53\) −2.71437 2.71437i −0.372848 0.372848i 0.495666 0.868513i \(-0.334924\pi\)
−0.868513 + 0.495666i \(0.834924\pi\)
\(54\) −7.70010 + 0.566964i −1.04785 + 0.0771540i
\(55\) 4.47815 8.04581i 0.603834 1.08490i
\(56\) 2.36981 + 10.5730i 0.316679 + 1.41287i
\(57\) 1.14885 1.14885i 0.152168 0.152168i
\(58\) 2.51714 + 2.17189i 0.330517 + 0.285183i
\(59\) −9.02322 −1.17472 −0.587361 0.809325i \(-0.699833\pi\)
−0.587361 + 0.809325i \(0.699833\pi\)
\(60\) −2.99266 6.62102i −0.386351 0.854769i
\(61\) −4.23945 −0.542806 −0.271403 0.962466i \(-0.587488\pi\)
−0.271403 + 0.962466i \(0.587488\pi\)
\(62\) −5.86878 5.06381i −0.745336 0.643105i
\(63\) −0.976005 + 0.976005i −0.122965 + 0.122965i
\(64\) 3.41467 + 7.23464i 0.426833 + 0.904330i
\(65\) −1.69009 5.93292i −0.209630 0.735889i
\(66\) 9.43631 0.694802i 1.16153 0.0855242i
\(67\) −6.49679 6.49679i −0.793710 0.793710i 0.188386 0.982095i \(-0.439675\pi\)
−0.982095 + 0.188386i \(0.939675\pi\)
\(68\) 9.43864 + 7.00407i 1.14460 + 0.849368i
\(69\) 6.93891i 0.835347i
\(70\) −10.9892 5.09830i −1.31346 0.609364i
\(71\) 14.9562i 1.77497i −0.460837 0.887485i \(-0.652451\pi\)
0.460837 0.887485i \(-0.347549\pi\)
\(72\) −0.545559 + 0.860771i −0.0642947 + 0.101443i
\(73\) 7.29798 + 7.29798i 0.854164 + 0.854164i 0.990643 0.136479i \(-0.0435785\pi\)
−0.136479 + 0.990643i \(0.543579\pi\)
\(74\) 0.543368 + 7.37965i 0.0631653 + 0.857867i
\(75\) 7.90896 + 1.85490i 0.913249 + 0.214185i
\(76\) −0.292934 1.97843i −0.0336019 0.226942i
\(77\) 11.1549 11.1549i 1.27122 1.27122i
\(78\) 4.14108 4.79937i 0.468885 0.543422i
\(79\) −3.64828 −0.410464 −0.205232 0.978713i \(-0.565795\pi\)
−0.205232 + 0.978713i \(0.565795\pi\)
\(80\) −8.74045 1.89854i −0.977212 0.212263i
\(81\) 7.78926 0.865474
\(82\) 9.07926 10.5226i 1.00264 1.16202i
\(83\) −8.32940 + 8.32940i −0.914270 + 0.914270i −0.996605 0.0823347i \(-0.973762\pi\)
0.0823347 + 0.996605i \(0.473762\pi\)
\(84\) −1.82324 12.3138i −0.198932 1.34355i
\(85\) −12.6380 + 3.60015i −1.37079 + 0.390491i
\(86\) 1.31650 + 17.8798i 0.141962 + 1.92802i
\(87\) −2.70078 2.70078i −0.289554 0.289554i
\(88\) 6.23527 9.83787i 0.664682 1.04872i
\(89\) 9.76244i 1.03482i 0.855739 + 0.517408i \(0.173103\pi\)
−0.855739 + 0.517408i \(0.826897\pi\)
\(90\) −0.391778 1.06991i −0.0412970 0.112779i
\(91\) 10.5687i 1.10790i
\(92\) −6.85941 5.09011i −0.715142 0.530681i
\(93\) 6.29693 + 6.29693i 0.652962 + 0.652962i
\(94\) −0.962520 + 0.0708710i −0.0992764 + 0.00730979i
\(95\) 1.95382 + 1.08746i 0.200458 + 0.111571i
\(96\) −3.30201 8.57712i −0.337010 0.875399i
\(97\) 0.208633 0.208633i 0.0211835 0.0211835i −0.696436 0.717619i \(-0.745232\pi\)
0.717619 + 0.696436i \(0.245232\pi\)
\(98\) −8.21837 7.09112i −0.830181 0.716312i
\(99\) 1.48373 0.149121
\(100\) 7.63535 6.45767i 0.763535 0.645767i
\(101\) −18.7952 −1.87019 −0.935096 0.354394i \(-0.884687\pi\)
−0.935096 + 0.354394i \(0.884687\pi\)
\(102\) −10.2234 8.82114i −1.01227 0.873423i
\(103\) 0.733254 0.733254i 0.0722496 0.0722496i −0.670059 0.742308i \(-0.733731\pi\)
0.742308 + 0.670059i \(0.233731\pi\)
\(104\) −1.70665 7.61426i −0.167350 0.746640i
\(105\) 12.1607 + 6.76842i 1.18676 + 0.660530i
\(106\) 5.41409 0.398643i 0.525863 0.0387196i
\(107\) −4.19542 4.19542i −0.405586 0.405586i 0.474610 0.880196i \(-0.342589\pi\)
−0.880196 + 0.474610i \(0.842589\pi\)
\(108\) 6.50682 8.76855i 0.626119 0.843754i
\(109\) 2.82743i 0.270819i −0.990790 0.135409i \(-0.956765\pi\)
0.990790 0.135409i \(-0.0432350\pi\)
\(110\) 4.47768 + 12.2282i 0.426930 + 1.16591i
\(111\) 8.50103i 0.806882i
\(112\) −13.5102 7.23061i −1.27660 0.683228i
\(113\) 1.04439 + 1.04439i 0.0982483 + 0.0982483i 0.754522 0.656274i \(-0.227869\pi\)
−0.656274 + 0.754522i \(0.727869\pi\)
\(114\) 0.168724 + 2.29149i 0.0158024 + 0.214618i
\(115\) 9.18453 2.61636i 0.856461 0.243977i
\(116\) −4.65102 + 0.688649i −0.431836 + 0.0639394i
\(117\) 0.702883 0.702883i 0.0649815 0.0649815i
\(118\) 8.33627 9.66145i 0.767415 0.889408i
\(119\) −22.5130 −2.06376
\(120\) 9.85416 + 2.91261i 0.899558 + 0.265883i
\(121\) −5.95778 −0.541616
\(122\) 3.91669 4.53931i 0.354601 0.410970i
\(123\) −11.2902 + 11.2902i −1.01800 + 1.01800i
\(124\) 10.8440 1.60560i 0.973817 0.144187i
\(125\) 0.526938 + 11.1679i 0.0471308 + 0.998889i
\(126\) −0.143340 1.94674i −0.0127697 0.173429i
\(127\) −2.30575 2.30575i −0.204602 0.204602i 0.597366 0.801969i \(-0.296214\pi\)
−0.801969 + 0.597366i \(0.796214\pi\)
\(128\) −10.9011 3.02767i −0.963527 0.267610i
\(129\) 20.5967i 1.81344i
\(130\) 7.91399 + 3.67161i 0.694103 + 0.322021i
\(131\) 1.87892i 0.164162i 0.996626 + 0.0820810i \(0.0261566\pi\)
−0.996626 + 0.0820810i \(0.973843\pi\)
\(132\) −7.97396 + 10.7457i −0.694044 + 0.935290i
\(133\) 2.70883 + 2.70883i 0.234885 + 0.234885i
\(134\) 12.9585 0.954143i 1.11944 0.0824254i
\(135\) 3.34456 + 11.7408i 0.287854 + 1.01049i
\(136\) −16.2195 + 3.63542i −1.39081 + 0.311735i
\(137\) 4.38444 4.38444i 0.374588 0.374588i −0.494557 0.869145i \(-0.664670\pi\)
0.869145 + 0.494557i \(0.164670\pi\)
\(138\) 7.42971 + 6.41064i 0.632459 + 0.545710i
\(139\) −5.70518 −0.483907 −0.241953 0.970288i \(-0.577788\pi\)
−0.241953 + 0.970288i \(0.577788\pi\)
\(140\) 15.6115 7.05630i 1.31941 0.596366i
\(141\) 1.10878 0.0933762
\(142\) 16.0140 + 13.8175i 1.34387 + 1.15954i
\(143\) −8.03334 + 8.03334i −0.671781 + 0.671781i
\(144\) −0.417631 1.37939i −0.0348026 0.114949i
\(145\) 2.55648 4.59317i 0.212304 0.381442i
\(146\) −14.5566 + 1.07181i −1.20471 + 0.0887035i
\(147\) 8.81793 + 8.81793i 0.727291 + 0.727291i
\(148\) −8.40363 6.23602i −0.690774 0.512598i
\(149\) 3.91665i 0.320864i 0.987047 + 0.160432i \(0.0512888\pi\)
−0.987047 + 0.160432i \(0.948711\pi\)
\(150\) −9.29294 + 6.75470i −0.758765 + 0.551519i
\(151\) 4.24151i 0.345169i 0.984995 + 0.172584i \(0.0552118\pi\)
−0.984995 + 0.172584i \(0.944788\pi\)
\(152\) 2.38900 + 1.51416i 0.193774 + 0.122814i
\(153\) −1.49725 1.49725i −0.121045 0.121045i
\(154\) 1.63825 + 22.2496i 0.132014 + 1.79292i
\(155\) −5.96049 + 10.7091i −0.478758 + 0.860175i
\(156\) 1.31303 + 8.86797i 0.105126 + 0.710006i
\(157\) −1.83855 + 1.83855i −0.146733 + 0.146733i −0.776657 0.629924i \(-0.783086\pi\)
0.629924 + 0.776657i \(0.283086\pi\)
\(158\) 3.37053 3.90633i 0.268145 0.310771i
\(159\) −6.23679 −0.494610
\(160\) 10.1079 7.60468i 0.799096 0.601203i
\(161\) 16.3610 1.28943
\(162\) −7.19625 + 8.34021i −0.565391 + 0.655269i
\(163\) −1.72096 + 1.72096i −0.134796 + 0.134796i −0.771285 0.636489i \(-0.780386\pi\)
0.636489 + 0.771285i \(0.280386\pi\)
\(164\) 2.87879 + 19.4429i 0.224796 + 1.51824i
\(165\) −4.09869 14.3881i −0.319082 1.12011i
\(166\) −1.22329 16.6138i −0.0949454 1.28948i
\(167\) −9.53008 9.53008i −0.737460 0.737460i 0.234626 0.972086i \(-0.424613\pi\)
−0.972086 + 0.234626i \(0.924613\pi\)
\(168\) 14.8693 + 9.42417i 1.14719 + 0.727091i
\(169\) 5.38880i 0.414523i
\(170\) 7.82109 16.8580i 0.599850 1.29295i
\(171\) 0.360306i 0.0275533i
\(172\) −20.3607 15.1089i −1.55249 1.15205i
\(173\) 1.38868 + 1.38868i 0.105579 + 0.105579i 0.757923 0.652344i \(-0.226214\pi\)
−0.652344 + 0.757923i \(0.726214\pi\)
\(174\) 5.38697 0.396646i 0.408386 0.0300697i
\(175\) −4.37360 + 18.6483i −0.330613 + 1.40968i
\(176\) 4.77316 + 15.7652i 0.359790 + 1.18835i
\(177\) −10.3663 + 10.3663i −0.779178 + 0.779178i
\(178\) −10.4530 9.01921i −0.783483 0.676019i
\(179\) 20.9758 1.56780 0.783901 0.620886i \(-0.213227\pi\)
0.783901 + 0.620886i \(0.213227\pi\)
\(180\) 1.50754 + 0.568969i 0.112365 + 0.0424085i
\(181\) 15.9695 1.18701 0.593503 0.804832i \(-0.297744\pi\)
0.593503 + 0.804832i \(0.297744\pi\)
\(182\) 11.3163 + 9.76411i 0.838818 + 0.723764i
\(183\) −4.87047 + 4.87047i −0.360036 + 0.360036i
\(184\) 11.7873 2.64199i 0.868974 0.194770i
\(185\) 11.2522 3.20537i 0.827277 0.235663i
\(186\) −12.5599 + 0.924791i −0.920934 + 0.0678090i
\(187\) 17.1122 + 17.1122i 1.25137 + 1.25137i
\(188\) 0.813358 1.09608i 0.0593203 0.0799396i
\(189\) 20.9147i 1.52132i
\(190\) −2.96946 + 1.08735i −0.215427 + 0.0788845i
\(191\) 5.91787i 0.428202i 0.976811 + 0.214101i \(0.0686822\pi\)
−0.976811 + 0.214101i \(0.931318\pi\)
\(192\) 12.2344 + 4.38857i 0.882943 + 0.316717i
\(193\) 1.66414 + 1.66414i 0.119788 + 0.119788i 0.764460 0.644672i \(-0.223006\pi\)
−0.644672 + 0.764460i \(0.723006\pi\)
\(194\) 0.0306406 + 0.416139i 0.00219987 + 0.0298771i
\(195\) −8.75767 4.87436i −0.627150 0.349060i
\(196\) 15.1854 2.24841i 1.08467 0.160601i
\(197\) −7.74801 + 7.74801i −0.552023 + 0.552023i −0.927024 0.375001i \(-0.877642\pi\)
0.375001 + 0.927024i \(0.377642\pi\)
\(198\) −1.37077 + 1.58868i −0.0974167 + 0.112903i
\(199\) −18.3552 −1.30117 −0.650583 0.759435i \(-0.725475\pi\)
−0.650583 + 0.759435i \(0.725475\pi\)
\(200\) −0.139626 + 14.1414i −0.00987304 + 0.999951i
\(201\) −14.9276 −1.05291
\(202\) 17.3643 20.1246i 1.22175 1.41596i
\(203\) 6.36808 6.36808i 0.446951 0.446951i
\(204\) 18.8901 2.79695i 1.32257 0.195826i
\(205\) −19.2011 10.6870i −1.34106 0.746411i
\(206\) 0.107688 + 1.46255i 0.00750300 + 0.101901i
\(207\) 1.08810 + 1.08810i 0.0756285 + 0.0756285i
\(208\) 9.72955 + 5.20721i 0.674623 + 0.361055i
\(209\) 4.11798i 0.284847i
\(210\) −18.4820 + 6.76771i −1.27538 + 0.467016i
\(211\) 10.7675i 0.741266i −0.928779 0.370633i \(-0.879141\pi\)
0.928779 0.370633i \(-0.120859\pi\)
\(212\) −4.57507 + 6.16533i −0.314217 + 0.423437i
\(213\) −17.1823 17.1823i −1.17731 1.17731i
\(214\) 8.36818 0.616155i 0.572037 0.0421195i
\(215\) 27.2623 7.76612i 1.85928 0.529645i
\(216\) 3.37732 + 15.0680i 0.229798 + 1.02525i
\(217\) −14.8473 + 14.8473i −1.00790 + 1.00790i
\(218\) 3.02742 + 2.61217i 0.205043 + 0.176919i
\(219\) 16.7685 1.13311
\(220\) −17.2299 6.50282i −1.16164 0.438420i
\(221\) 16.2130 1.09061
\(222\) 9.10233 + 7.85383i 0.610908 + 0.527115i
\(223\) 2.60632 2.60632i 0.174532 0.174532i −0.614435 0.788967i \(-0.710616\pi\)
0.788967 + 0.614435i \(0.210616\pi\)
\(224\) 20.2237 7.78569i 1.35125 0.520203i
\(225\) −1.53109 + 0.949351i −0.102073 + 0.0632901i
\(226\) −2.08315 + 0.153384i −0.138569 + 0.0102029i
\(227\) −7.03256 7.03256i −0.466767 0.466767i 0.434098 0.900866i \(-0.357067\pi\)
−0.900866 + 0.434098i \(0.857067\pi\)
\(228\) −2.60945 1.93638i −0.172815 0.128240i
\(229\) 3.08487i 0.203854i 0.994792 + 0.101927i \(0.0325008\pi\)
−0.994792 + 0.101927i \(0.967499\pi\)
\(230\) −5.68387 + 12.2513i −0.374783 + 0.807829i
\(231\) 25.6305i 1.68636i
\(232\) 3.55957 5.61622i 0.233697 0.368723i
\(233\) 16.5824 + 16.5824i 1.08635 + 1.08635i 0.995901 + 0.0904463i \(0.0288294\pi\)
0.0904463 + 0.995901i \(0.471171\pi\)
\(234\) 0.103228 + 1.40197i 0.00674822 + 0.0916496i
\(235\) 0.418073 + 1.46761i 0.0272721 + 0.0957365i
\(236\) 2.64321 + 17.8518i 0.172058 + 1.16205i
\(237\) −4.19132 + 4.19132i −0.272255 + 0.272255i
\(238\) 20.7991 24.1054i 1.34820 1.56252i
\(239\) −9.09479 −0.588293 −0.294146 0.955760i \(-0.595035\pi\)
−0.294146 + 0.955760i \(0.595035\pi\)
\(240\) −12.2226 + 7.86030i −0.788963 + 0.507380i
\(241\) 0.806689 0.0519634 0.0259817 0.999662i \(-0.491729\pi\)
0.0259817 + 0.999662i \(0.491729\pi\)
\(242\) 5.50420 6.37919i 0.353824 0.410070i
\(243\) −2.63276 + 2.63276i −0.168892 + 0.168892i
\(244\) 1.24188 + 8.38745i 0.0795032 + 0.536952i
\(245\) −8.34679 + 14.9965i −0.533257 + 0.958092i
\(246\) −1.65812 22.5195i −0.105718 1.43579i
\(247\) −1.95079 1.95079i −0.124126 0.124126i
\(248\) −8.29923 + 13.0943i −0.527002 + 0.831492i
\(249\) 19.1384i 1.21285i
\(250\) −12.4447 9.75347i −0.787070 0.616864i
\(251\) 2.39055i 0.150890i 0.997150 + 0.0754451i \(0.0240378\pi\)
−0.997150 + 0.0754451i \(0.975962\pi\)
\(252\) 2.21687 + 1.64505i 0.139649 + 0.103629i
\(253\) −12.4361 12.4361i −0.781850 0.781850i
\(254\) 4.59906 0.338631i 0.288570 0.0212476i
\(255\) −10.3831 + 18.6552i −0.650218 + 1.16823i
\(256\) 13.3130 8.87496i 0.832061 0.554685i
\(257\) 16.0798 16.0798i 1.00303 1.00303i 0.00303293 0.999995i \(-0.499035\pi\)
0.999995 0.00303293i \(-0.000965412\pi\)
\(258\) 22.0535 + 19.0286i 1.37299 + 1.18467i
\(259\) 20.0443 1.24549
\(260\) −11.2428 + 5.08168i −0.697249 + 0.315153i
\(261\) 0.847029 0.0524298
\(262\) −2.01182 1.73587i −0.124291 0.107243i
\(263\) 3.25350 3.25350i 0.200619 0.200619i −0.599646 0.800265i \(-0.704692\pi\)
0.800265 + 0.599646i \(0.204692\pi\)
\(264\) −4.13884 18.4656i −0.254728 1.13648i
\(265\) −2.35162 8.25518i −0.144459 0.507112i
\(266\) −5.40302 + 0.397828i −0.331281 + 0.0243924i
\(267\) 11.2155 + 11.2155i 0.686380 + 0.686380i
\(268\) −10.9503 + 14.7566i −0.668897 + 0.901402i
\(269\) 19.3588i 1.18033i −0.807284 0.590163i \(-0.799064\pi\)
0.807284 0.590163i \(-0.200936\pi\)
\(270\) −15.6612 7.26583i −0.953110 0.442184i
\(271\) 2.77454i 0.168542i 0.996443 + 0.0842708i \(0.0268561\pi\)
−0.996443 + 0.0842708i \(0.973144\pi\)
\(272\) 11.0922 20.7254i 0.672561 1.25666i
\(273\) −12.1418 12.1418i −0.734857 0.734857i
\(274\) 0.643915 + 8.74521i 0.0389003 + 0.528317i
\(275\) 17.4990 10.8503i 1.05523 0.654295i
\(276\) −13.7282 + 2.03265i −0.826338 + 0.122351i
\(277\) 3.48594 3.48594i 0.209450 0.209450i −0.594584 0.804034i \(-0.702683\pi\)
0.804034 + 0.594584i \(0.202683\pi\)
\(278\) 5.27083 6.10872i 0.316124 0.366377i
\(279\) −1.97487 −0.118232
\(280\) −6.86754 + 23.2348i −0.410414 + 1.38854i
\(281\) −27.6567 −1.64986 −0.824930 0.565235i \(-0.808786\pi\)
−0.824930 + 0.565235i \(0.808786\pi\)
\(282\) −1.02437 + 1.18721i −0.0610002 + 0.0706972i
\(283\) −6.97300 + 6.97300i −0.414502 + 0.414502i −0.883304 0.468802i \(-0.844686\pi\)
0.468802 + 0.883304i \(0.344686\pi\)
\(284\) −29.5897 + 4.38117i −1.75583 + 0.259975i
\(285\) 3.49397 0.995314i 0.206965 0.0589573i
\(286\) −1.17981 16.0233i −0.0697634 0.947478i
\(287\) −26.6208 26.6208i −1.57138 1.57138i
\(288\) 1.86279 + 0.827201i 0.109766 + 0.0487433i
\(289\) 17.5362i 1.03154i
\(290\) 2.55621 + 6.98078i 0.150106 + 0.409926i
\(291\) 0.479374i 0.0281014i
\(292\) 12.3007 16.5764i 0.719846 0.970060i
\(293\) −4.11824 4.11824i −0.240590 0.240590i 0.576504 0.817094i \(-0.304416\pi\)
−0.817094 + 0.576504i \(0.804416\pi\)
\(294\) −17.5883 + 1.29503i −1.02577 + 0.0755279i
\(295\) −17.6298 9.81242i −1.02644 0.571301i
\(296\) 14.4410 3.23677i 0.839363 0.188133i
\(297\) 15.8974 15.8974i 0.922459 0.922459i
\(298\) −4.19368 3.61847i −0.242933 0.209612i
\(299\) −11.7826 −0.681405
\(300\) 1.35297 16.1907i 0.0781140 0.934771i
\(301\) 48.5643 2.79920
\(302\) −4.54152 3.91859i −0.261335 0.225490i
\(303\) −21.5928 + 21.5928i −1.24047 + 1.24047i
\(304\) −3.82838 + 1.15910i −0.219573 + 0.0664790i
\(305\) −8.28313 4.61024i −0.474291 0.263982i
\(306\) 2.98641 0.219891i 0.170722 0.0125704i
\(307\) 23.2710 + 23.2710i 1.32814 + 1.32814i 0.906989 + 0.421155i \(0.138375\pi\)
0.421155 + 0.906989i \(0.361625\pi\)
\(308\) −25.3368 18.8015i −1.44370 1.07132i
\(309\) 1.68479i 0.0958444i
\(310\) −5.95986 16.2759i −0.338497 0.924408i
\(311\) 31.9359i 1.81092i −0.424434 0.905459i \(-0.639527\pi\)
0.424434 0.905459i \(-0.360473\pi\)
\(312\) −10.7083 6.78694i −0.606237 0.384235i
\(313\) 3.53818 + 3.53818i 0.199990 + 0.199990i 0.799996 0.600006i \(-0.204835\pi\)
−0.600006 + 0.799996i \(0.704835\pi\)
\(314\) −0.270017 3.66718i −0.0152379 0.206951i
\(315\) −2.96831 + 0.845572i −0.167245 + 0.0476426i
\(316\) 1.06871 + 7.21788i 0.0601195 + 0.406037i
\(317\) −7.96927 + 7.96927i −0.447599 + 0.447599i −0.894556 0.446957i \(-0.852508\pi\)
0.446957 + 0.894556i \(0.352508\pi\)
\(318\) 5.76197 6.67793i 0.323115 0.374480i
\(319\) −9.68081 −0.542021
\(320\) −1.19576 + 17.8485i −0.0668448 + 0.997763i
\(321\) −9.63978 −0.538040
\(322\) −15.1154 + 17.5183i −0.842350 + 0.976255i
\(323\) −4.15549 + 4.15549i −0.231218 + 0.231218i
\(324\) −2.28174 15.4105i −0.126764 0.856140i
\(325\) 3.14970 13.4298i 0.174714 0.744951i
\(326\) −0.252747 3.43263i −0.0139983 0.190116i
\(327\) −3.24828 3.24828i −0.179630 0.179630i
\(328\) −23.4778 14.8803i −1.29634 0.821625i
\(329\) 2.61436i 0.144134i
\(330\) 19.1925 + 8.90412i 1.05651 + 0.490156i
\(331\) 0.243939i 0.0134081i −0.999978 0.00670406i \(-0.997866\pi\)
0.999978 0.00670406i \(-0.00213398\pi\)
\(332\) 18.9191 + 14.0392i 1.03832 + 0.770500i
\(333\) 1.33306 + 1.33306i 0.0730515 + 0.0730515i
\(334\) 19.0087 1.39962i 1.04011 0.0765840i
\(335\) −5.62856 19.7586i −0.307521 1.07953i
\(336\) −23.8280 + 7.21430i −1.29992 + 0.393572i
\(337\) −21.6007 + 21.6007i −1.17666 + 1.17666i −0.196075 + 0.980589i \(0.562820\pi\)
−0.980589 + 0.196075i \(0.937180\pi\)
\(338\) 5.76996 + 4.97854i 0.313845 + 0.270797i
\(339\) 2.39969 0.130334
\(340\) 10.8248 + 23.9489i 0.587056 + 1.29881i
\(341\) 22.5711 1.22229
\(342\) −0.385791 0.332875i −0.0208612 0.0179998i
\(343\) −1.82973 + 1.82973i −0.0987963 + 0.0987963i
\(344\) 34.9882 7.84220i 1.88644 0.422823i
\(345\) 7.54581 13.5574i 0.406253 0.729906i
\(346\) −2.76985 + 0.203946i −0.148908 + 0.0109642i
\(347\) 21.4891 + 21.4891i 1.15360 + 1.15360i 0.985826 + 0.167770i \(0.0536565\pi\)
0.167770 + 0.985826i \(0.446343\pi\)
\(348\) −4.55215 + 6.13446i −0.244021 + 0.328841i
\(349\) 16.9878i 0.909334i 0.890661 + 0.454667i \(0.150242\pi\)
−0.890661 + 0.454667i \(0.849758\pi\)
\(350\) −15.9267 21.9115i −0.851317 1.17122i
\(351\) 15.0620i 0.803949i
\(352\) −21.2901 9.45419i −1.13476 0.503910i
\(353\) 21.9390 + 21.9390i 1.16769 + 1.16769i 0.982749 + 0.184946i \(0.0592110\pi\)
0.184946 + 0.982749i \(0.440789\pi\)
\(354\) −1.52243 20.6766i −0.0809163 1.09895i
\(355\) 16.2643 29.2217i 0.863218 1.55093i
\(356\) 19.3143 2.85976i 1.02366 0.151567i
\(357\) −25.8640 + 25.8640i −1.36887 + 1.36887i
\(358\) −19.3788 + 22.4594i −1.02420 + 1.18702i
\(359\) 9.38281 0.495206 0.247603 0.968862i \(-0.420357\pi\)
0.247603 + 0.968862i \(0.420357\pi\)
\(360\) −2.00198 + 1.08852i −0.105514 + 0.0573700i
\(361\) 1.00000 0.0526316
\(362\) −14.7538 + 17.0991i −0.775440 + 0.898709i
\(363\) −6.84457 + 6.84457i −0.359247 + 0.359247i
\(364\) −20.9095 + 3.09594i −1.09596 + 0.162272i
\(365\) 6.32268 + 22.1953i 0.330944 + 1.16175i
\(366\) −0.715296 9.71465i −0.0373891 0.507793i
\(367\) 8.72035 + 8.72035i 0.455199 + 0.455199i 0.897076 0.441877i \(-0.145687\pi\)
−0.441877 + 0.897076i \(0.645687\pi\)
\(368\) −8.06108 + 15.0619i −0.420213 + 0.785157i
\(369\) 3.54088i 0.184331i
\(370\) −6.96345 + 15.0094i −0.362013 + 0.780303i
\(371\) 14.7055i 0.763473i
\(372\) 10.6135 14.3026i 0.550282 0.741557i
\(373\) 16.4931 + 16.4931i 0.853979 + 0.853979i 0.990621 0.136641i \(-0.0436308\pi\)
−0.136641 + 0.990621i \(0.543631\pi\)
\(374\) −34.1321 + 2.51317i −1.76493 + 0.129953i
\(375\) 13.4356 + 12.2248i 0.693811 + 0.631288i
\(376\) 0.422169 + 1.88352i 0.0217717 + 0.0971351i
\(377\) −4.58605 + 4.58605i −0.236194 + 0.236194i
\(378\) −22.3940 19.3224i −1.15183 0.993839i
\(379\) 29.7168 1.52645 0.763224 0.646133i \(-0.223615\pi\)
0.763224 + 0.646133i \(0.223615\pi\)
\(380\) 1.57913 4.18406i 0.0810076 0.214638i
\(381\) −5.29791 −0.271420
\(382\) −6.33646 5.46734i −0.324201 0.279733i
\(383\) 8.57457 8.57457i 0.438140 0.438140i −0.453246 0.891386i \(-0.649734\pi\)
0.891386 + 0.453246i \(0.149734\pi\)
\(384\) −16.0020 + 9.04532i −0.816597 + 0.461592i
\(385\) 33.9252 9.66415i 1.72899 0.492531i
\(386\) −3.31930 + 0.244402i −0.168948 + 0.0124398i
\(387\) 3.22981 + 3.22981i 0.164180 + 0.164180i
\(388\) −0.473881 0.351650i −0.0240577 0.0178523i
\(389\) 9.66869i 0.490222i −0.969495 0.245111i \(-0.921176\pi\)
0.969495 0.245111i \(-0.0788244\pi\)
\(390\) 13.3101 4.87385i 0.673982 0.246797i
\(391\) 25.0987i 1.26930i
\(392\) −11.6219 + 18.3367i −0.586992 + 0.926144i
\(393\) 2.15859 + 2.15859i 0.108886 + 0.108886i
\(394\) −1.13790 15.4542i −0.0573266 0.778570i
\(395\) −7.12810 3.96737i −0.358654 0.199620i
\(396\) −0.434636 2.93546i −0.0218413 0.147513i
\(397\) 19.0447 19.0447i 0.955827 0.955827i −0.0432378 0.999065i \(-0.513767\pi\)
0.999065 + 0.0432378i \(0.0137673\pi\)
\(398\) 16.9578 19.6535i 0.850017 0.985141i
\(399\) 6.22405 0.311592
\(400\) −15.0127 13.2143i −0.750635 0.660717i
\(401\) −0.178250 −0.00890139 −0.00445069 0.999990i \(-0.501417\pi\)
−0.00445069 + 0.999990i \(0.501417\pi\)
\(402\) 13.7912 15.9835i 0.687841 0.797184i
\(403\) 10.6925 10.6925i 0.532631 0.532631i
\(404\) 5.50576 + 37.1850i 0.273922 + 1.85002i
\(405\) 15.2188 + 8.47054i 0.756230 + 0.420904i
\(406\) 0.935239 + 12.7018i 0.0464151 + 0.630378i
\(407\) −15.2358 15.2358i −0.755209 0.755209i
\(408\) −14.4572 + 22.8103i −0.715739 + 1.12928i
\(409\) 2.01061i 0.0994184i −0.998764 0.0497092i \(-0.984171\pi\)
0.998764 0.0497092i \(-0.0158295\pi\)
\(410\) 29.1821 10.6858i 1.44120 0.527736i
\(411\) 10.0741i 0.496918i
\(412\) −1.66549 1.23590i −0.0820526 0.0608882i
\(413\) −24.4423 24.4423i −1.20273 1.20273i
\(414\) −2.17033 + 0.159803i −0.106666 + 0.00785389i
\(415\) −25.3321 + 7.21625i −1.24350 + 0.354232i
\(416\) −14.5644 + 5.60696i −0.714076 + 0.274904i
\(417\) −6.55437 + 6.55437i −0.320969 + 0.320969i
\(418\) 4.40926 + 3.80447i 0.215664 + 0.186083i
\(419\) 13.6641 0.667536 0.333768 0.942655i \(-0.391680\pi\)
0.333768 + 0.942655i \(0.391680\pi\)
\(420\) 9.82857 26.0418i 0.479585 1.27071i
\(421\) −13.8989 −0.677390 −0.338695 0.940896i \(-0.609985\pi\)
−0.338695 + 0.940896i \(0.609985\pi\)
\(422\) 11.5291 + 9.94776i 0.561229 + 0.484249i
\(423\) −0.173870 + 0.173870i −0.00845386 + 0.00845386i
\(424\) −2.37466 10.5946i −0.115324 0.514520i
\(425\) −28.6075 6.70935i −1.38767 0.325451i
\(426\) 34.2719 2.52346i 1.66048 0.122262i
\(427\) −11.4839 11.4839i −0.555746 0.555746i
\(428\) −7.07136 + 9.52933i −0.341807 + 0.460618i
\(429\) 18.4581i 0.891167i
\(430\) −16.8714 + 36.3655i −0.813610 + 1.75370i
\(431\) 20.3636i 0.980879i 0.871475 + 0.490440i \(0.163164\pi\)
−0.871475 + 0.490440i \(0.836836\pi\)
\(432\) −19.2540 10.3047i −0.926360 0.495784i
\(433\) 5.89872 + 5.89872i 0.283475 + 0.283475i 0.834493 0.551018i \(-0.185761\pi\)
−0.551018 + 0.834493i \(0.685761\pi\)
\(434\) −2.18053 29.6145i −0.104669 1.42154i
\(435\) −2.33985 8.21384i −0.112187 0.393824i
\(436\) −5.59388 + 0.828252i −0.267898 + 0.0396661i
\(437\) 3.01995 3.01995i 0.144464 0.144464i
\(438\) −15.4919 + 17.9546i −0.740232 + 0.857903i
\(439\) 27.2435 1.30026 0.650131 0.759822i \(-0.274714\pi\)
0.650131 + 0.759822i \(0.274714\pi\)
\(440\) 22.8809 12.4408i 1.09081 0.593094i
\(441\) −2.76552 −0.131691
\(442\) −14.9787 + 17.3598i −0.712464 + 0.825722i
\(443\) −20.1874 + 20.1874i −0.959131 + 0.959131i −0.999197 0.0400656i \(-0.987243\pi\)
0.0400656 + 0.999197i \(0.487243\pi\)
\(444\) −16.8187 + 2.49024i −0.798180 + 0.118182i
\(445\) −10.6163 + 19.0741i −0.503261 + 0.904198i
\(446\) 0.382774 + 5.19857i 0.0181249 + 0.246159i
\(447\) 4.49963 + 4.49963i 0.212825 + 0.212825i
\(448\) −10.3477 + 28.8471i −0.488881 + 1.36290i
\(449\) 4.84516i 0.228657i 0.993443 + 0.114329i \(0.0364717\pi\)
−0.993443 + 0.114329i \(0.963528\pi\)
\(450\) 0.398026 2.51646i 0.0187631 0.118627i
\(451\) 40.4692i 1.90562i
\(452\) 1.76032 2.37220i 0.0827986 0.111579i
\(453\) 4.87284 + 4.87284i 0.228946 + 0.228946i
\(454\) 14.0271 1.03283i 0.658326 0.0484730i
\(455\) 11.4931 20.6494i 0.538805 0.968060i
\(456\) 4.48413 1.00506i 0.209989 0.0470664i
\(457\) −14.6913 + 14.6913i −0.687230 + 0.687230i −0.961619 0.274389i \(-0.911524\pi\)
0.274389 + 0.961619i \(0.411524\pi\)
\(458\) −3.30307 2.85002i −0.154342 0.133172i
\(459\) −32.0843 −1.49757
\(460\) −7.86675 17.4045i −0.366789 0.811490i
\(461\) 24.5016 1.14115 0.570577 0.821244i \(-0.306720\pi\)
0.570577 + 0.821244i \(0.306720\pi\)
\(462\) 27.4434 + 23.6792i 1.27678 + 1.10166i
\(463\) 25.8168 25.8168i 1.19981 1.19981i 0.225586 0.974223i \(-0.427570\pi\)
0.974223 0.225586i \(-0.0724297\pi\)
\(464\) 2.72489 + 8.99999i 0.126500 + 0.417814i
\(465\) 5.45541 + 19.1508i 0.252989 + 0.888096i
\(466\) −33.0752 + 2.43535i −1.53218 + 0.112815i
\(467\) 6.04830 + 6.04830i 0.279882 + 0.279882i 0.833062 0.553180i \(-0.186586\pi\)
−0.553180 + 0.833062i \(0.686586\pi\)
\(468\) −1.59650 1.18471i −0.0737984 0.0547631i
\(469\) 35.1974i 1.62526i
\(470\) −1.95766 0.908236i −0.0903003 0.0418938i
\(471\) 4.22443i 0.194651i
\(472\) −21.5565 13.6626i −0.992218 0.628870i
\(473\) −36.9139 36.9139i −1.69730 1.69730i
\(474\) −0.615552 8.36000i −0.0282733 0.383988i
\(475\) 2.63485 + 4.24942i 0.120895 + 0.194977i
\(476\) 6.59484 + 44.5404i 0.302274 + 2.04151i
\(477\) 0.978004 0.978004i 0.0447797 0.0447797i
\(478\) 8.40239 9.73808i 0.384316 0.445409i
\(479\) 22.0969 1.00963 0.504816 0.863227i \(-0.331560\pi\)
0.504816 + 0.863227i \(0.331560\pi\)
\(480\) 2.87577 20.3490i 0.131260 0.928800i
\(481\) −14.4352 −0.658186
\(482\) −0.745275 + 0.863748i −0.0339463 + 0.0393427i
\(483\) 18.7963 18.7963i 0.855261 0.855261i
\(484\) 1.74524 + 11.7871i 0.0793290 + 0.535775i
\(485\) 0.634512 0.180751i 0.0288117 0.00820748i
\(486\) −0.386657 5.25130i −0.0175391 0.238204i
\(487\) 21.8223 + 21.8223i 0.988864 + 0.988864i 0.999939 0.0110744i \(-0.00352517\pi\)
−0.0110744 + 0.999939i \(0.503525\pi\)
\(488\) −10.1280 6.41918i −0.458475 0.290583i
\(489\) 3.95424i 0.178817i
\(490\) −8.34591 22.7920i −0.377030 1.02964i
\(491\) 29.1044i 1.31346i −0.754124 0.656732i \(-0.771938\pi\)
0.754124 0.656732i \(-0.228062\pi\)
\(492\) 25.6442 + 19.0296i 1.15613 + 0.857921i
\(493\) 9.76899 + 9.76899i 0.439973 + 0.439973i
\(494\) 3.89106 0.286501i 0.175067 0.0128903i
\(495\) 2.89895 + 1.61350i 0.130298 + 0.0725216i
\(496\) −6.35314 20.9837i −0.285265 0.942196i
\(497\) 40.5136 40.5136i 1.81728 1.81728i
\(498\) −20.4921 17.6814i −0.918272 0.792320i
\(499\) −25.5652 −1.14446 −0.572228 0.820094i \(-0.693921\pi\)
−0.572228 + 0.820094i \(0.693921\pi\)
\(500\) 21.9406 4.31398i 0.981213 0.192927i
\(501\) −21.8972 −0.978294
\(502\) −2.55964 2.20855i −0.114242 0.0985726i
\(503\) 23.8295 23.8295i 1.06250 1.06250i 0.0645931 0.997912i \(-0.479425\pi\)
0.997912 0.0645931i \(-0.0205750\pi\)
\(504\) −3.80950 + 0.853855i −0.169689 + 0.0380337i
\(505\) −36.7225 20.4391i −1.63413 0.909527i
\(506\) 24.8050 1.82641i 1.10272 0.0811939i
\(507\) −6.19090 6.19090i −0.274948 0.274948i
\(508\) −3.88634 + 5.23721i −0.172428 + 0.232363i
\(509\) 0.373579i 0.0165586i −0.999966 0.00827931i \(-0.997365\pi\)
0.999966 0.00827931i \(-0.00263542\pi\)
\(510\) −10.3820 28.3525i −0.459725 1.25547i
\(511\) 39.5379i 1.74905i
\(512\) −2.79673 + 22.4539i −0.123599 + 0.992332i
\(513\) 3.86047 + 3.86047i 0.170444 + 0.170444i
\(514\) 2.36153 + 32.0727i 0.104163 + 1.41467i
\(515\) 2.23003 0.635261i 0.0982670 0.0279930i
\(516\) −40.7491 + 6.03348i −1.79388 + 0.265609i
\(517\) 1.98719 1.98719i 0.0873963 0.0873963i
\(518\) −18.5183 + 21.4621i −0.813647 + 0.942989i
\(519\) 3.19075 0.140058
\(520\) 4.94574 16.7328i 0.216885 0.733783i
\(521\) −21.9839 −0.963131 −0.481566 0.876410i \(-0.659932\pi\)
−0.481566 + 0.876410i \(0.659932\pi\)
\(522\) −0.782544 + 0.906942i −0.0342510 + 0.0396958i
\(523\) −25.4734 + 25.4734i −1.11388 + 1.11388i −0.121255 + 0.992621i \(0.538692\pi\)
−0.992621 + 0.121255i \(0.961308\pi\)
\(524\) 3.71731 0.550400i 0.162392 0.0240443i
\(525\) 16.3994 + 26.4486i 0.715729 + 1.15431i
\(526\) 0.477821 + 6.48943i 0.0208340 + 0.282953i
\(527\) −22.7767 22.7767i −0.992167 0.992167i
\(528\) 23.5954 + 12.6282i 1.02686 + 0.549570i
\(529\) 4.75983i 0.206949i
\(530\) 11.0117 + 5.10874i 0.478317 + 0.221910i
\(531\) 3.25112i 0.141086i
\(532\) 4.56572 6.15273i 0.197949 0.266755i
\(533\) 19.1713 + 19.1713i 0.830402 + 0.830402i
\(534\) −22.3705 + 1.64716i −0.968067 + 0.0712794i
\(535\) −3.63474 12.7595i −0.157144 0.551640i
\(536\) −5.68370 25.3580i −0.245498 1.09530i
\(537\) 24.0979 24.0979i 1.03990 1.03990i
\(538\) 20.7281 + 17.8850i 0.893650 + 0.771075i
\(539\) 31.6075 1.36143
\(540\) 22.2486 10.0563i 0.957429 0.432753i
\(541\) −11.3955 −0.489932 −0.244966 0.969532i \(-0.578777\pi\)
−0.244966 + 0.969532i \(0.578777\pi\)
\(542\) −2.97079 2.56331i −0.127606 0.110104i
\(543\) 18.3465 18.3465i 0.787326 0.787326i
\(544\) 11.9437 + 31.0243i 0.512082 + 1.33016i
\(545\) 3.07473 5.52430i 0.131707 0.236635i
\(546\) 24.2181 1.78320i 1.03644 0.0763137i
\(547\) 20.7225 + 20.7225i 0.886032 + 0.886032i 0.994139 0.108107i \(-0.0344790\pi\)
−0.108107 + 0.994139i \(0.534479\pi\)
\(548\) −9.95867 7.38996i −0.425413 0.315683i
\(549\) 1.52750i 0.0651920i
\(550\) −4.54909 + 28.7610i −0.193974 + 1.22637i
\(551\) 2.35086i 0.100150i
\(552\) 10.5066 16.5771i 0.447190 0.705567i
\(553\) −9.88257 9.88257i −0.420249 0.420249i
\(554\) 0.511958 + 6.95306i 0.0217510 + 0.295407i
\(555\) 9.24456 16.6095i 0.392410 0.705034i
\(556\) 1.67124 + 11.2873i 0.0708765 + 0.478688i
\(557\) 12.2789 12.2789i 0.520272 0.520272i −0.397382 0.917653i \(-0.630081\pi\)
0.917653 + 0.397382i \(0.130081\pi\)
\(558\) 1.82452 2.11456i 0.0772381 0.0895163i
\(559\) −34.9742 −1.47925
\(560\) −18.5335 28.8192i −0.783185 1.21783i
\(561\) 39.3187 1.66004
\(562\) 25.5512 29.6129i 1.07781 1.24915i
\(563\) −13.3587 + 13.3587i −0.563001 + 0.563001i −0.930159 0.367158i \(-0.880331\pi\)
0.367158 + 0.930159i \(0.380331\pi\)
\(564\) −0.324800 2.19365i −0.0136766 0.0923692i
\(565\) 0.904821 + 3.17630i 0.0380661 + 0.133628i
\(566\) −1.02408 13.9084i −0.0430453 0.584612i
\(567\) 21.0998 + 21.0998i 0.886106 + 0.886106i
\(568\) 22.6459 35.7303i 0.950203 1.49921i
\(569\) 17.3531i 0.727478i −0.931501 0.363739i \(-0.881500\pi\)
0.931501 0.363739i \(-0.118500\pi\)
\(570\) −2.16225 + 4.66064i −0.0905668 + 0.195213i
\(571\) 19.3548i 0.809972i −0.914323 0.404986i \(-0.867276\pi\)
0.914323 0.404986i \(-0.132724\pi\)
\(572\) 18.2466 + 13.5402i 0.762931 + 0.566143i
\(573\) 6.79873 + 6.79873i 0.284021 + 0.284021i
\(574\) 53.0979 3.90963i 2.21626 0.163185i
\(575\) 20.7901 + 4.87593i 0.867008 + 0.203340i
\(576\) −2.60668 + 1.23032i −0.108612 + 0.0512635i
\(577\) 3.22845 3.22845i 0.134402 0.134402i −0.636705 0.771107i \(-0.719703\pi\)
0.771107 + 0.636705i \(0.219703\pi\)
\(578\) 18.7766 + 16.2012i 0.781004 + 0.673880i
\(579\) 3.82369 0.158907
\(580\) −9.83615 3.71231i −0.408424 0.154145i
\(581\) −45.1258 −1.87213
\(582\) 0.513281 + 0.442878i 0.0212762 + 0.0183579i
\(583\) −11.1777 + 11.1777i −0.462935 + 0.462935i
\(584\) 6.38462 + 28.4852i 0.264197 + 1.17873i
\(585\) 2.13767 0.608949i 0.0883817 0.0251770i
\(586\) 8.21425 0.604820i 0.339327 0.0249849i
\(587\) 19.7717 + 19.7717i 0.816064 + 0.816064i 0.985535 0.169471i \(-0.0542060\pi\)
−0.169471 + 0.985535i \(0.554206\pi\)
\(588\) 14.8626 20.0288i 0.612923 0.825972i
\(589\) 5.48110i 0.225845i
\(590\) 26.7941 9.81138i 1.10309 0.403928i
\(591\) 17.8025i 0.732298i
\(592\) −9.87583 + 18.4527i −0.405894 + 0.758403i
\(593\) 0.671001 + 0.671001i 0.0275547 + 0.0275547i 0.720750 0.693195i \(-0.243798\pi\)
−0.693195 + 0.720750i \(0.743798\pi\)
\(594\) 2.33475 + 31.7089i 0.0957958 + 1.30103i
\(595\) −43.9864 24.4821i −1.80327 1.00367i
\(596\) 7.74882 1.14732i 0.317404 0.0469961i
\(597\) −21.0873 + 21.0873i −0.863046 + 0.863046i
\(598\) 10.8856 12.6160i 0.445144 0.515907i
\(599\) −6.84669 −0.279748 −0.139874 0.990169i \(-0.544670\pi\)
−0.139874 + 0.990169i \(0.544670\pi\)
\(600\) 16.0859 + 16.4068i 0.656706 + 0.669803i
\(601\) −28.9163 −1.17952 −0.589761 0.807578i \(-0.700778\pi\)
−0.589761 + 0.807578i \(0.700778\pi\)
\(602\) −44.8670 + 51.9993i −1.82864 + 2.11933i
\(603\) 2.34083 2.34083i 0.0953261 0.0953261i
\(604\) 8.39153 1.24248i 0.341446 0.0505559i
\(605\) −11.6404 6.47887i −0.473251 0.263403i
\(606\) −3.17120 43.0690i −0.128821 1.74956i
\(607\) −5.48920 5.48920i −0.222800 0.222800i 0.586877 0.809676i \(-0.300357\pi\)
−0.809676 + 0.586877i \(0.800357\pi\)
\(608\) 2.29583 5.17002i 0.0931083 0.209672i
\(609\) 14.6319i 0.592914i
\(610\) 12.5889 4.60975i 0.509708 0.186644i
\(611\) 1.88276i 0.0761684i
\(612\) −2.52361 + 3.40080i −0.102011 + 0.137469i
\(613\) 8.13079 + 8.13079i 0.328399 + 0.328399i 0.851978 0.523578i \(-0.175403\pi\)
−0.523578 + 0.851978i \(0.675403\pi\)
\(614\) −46.4163 + 3.41766i −1.87321 + 0.137925i
\(615\) −34.3368 + 9.78138i −1.38459 + 0.394423i
\(616\) 43.5393 9.75883i 1.75425 0.393194i
\(617\) −10.8891 + 10.8891i −0.438379 + 0.438379i −0.891466 0.453087i \(-0.850323\pi\)
0.453087 + 0.891466i \(0.350323\pi\)
\(618\) 1.80396 + 1.55652i 0.0725659 + 0.0626126i
\(619\) 1.24466 0.0500273 0.0250136 0.999687i \(-0.492037\pi\)
0.0250136 + 0.999687i \(0.492037\pi\)
\(620\) 22.9332 + 8.65535i 0.921021 + 0.347607i
\(621\) 23.3169 0.935673
\(622\) 34.1948 + 29.5046i 1.37109 + 1.18302i
\(623\) −26.4448 + 26.4448i −1.05949 + 1.05949i
\(624\) 17.1600 5.19547i 0.686951 0.207985i
\(625\) −11.1152 + 22.3932i −0.444606 + 0.895726i
\(626\) −7.05725 + 0.519630i −0.282064 + 0.0207686i
\(627\) −4.73093 4.73093i −0.188935 0.188935i
\(628\) 4.17603 + 3.09888i 0.166642 + 0.123659i
\(629\) 30.7491i 1.22605i
\(630\) 1.83695 3.95946i 0.0731858 0.157749i
\(631\) 5.70526i 0.227123i −0.993531 0.113561i \(-0.963774\pi\)
0.993531 0.113561i \(-0.0362259\pi\)
\(632\) −8.71576 5.52407i −0.346694 0.219736i
\(633\) −12.3702 12.3702i −0.491672 0.491672i
\(634\) −1.17040 15.8955i −0.0464824 0.631291i
\(635\) −1.99761 7.01245i −0.0792728 0.278281i
\(636\) 1.82697 + 12.3391i 0.0724441 + 0.489276i
\(637\) 14.9733 14.9733i 0.593262 0.593262i
\(638\) 8.94379 10.3656i 0.354088 0.410376i
\(639\) 5.38879 0.213177
\(640\) −18.0063 17.7700i −0.711761 0.702422i
\(641\) −0.458904 −0.0181256 −0.00906280 0.999959i \(-0.502885\pi\)
−0.00906280 + 0.999959i \(0.502885\pi\)
\(642\) 8.90589 10.3216i 0.351487 0.407362i
\(643\) −2.89559 + 2.89559i −0.114191 + 0.114191i −0.761893 0.647702i \(-0.775730\pi\)
0.647702 + 0.761893i \(0.275730\pi\)
\(644\) −4.79271 32.3692i −0.188859 1.27552i
\(645\) 22.3981 40.2423i 0.881926 1.58454i
\(646\) −0.610291 8.28855i −0.0240116 0.326109i
\(647\) −26.0239 26.0239i −1.02311 1.02311i −0.999727 0.0233789i \(-0.992558\pi\)
−0.0233789 0.999727i \(-0.507442\pi\)
\(648\) 18.6086 + 11.7942i 0.731014 + 0.463318i
\(649\) 37.1575i 1.45856i
\(650\) 11.4698 + 15.7798i 0.449883 + 0.618937i
\(651\) 34.1146i 1.33706i
\(652\) 3.90893 + 2.90067i 0.153086 + 0.113599i
\(653\) −19.7494 19.7494i −0.772852 0.772852i 0.205752 0.978604i \(-0.434036\pi\)
−0.978604 + 0.205752i \(0.934036\pi\)
\(654\) 6.47903 0.477055i 0.253350 0.0186543i
\(655\) −2.04326 + 3.67108i −0.0798366 + 0.143441i
\(656\) 37.6231 11.3910i 1.46894 0.444744i
\(657\) −2.62951 + 2.62951i −0.102587 + 0.102587i
\(658\) −2.79928 2.41532i −0.109127 0.0941591i
\(659\) 7.33213 0.285619 0.142810 0.989750i \(-0.454386\pi\)
0.142810 + 0.989750i \(0.454386\pi\)
\(660\) −27.2652 + 12.3237i −1.06130 + 0.479701i
\(661\) −32.0891 −1.24812 −0.624061 0.781376i \(-0.714518\pi\)
−0.624061 + 0.781376i \(0.714518\pi\)
\(662\) 0.261194 + 0.225368i 0.0101516 + 0.00875917i
\(663\) 18.6263 18.6263i 0.723384 0.723384i
\(664\) −32.5110 + 7.28695i −1.26167 + 0.282788i
\(665\) 2.34682 + 8.23831i 0.0910057 + 0.319468i
\(666\) −2.65893 + 0.195779i −0.103031 + 0.00758627i
\(667\) −7.09948 7.09948i −0.274893 0.274893i
\(668\) −16.0629 + 21.6463i −0.621493 + 0.837520i
\(669\) 5.98852i 0.231530i
\(670\) 26.3562 + 12.2277i 1.01823 + 0.472396i
\(671\) 17.4580i 0.673957i
\(672\) 14.2894 32.1785i 0.551224 1.24131i
\(673\) 24.8279 + 24.8279i 0.957047 + 0.957047i 0.999115 0.0420678i \(-0.0133945\pi\)
−0.0420678 + 0.999115i \(0.513395\pi\)
\(674\) −3.17236 43.0847i −0.122195 1.65956i
\(675\) −6.23302 + 26.5765i −0.239909 + 1.02293i
\(676\) −10.6614 + 1.57857i −0.410053 + 0.0607140i
\(677\) −28.6500 + 28.6500i −1.10111 + 1.10111i −0.106832 + 0.994277i \(0.534071\pi\)
−0.994277 + 0.106832i \(0.965929\pi\)
\(678\) −2.21700 + 2.56943i −0.0851434 + 0.0986784i
\(679\) 1.13030 0.0433769
\(680\) −35.6435 10.5352i −1.36687 0.404006i
\(681\) −16.1587 −0.619201
\(682\) −20.8527 + 24.1676i −0.798490 + 0.925423i
\(683\) −10.3844 + 10.3844i −0.397349 + 0.397349i −0.877297 0.479948i \(-0.840655\pi\)
0.479948 + 0.877297i \(0.340655\pi\)
\(684\) 0.712840 0.105546i 0.0272561 0.00403565i
\(685\) 13.3343 3.79850i 0.509479 0.145133i
\(686\) −0.268721 3.64959i −0.0102598 0.139342i
\(687\) 3.54404 + 3.54404i 0.135214 + 0.135214i
\(688\) −23.9276 + 44.7082i −0.912232 + 1.70448i
\(689\) 10.5904i 0.403461i
\(690\) 7.54501 + 20.6048i 0.287234 + 0.784411i
\(691\) 4.95589i 0.188531i 0.995547 + 0.0942654i \(0.0300502\pi\)
−0.995547 + 0.0942654i \(0.969950\pi\)
\(692\) 2.34061 3.15419i 0.0889766 0.119904i
\(693\) 4.01917 + 4.01917i 0.152676 + 0.152676i
\(694\) −42.8622 + 3.15597i −1.62703 + 0.119799i
\(695\) −11.1469 6.20417i −0.422826 0.235338i
\(696\) −2.36277 10.5416i −0.0895605 0.399577i
\(697\) 40.8378 40.8378i 1.54684 1.54684i
\(698\) −18.1893 15.6945i −0.688477 0.594044i
\(699\) 38.1012 1.44112
\(700\) 38.1755 + 3.19013i 1.44290 + 0.120576i
\(701\) 50.5194 1.90809 0.954045 0.299662i \(-0.0968739\pi\)
0.954045 + 0.299662i \(0.0968739\pi\)
\(702\) 16.1273 + 13.9153i 0.608688 + 0.525199i
\(703\) 3.69981 3.69981i 0.139541 0.139541i
\(704\) 29.7921 14.0615i 1.12283 0.529964i
\(705\) 2.16636 + 1.20576i 0.0815899 + 0.0454115i
\(706\) −43.7595 + 3.22204i −1.64691 + 0.121263i
\(707\) −50.9129 50.9129i −1.91478 1.91478i
\(708\) 23.5456 + 17.4723i 0.884899 + 0.656651i
\(709\) 28.2010i 1.05911i 0.848276 + 0.529555i \(0.177641\pi\)
−0.848276 + 0.529555i \(0.822359\pi\)
\(710\) 16.2625 + 44.4117i 0.610323 + 1.66674i
\(711\) 1.31450i 0.0492975i
\(712\) −14.7819 + 23.3225i −0.553974 + 0.874048i
\(713\) 16.5526 + 16.5526i 0.619901 + 0.619901i
\(714\) −3.79848 51.5883i −0.142155 1.93064i
\(715\) −24.4317 + 6.95976i −0.913693 + 0.260280i
\(716\) −6.14452 41.4991i −0.229632 1.55089i
\(717\) −10.4485 + 10.4485i −0.390207 + 0.390207i
\(718\) −8.66848 + 10.0465i −0.323505 + 0.374931i
\(719\) −7.39857 −0.275920 −0.137960 0.990438i \(-0.544055\pi\)
−0.137960 + 0.990438i \(0.544055\pi\)
\(720\) 0.684056 3.14924i 0.0254933 0.117365i
\(721\) 3.97251 0.147944
\(722\) −0.923868 + 1.07073i −0.0343828 + 0.0398485i
\(723\) 0.926762 0.926762i 0.0344666 0.0344666i
\(724\) −4.67803 31.5946i −0.173858 1.17421i
\(725\) 9.98980 6.19417i 0.371012 0.230046i
\(726\) −1.00522 13.6522i −0.0373072 0.506680i
\(727\) 4.97602 + 4.97602i 0.184550 + 0.184550i 0.793335 0.608785i \(-0.208343\pi\)
−0.608785 + 0.793335i \(0.708343\pi\)
\(728\) 16.0027 25.2487i 0.593099 0.935779i
\(729\) 29.4171i 1.08952i
\(730\) −29.6065 13.7356i −1.09579 0.508377i
\(731\) 74.5004i 2.75550i
\(732\) 11.0626 + 8.20916i 0.408886 + 0.303419i
\(733\) −34.5680 34.5680i −1.27680 1.27680i −0.942450 0.334348i \(-0.891484\pi\)
−0.334348 0.942450i \(-0.608516\pi\)
\(734\) −17.3936 + 1.28070i −0.642010 + 0.0472716i
\(735\) 7.63950 + 26.8179i 0.281787 + 0.989192i
\(736\) −8.67991 22.5465i −0.319946 0.831075i
\(737\) −26.7537 + 26.7537i −0.985484 + 0.985484i
\(738\) 3.79134 + 3.27131i 0.139561 + 0.120419i
\(739\) −32.5879 −1.19877 −0.599383 0.800462i \(-0.704587\pi\)
−0.599383 + 0.800462i \(0.704587\pi\)
\(740\) −9.63776 21.3227i −0.354291 0.783839i
\(741\) −4.48233 −0.164662
\(742\) 15.7457 + 13.5860i 0.578042 + 0.498756i
\(743\) 2.79042 2.79042i 0.102371 0.102371i −0.654066 0.756437i \(-0.726938\pi\)
0.756437 + 0.654066i \(0.226938\pi\)
\(744\) 5.50885 + 24.5779i 0.201964 + 0.901071i
\(745\) −4.25921 + 7.65244i −0.156045 + 0.280364i
\(746\) −32.8971 + 2.42224i −1.20445 + 0.0886843i
\(747\) −3.00113 3.00113i −0.109806 0.109806i
\(748\) 28.8426 38.8682i 1.05459 1.42116i
\(749\) 22.7293i 0.830511i
\(750\) −25.5022 + 3.09177i −0.931210 + 0.112895i
\(751\) 10.9120i 0.398186i −0.979981 0.199093i \(-0.936200\pi\)
0.979981 0.199093i \(-0.0637996\pi\)
\(752\) −2.40677 1.28809i −0.0877660 0.0469720i
\(753\) 2.74637 + 2.74637i 0.100083 + 0.100083i
\(754\) −0.673524 9.14734i −0.0245283 0.333126i
\(755\) −4.61248 + 8.28715i −0.167865 + 0.301600i
\(756\) 41.3783 6.12664i 1.50491 0.222824i
\(757\) 27.9482 27.9482i 1.01579 1.01579i 0.0159213 0.999873i \(-0.494932\pi\)
0.999873 0.0159213i \(-0.00506814\pi\)
\(758\) −27.4544 + 31.8187i −0.997189 + 1.15571i
\(759\) −28.5743 −1.03718
\(760\) 3.02110 + 5.55634i 0.109587 + 0.201550i
\(761\) 32.7705 1.18793 0.593964 0.804491i \(-0.297562\pi\)
0.593964 + 0.804491i \(0.297562\pi\)
\(762\) 4.89457 5.67264i 0.177312 0.205498i
\(763\) 7.65902 7.65902i 0.277275 0.277275i
\(764\) 11.7081 1.73355i 0.423584 0.0627176i
\(765\) −1.29716 4.55356i −0.0468988 0.164634i
\(766\) 1.25929 + 17.1028i 0.0455001 + 0.617951i
\(767\) 17.6024 + 17.6024i 0.635587 + 0.635587i
\(768\) 5.09859 25.4905i 0.183980 0.919810i
\(769\) 48.5580i 1.75104i −0.483178 0.875522i \(-0.660518\pi\)
0.483178 0.875522i \(-0.339482\pi\)