Properties

Label 380.2.k.c.343.6
Level $380$
Weight $2$
Character 380.343
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.6
Character \(\chi\) \(=\) 380.343
Dual form 380.2.k.c.267.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.01972 - 0.979881i) q^{2} +(0.582309 - 0.582309i) q^{3} +(0.0796647 + 1.99841i) q^{4} +(1.46731 - 1.68731i) q^{5} +(-1.16439 + 0.0231993i) q^{6} +(0.972933 + 0.972933i) q^{7} +(1.87697 - 2.11589i) q^{8} +2.32183i q^{9} +O(q^{10})\) \(q+(-1.01972 - 0.979881i) q^{2} +(0.582309 - 0.582309i) q^{3} +(0.0796647 + 1.99841i) q^{4} +(1.46731 - 1.68731i) q^{5} +(-1.16439 + 0.0231993i) q^{6} +(0.972933 + 0.972933i) q^{7} +(1.87697 - 2.11589i) q^{8} +2.32183i q^{9} +(-3.14961 + 0.282794i) q^{10} -4.73734i q^{11} +(1.21008 + 1.11730i) q^{12} +(4.00469 + 4.00469i) q^{13} +(-0.0387619 - 1.94548i) q^{14} +(-0.128106 - 1.83696i) q^{15} +(-3.98731 + 0.318406i) q^{16} +(1.22667 - 1.22667i) q^{17} +(2.27512 - 2.36762i) q^{18} +1.00000 q^{19} +(3.48883 + 2.79787i) q^{20} +1.13310 q^{21} +(-4.64203 + 4.83076i) q^{22} +(-1.83166 + 1.83166i) q^{23} +(-0.139122 - 2.32508i) q^{24} +(-0.694006 - 4.95160i) q^{25} +(-0.159548 - 8.00779i) q^{26} +(3.09895 + 3.09895i) q^{27} +(-1.86681 + 2.02183i) q^{28} -6.49625i q^{29} +(-1.66937 + 1.99872i) q^{30} -1.38349i q^{31} +(4.37794 + 3.58240i) q^{32} +(-2.75859 - 2.75859i) q^{33} +(-2.45286 + 0.0488710i) q^{34} +(3.06923 - 0.214042i) q^{35} +(-4.63998 + 0.184968i) q^{36} +(3.47306 - 3.47306i) q^{37} +(-1.01972 - 0.979881i) q^{38} +4.66393 q^{39} +(-0.816051 - 6.27169i) q^{40} -6.68423 q^{41} +(-1.15544 - 1.11030i) q^{42} +(-4.72604 + 4.72604i) q^{43} +(9.46715 - 0.377398i) q^{44} +(3.91764 + 3.40685i) q^{45} +(3.66259 - 0.0729738i) q^{46} +(-6.12814 - 6.12814i) q^{47} +(-2.13643 + 2.50726i) q^{48} -5.10680i q^{49} +(-4.14429 + 5.72930i) q^{50} -1.42861i q^{51} +(-7.68399 + 8.32205i) q^{52} +(3.65002 + 3.65002i) q^{53} +(-0.123463 - 6.19667i) q^{54} +(-7.99334 - 6.95114i) q^{55} +(3.88478 - 0.232448i) q^{56} +(0.582309 - 0.582309i) q^{57} +(-6.36555 + 6.62437i) q^{58} -0.289084 q^{59} +(3.66080 - 0.402350i) q^{60} -4.63716 q^{61} +(-1.35566 + 1.41078i) q^{62} +(-2.25899 + 2.25899i) q^{63} +(-0.953954 - 7.94292i) q^{64} +(12.6333 - 0.881019i) q^{65} +(0.109903 + 5.51609i) q^{66} +(3.20114 + 3.20114i) q^{67} +(2.54912 + 2.35368i) q^{68} +2.13318i q^{69} +(-3.33950 - 2.78922i) q^{70} +14.8252i q^{71} +(4.91273 + 4.35801i) q^{72} +(6.01054 + 6.01054i) q^{73} +(-6.94475 + 0.138368i) q^{74} +(-3.28749 - 2.47924i) q^{75} +(0.0796647 + 1.99841i) q^{76} +(4.60911 - 4.60911i) q^{77} +(-4.75591 - 4.57010i) q^{78} +5.24290 q^{79} +(-5.31337 + 7.19501i) q^{80} -3.35640 q^{81} +(6.81606 + 6.54976i) q^{82} +(-4.42022 + 4.42022i) q^{83} +(0.0902677 + 2.26439i) q^{84} +(-0.269864 - 3.86968i) q^{85} +(9.45020 - 0.188287i) q^{86} +(-3.78283 - 3.78283i) q^{87} +(-10.0237 - 8.89184i) q^{88} +8.67923i q^{89} +(-0.656599 - 7.31286i) q^{90} +7.79259i q^{91} +(-3.80633 - 3.51449i) q^{92} +(-0.805621 - 0.805621i) q^{93} +(0.244147 + 12.2539i) q^{94} +(1.46731 - 1.68731i) q^{95} +(4.63538 - 0.463251i) q^{96} +(-3.14322 + 3.14322i) q^{97} +(-5.00406 + 5.20752i) q^{98} +10.9993 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.01972 0.979881i −0.721052 0.692881i
\(3\) 0.582309 0.582309i 0.336196 0.336196i −0.518737 0.854934i \(-0.673598\pi\)
0.854934 + 0.518737i \(0.173598\pi\)
\(4\) 0.0796647 + 1.99841i 0.0398324 + 0.999206i
\(5\) 1.46731 1.68731i 0.656201 0.754586i
\(6\) −1.16439 + 0.0231993i −0.475359 + 0.00947109i
\(7\) 0.972933 + 0.972933i 0.367734 + 0.367734i 0.866650 0.498916i \(-0.166268\pi\)
−0.498916 + 0.866650i \(0.666268\pi\)
\(8\) 1.87697 2.11589i 0.663610 0.748079i
\(9\) 2.32183i 0.773944i
\(10\) −3.14961 + 0.282794i −0.995993 + 0.0894272i
\(11\) 4.73734i 1.42836i −0.699962 0.714180i \(-0.746800\pi\)
0.699962 0.714180i \(-0.253200\pi\)
\(12\) 1.21008 + 1.11730i 0.349321 + 0.322538i
\(13\) 4.00469 + 4.00469i 1.11070 + 1.11070i 0.993056 + 0.117645i \(0.0375345\pi\)
0.117645 + 0.993056i \(0.462466\pi\)
\(14\) −0.0387619 1.94548i −0.0103596 0.519951i
\(15\) −0.128106 1.83696i −0.0330769 0.474301i
\(16\) −3.98731 + 0.318406i −0.996827 + 0.0796015i
\(17\) 1.22667 1.22667i 0.297512 0.297512i −0.542527 0.840039i \(-0.682532\pi\)
0.840039 + 0.542527i \(0.182532\pi\)
\(18\) 2.27512 2.36762i 0.536251 0.558054i
\(19\) 1.00000 0.229416
\(20\) 3.48883 + 2.79787i 0.780126 + 0.625623i
\(21\) 1.13310 0.247262
\(22\) −4.64203 + 4.83076i −0.989683 + 1.02992i
\(23\) −1.83166 + 1.83166i −0.381928 + 0.381928i −0.871796 0.489869i \(-0.837045\pi\)
0.489869 + 0.871796i \(0.337045\pi\)
\(24\) −0.139122 2.32508i −0.0283983 0.474605i
\(25\) −0.694006 4.95160i −0.138801 0.990320i
\(26\) −0.159548 8.00779i −0.0312899 1.57046i
\(27\) 3.09895 + 3.09895i 0.596393 + 0.596393i
\(28\) −1.86681 + 2.02183i −0.352795 + 0.382090i
\(29\) 6.49625i 1.20632i −0.797619 0.603162i \(-0.793907\pi\)
0.797619 0.603162i \(-0.206093\pi\)
\(30\) −1.66937 + 1.99872i −0.304784 + 0.364914i
\(31\) 1.38349i 0.248483i −0.992252 0.124241i \(-0.960350\pi\)
0.992252 0.124241i \(-0.0396497\pi\)
\(32\) 4.37794 + 3.58240i 0.773918 + 0.633285i
\(33\) −2.75859 2.75859i −0.480209 0.480209i
\(34\) −2.45286 + 0.0488710i −0.420662 + 0.00838130i
\(35\) 3.06923 0.214042i 0.518795 0.0361797i
\(36\) −4.63998 + 0.184968i −0.773330 + 0.0308280i
\(37\) 3.47306 3.47306i 0.570968 0.570968i −0.361431 0.932399i \(-0.617712\pi\)
0.932399 + 0.361431i \(0.117712\pi\)
\(38\) −1.01972 0.979881i −0.165421 0.158958i
\(39\) 4.66393 0.746827
\(40\) −0.816051 6.27169i −0.129029 0.991641i
\(41\) −6.68423 −1.04390 −0.521951 0.852975i \(-0.674796\pi\)
−0.521951 + 0.852975i \(0.674796\pi\)
\(42\) −1.15544 1.11030i −0.178289 0.171323i
\(43\) −4.72604 + 4.72604i −0.720714 + 0.720714i −0.968751 0.248037i \(-0.920215\pi\)
0.248037 + 0.968751i \(0.420215\pi\)
\(44\) 9.46715 0.377398i 1.42723 0.0568950i
\(45\) 3.91764 + 3.40685i 0.584008 + 0.507863i
\(46\) 3.66259 0.0729738i 0.540020 0.0107594i
\(47\) −6.12814 6.12814i −0.893882 0.893882i 0.101004 0.994886i \(-0.467794\pi\)
−0.994886 + 0.101004i \(0.967794\pi\)
\(48\) −2.13643 + 2.50726i −0.308368 + 0.361891i
\(49\) 5.10680i 0.729543i
\(50\) −4.14429 + 5.72930i −0.586091 + 0.810245i
\(51\) 1.42861i 0.200045i
\(52\) −7.68399 + 8.32205i −1.06558 + 1.15406i
\(53\) 3.65002 + 3.65002i 0.501369 + 0.501369i 0.911863 0.410494i \(-0.134644\pi\)
−0.410494 + 0.911863i \(0.634644\pi\)
\(54\) −0.123463 6.19667i −0.0168012 0.843260i
\(55\) −7.99334 6.95114i −1.07782 0.937291i
\(56\) 3.88478 0.232448i 0.519126 0.0310622i
\(57\) 0.582309 0.582309i 0.0771287 0.0771287i
\(58\) −6.36555 + 6.62437i −0.835838 + 0.869822i
\(59\) −0.289084 −0.0376355 −0.0188178 0.999823i \(-0.505990\pi\)
−0.0188178 + 0.999823i \(0.505990\pi\)
\(60\) 3.66080 0.402350i 0.472608 0.0519432i
\(61\) −4.63716 −0.593728 −0.296864 0.954920i \(-0.595941\pi\)
−0.296864 + 0.954920i \(0.595941\pi\)
\(62\) −1.35566 + 1.41078i −0.172169 + 0.179169i
\(63\) −2.25899 + 2.25899i −0.284606 + 0.284606i
\(64\) −0.953954 7.94292i −0.119244 0.992865i
\(65\) 12.6333 0.881019i 1.56696 0.109277i
\(66\) 0.109903 + 5.51609i 0.0135281 + 0.678984i
\(67\) 3.20114 + 3.20114i 0.391082 + 0.391082i 0.875073 0.483991i \(-0.160813\pi\)
−0.483991 + 0.875073i \(0.660813\pi\)
\(68\) 2.54912 + 2.35368i 0.309126 + 0.285425i
\(69\) 2.13318i 0.256805i
\(70\) −3.33950 2.78922i −0.399146 0.333375i
\(71\) 14.8252i 1.75942i 0.475507 + 0.879712i \(0.342265\pi\)
−0.475507 + 0.879712i \(0.657735\pi\)
\(72\) 4.91273 + 4.35801i 0.578971 + 0.513597i
\(73\) 6.01054 + 6.01054i 0.703480 + 0.703480i 0.965156 0.261676i \(-0.0842751\pi\)
−0.261676 + 0.965156i \(0.584275\pi\)
\(74\) −6.94475 + 0.138368i −0.807311 + 0.0160849i
\(75\) −3.28749 2.47924i −0.379606 0.286278i
\(76\) 0.0796647 + 1.99841i 0.00913817 + 0.229234i
\(77\) 4.60911 4.60911i 0.525257 0.525257i
\(78\) −4.75591 4.57010i −0.538501 0.517462i
\(79\) 5.24290 0.589873 0.294936 0.955517i \(-0.404702\pi\)
0.294936 + 0.955517i \(0.404702\pi\)
\(80\) −5.31337 + 7.19501i −0.594052 + 0.804426i
\(81\) −3.35640 −0.372933
\(82\) 6.81606 + 6.54976i 0.752708 + 0.723300i
\(83\) −4.42022 + 4.42022i −0.485183 + 0.485183i −0.906782 0.421600i \(-0.861469\pi\)
0.421600 + 0.906782i \(0.361469\pi\)
\(84\) 0.0902677 + 2.26439i 0.00984902 + 0.247065i
\(85\) −0.269864 3.86968i −0.0292709 0.419726i
\(86\) 9.45020 0.188287i 1.01904 0.0203035i
\(87\) −3.78283 3.78283i −0.405561 0.405561i
\(88\) −10.0237 8.89184i −1.06853 0.947874i
\(89\) 8.67923i 0.919997i 0.887920 + 0.459998i \(0.152150\pi\)
−0.887920 + 0.459998i \(0.847850\pi\)
\(90\) −0.656599 7.31286i −0.0692116 0.770843i
\(91\) 7.79259i 0.816885i
\(92\) −3.80633 3.51449i −0.396837 0.366411i
\(93\) −0.805621 0.805621i −0.0835391 0.0835391i
\(94\) 0.244147 + 12.2539i 0.0251818 + 1.26389i
\(95\) 1.46731 1.68731i 0.150543 0.173114i
\(96\) 4.63538 0.463251i 0.473097 0.0472803i
\(97\) −3.14322 + 3.14322i −0.319145 + 0.319145i −0.848439 0.529294i \(-0.822457\pi\)
0.529294 + 0.848439i \(0.322457\pi\)
\(98\) −5.00406 + 5.20752i −0.505487 + 0.526039i
\(99\) 10.9993 1.10547
\(100\) 9.84006 1.78138i 0.984006 0.178138i
\(101\) −0.982880 −0.0978003 −0.0489001 0.998804i \(-0.515572\pi\)
−0.0489001 + 0.998804i \(0.515572\pi\)
\(102\) −1.39986 + 1.45678i −0.138607 + 0.144243i
\(103\) −5.20851 + 5.20851i −0.513209 + 0.513209i −0.915508 0.402299i \(-0.868211\pi\)
0.402299 + 0.915508i \(0.368211\pi\)
\(104\) 15.9902 0.956780i 1.56796 0.0938200i
\(105\) 1.66260 1.91188i 0.162253 0.186580i
\(106\) −0.145418 7.29860i −0.0141242 0.708903i
\(107\) 14.0386 + 14.0386i 1.35716 + 1.35716i 0.877396 + 0.479767i \(0.159279\pi\)
0.479767 + 0.877396i \(0.340721\pi\)
\(108\) −5.94611 + 6.43986i −0.572164 + 0.619676i
\(109\) 13.0839i 1.25321i 0.779337 + 0.626605i \(0.215556\pi\)
−0.779337 + 0.626605i \(0.784444\pi\)
\(110\) 1.33969 + 14.9207i 0.127734 + 1.42264i
\(111\) 4.04479i 0.383915i
\(112\) −4.18917 3.56959i −0.395839 0.337295i
\(113\) 0.590052 + 0.590052i 0.0555074 + 0.0555074i 0.734316 0.678808i \(-0.237503\pi\)
−0.678808 + 0.734316i \(0.737503\pi\)
\(114\) −1.16439 + 0.0231993i −0.109055 + 0.00217282i
\(115\) 0.402959 + 5.77818i 0.0375762 + 0.538818i
\(116\) 12.9822 0.517522i 1.20537 0.0480507i
\(117\) −9.29821 + 9.29821i −0.859620 + 0.859620i
\(118\) 0.294785 + 0.283268i 0.0271372 + 0.0260769i
\(119\) 2.38694 0.218810
\(120\) −4.12725 3.17687i −0.376765 0.290007i
\(121\) −11.4423 −1.04021
\(122\) 4.72861 + 4.54387i 0.428109 + 0.411383i
\(123\) −3.89229 + 3.89229i −0.350956 + 0.350956i
\(124\) 2.76479 0.110216i 0.248286 0.00989766i
\(125\) −9.37319 6.09453i −0.838364 0.545111i
\(126\) 4.51708 0.0899986i 0.402413 0.00801772i
\(127\) −11.1270 11.1270i −0.987362 0.987362i 0.0125590 0.999921i \(-0.496002\pi\)
−0.999921 + 0.0125590i \(0.996002\pi\)
\(128\) −6.81035 + 9.03433i −0.601956 + 0.798529i
\(129\) 5.50403i 0.484603i
\(130\) −13.7457 11.4807i −1.20558 1.00692i
\(131\) 4.56983i 0.399268i −0.979871 0.199634i \(-0.936025\pi\)
0.979871 0.199634i \(-0.0639753\pi\)
\(132\) 5.29305 5.73257i 0.460701 0.498956i
\(133\) 0.972933 + 0.972933i 0.0843640 + 0.0843640i
\(134\) −0.127534 6.40101i −0.0110173 0.552963i
\(135\) 9.77600 0.681760i 0.841384 0.0586765i
\(136\) −0.293071 4.89793i −0.0251306 0.419994i
\(137\) −7.74801 + 7.74801i −0.661957 + 0.661957i −0.955841 0.293884i \(-0.905052\pi\)
0.293884 + 0.955841i \(0.405052\pi\)
\(138\) 2.09027 2.17525i 0.177935 0.185170i
\(139\) −22.2237 −1.88499 −0.942493 0.334225i \(-0.891525\pi\)
−0.942493 + 0.334225i \(0.891525\pi\)
\(140\) 0.672254 + 6.11654i 0.0568158 + 0.516942i
\(141\) −7.13695 −0.601040
\(142\) 14.5269 15.1175i 1.21907 1.26864i
\(143\) 18.9715 18.9715i 1.58648 1.58648i
\(144\) −0.739285 9.25786i −0.0616071 0.771488i
\(145\) −10.9612 9.53201i −0.910275 0.791590i
\(146\) −0.239461 12.0187i −0.0198180 0.994674i
\(147\) −2.97374 2.97374i −0.245270 0.245270i
\(148\) 7.21729 + 6.66393i 0.593258 + 0.547772i
\(149\) 14.5547i 1.19237i −0.802848 0.596184i \(-0.796683\pi\)
0.802848 0.596184i \(-0.203317\pi\)
\(150\) 0.922965 + 5.74948i 0.0753598 + 0.469443i
\(151\) 19.5609i 1.59185i −0.605397 0.795924i \(-0.706986\pi\)
0.605397 0.795924i \(-0.293014\pi\)
\(152\) 1.87697 2.11589i 0.152243 0.171621i
\(153\) 2.84813 + 2.84813i 0.230257 + 0.230257i
\(154\) −9.21639 + 0.183628i −0.742678 + 0.0147972i
\(155\) −2.33438 2.03001i −0.187502 0.163055i
\(156\) 0.371551 + 9.32046i 0.0297479 + 0.746234i
\(157\) 14.4333 14.4333i 1.15190 1.15190i 0.165734 0.986170i \(-0.447001\pi\)
0.986170 0.165734i \(-0.0529994\pi\)
\(158\) −5.34630 5.13743i −0.425329 0.408712i
\(159\) 4.25089 0.337117
\(160\) 12.4684 2.13044i 0.985714 0.168426i
\(161\) −3.56416 −0.280896
\(162\) 3.42259 + 3.28887i 0.268904 + 0.258398i
\(163\) −13.5096 + 13.5096i −1.05816 + 1.05816i −0.0599555 + 0.998201i \(0.519096\pi\)
−0.998201 + 0.0599555i \(0.980904\pi\)
\(164\) −0.532498 13.3579i −0.0415811 1.04307i
\(165\) −8.70230 + 0.606882i −0.677473 + 0.0472457i
\(166\) 8.83869 0.176103i 0.686016 0.0136682i
\(167\) 11.5480 + 11.5480i 0.893610 + 0.893610i 0.994861 0.101251i \(-0.0322846\pi\)
−0.101251 + 0.994861i \(0.532285\pi\)
\(168\) 2.12679 2.39750i 0.164085 0.184971i
\(169\) 19.0751i 1.46731i
\(170\) −3.51664 + 4.21043i −0.269714 + 0.322925i
\(171\) 2.32183i 0.177555i
\(172\) −9.82107 9.06808i −0.748850 0.691434i
\(173\) −10.8497 10.8497i −0.824885 0.824885i 0.161919 0.986804i \(-0.448232\pi\)
−0.986804 + 0.161919i \(0.948232\pi\)
\(174\) 0.150709 + 7.56415i 0.0114252 + 0.573437i
\(175\) 4.14236 5.49280i 0.313133 0.415216i
\(176\) 1.50840 + 18.8892i 0.113700 + 1.42383i
\(177\) −0.168336 + 0.168336i −0.0126529 + 0.0126529i
\(178\) 8.50462 8.85040i 0.637448 0.663366i
\(179\) −4.60249 −0.344006 −0.172003 0.985096i \(-0.555024\pi\)
−0.172003 + 0.985096i \(0.555024\pi\)
\(180\) −6.49619 + 8.10047i −0.484197 + 0.603773i
\(181\) −14.0226 −1.04229 −0.521147 0.853467i \(-0.674496\pi\)
−0.521147 + 0.853467i \(0.674496\pi\)
\(182\) 7.63581 7.94627i 0.566004 0.589017i
\(183\) −2.70026 + 2.70026i −0.199609 + 0.199609i
\(184\) 0.437611 + 7.31356i 0.0322611 + 0.539163i
\(185\) −0.764063 10.9562i −0.0561750 0.805514i
\(186\) 0.0320962 + 1.61092i 0.00235341 + 0.118119i
\(187\) −5.81116 5.81116i −0.424954 0.424954i
\(188\) 11.7584 12.7348i 0.857567 0.928778i
\(189\) 6.03014i 0.438628i
\(190\) −3.14961 + 0.282794i −0.228497 + 0.0205160i
\(191\) 1.33503i 0.0965990i 0.998833 + 0.0482995i \(0.0153802\pi\)
−0.998833 + 0.0482995i \(0.984620\pi\)
\(192\) −5.18073 4.06974i −0.373887 0.293708i
\(193\) 10.3291 + 10.3291i 0.743504 + 0.743504i 0.973250 0.229747i \(-0.0737897\pi\)
−0.229747 + 0.973250i \(0.573790\pi\)
\(194\) 6.28518 0.125227i 0.451250 0.00899074i
\(195\) 6.84343 7.86948i 0.490068 0.563545i
\(196\) 10.2055 0.406832i 0.728964 0.0290594i
\(197\) −1.41685 + 1.41685i −0.100947 + 0.100947i −0.755776 0.654830i \(-0.772740\pi\)
0.654830 + 0.755776i \(0.272740\pi\)
\(198\) −11.2162 10.7780i −0.797102 0.765960i
\(199\) 15.2147 1.07854 0.539270 0.842133i \(-0.318700\pi\)
0.539270 + 0.842133i \(0.318700\pi\)
\(200\) −11.7797 7.82558i −0.832948 0.553352i
\(201\) 3.72811 0.262960
\(202\) 1.00226 + 0.963106i 0.0705191 + 0.0677639i
\(203\) 6.32042 6.32042i 0.443606 0.443606i
\(204\) 2.85494 0.113809i 0.199886 0.00796825i
\(205\) −9.80784 + 11.2784i −0.685009 + 0.787714i
\(206\) 10.4149 0.207508i 0.725644 0.0144578i
\(207\) −4.25281 4.25281i −0.295591 0.295591i
\(208\) −17.2430 14.6928i −1.19559 1.01876i
\(209\) 4.73734i 0.327688i
\(210\) −3.56881 + 0.320432i −0.246271 + 0.0221119i
\(211\) 9.35082i 0.643737i −0.946784 0.321868i \(-0.895689\pi\)
0.946784 0.321868i \(-0.104311\pi\)
\(212\) −7.00348 + 7.58503i −0.481001 + 0.520942i
\(213\) 8.63283 + 8.63283i 0.591512 + 0.591512i
\(214\) −0.559302 28.0716i −0.0382331 1.91894i
\(215\) 1.03971 + 14.9088i 0.0709079 + 1.01677i
\(216\) 12.3737 0.740386i 0.841922 0.0503769i
\(217\) 1.34605 1.34605i 0.0913757 0.0913757i
\(218\) 12.8207 13.3419i 0.868325 0.903629i
\(219\) 6.99998 0.473015
\(220\) 13.2545 16.5277i 0.893615 1.11430i
\(221\) 9.82488 0.660893
\(222\) −3.96342 + 4.12456i −0.266007 + 0.276823i
\(223\) 17.7719 17.7719i 1.19010 1.19010i 0.213058 0.977040i \(-0.431658\pi\)
0.977040 0.213058i \(-0.0683424\pi\)
\(224\) 0.774008 + 7.74488i 0.0517156 + 0.517477i
\(225\) 11.4968 1.61136i 0.766452 0.107424i
\(226\) −0.0235078 1.17987i −0.00156372 0.0784838i
\(227\) 6.78822 + 6.78822i 0.450550 + 0.450550i 0.895537 0.444987i \(-0.146792\pi\)
−0.444987 + 0.895537i \(0.646792\pi\)
\(228\) 1.21008 + 1.11730i 0.0801397 + 0.0739953i
\(229\) 22.4951i 1.48652i 0.669004 + 0.743259i \(0.266721\pi\)
−0.669004 + 0.743259i \(0.733279\pi\)
\(230\) 5.25103 6.28699i 0.346243 0.414552i
\(231\) 5.36785i 0.353179i
\(232\) −13.7453 12.1933i −0.902425 0.800528i
\(233\) −19.3466 19.3466i −1.26744 1.26744i −0.947407 0.320030i \(-0.896307\pi\)
−0.320030 0.947407i \(-0.603693\pi\)
\(234\) 18.5927 0.370443i 1.21545 0.0242166i
\(235\) −19.3319 + 1.34817i −1.26108 + 0.0879451i
\(236\) −0.0230298 0.577709i −0.00149911 0.0376057i
\(237\) 3.05299 3.05299i 0.198313 0.198313i
\(238\) −2.43401 2.33892i −0.157774 0.151610i
\(239\) −25.6419 −1.65864 −0.829320 0.558774i \(-0.811272\pi\)
−0.829320 + 0.558774i \(0.811272\pi\)
\(240\) 1.09570 + 7.28374i 0.0707270 + 0.470163i
\(241\) −1.95779 −0.126112 −0.0630561 0.998010i \(-0.520085\pi\)
−0.0630561 + 0.998010i \(0.520085\pi\)
\(242\) 11.6680 + 11.2121i 0.750048 + 0.720744i
\(243\) −11.2513 + 11.2513i −0.721772 + 0.721772i
\(244\) −0.369418 9.26696i −0.0236496 0.593256i
\(245\) −8.61674 7.49326i −0.550503 0.478727i
\(246\) 7.78304 0.155070i 0.496228 0.00988689i
\(247\) 4.00469 + 4.00469i 0.254812 + 0.254812i
\(248\) −2.92732 2.59678i −0.185885 0.164896i
\(249\) 5.14787i 0.326233i
\(250\) 3.58613 + 15.3993i 0.226807 + 0.973940i
\(251\) 3.53141i 0.222900i 0.993770 + 0.111450i \(0.0355496\pi\)
−0.993770 + 0.111450i \(0.964450\pi\)
\(252\) −4.69435 4.33443i −0.295716 0.273043i
\(253\) 8.67719 + 8.67719i 0.545530 + 0.545530i
\(254\) 0.443303 + 22.2496i 0.0278153 + 1.39606i
\(255\) −2.41049 2.09621i −0.150951 0.131270i
\(256\) 15.7972 2.53916i 0.987327 0.158698i
\(257\) −1.61975 + 1.61975i −0.101037 + 0.101037i −0.755819 0.654781i \(-0.772761\pi\)
0.654781 + 0.755819i \(0.272761\pi\)
\(258\) 5.39330 5.61258i 0.335772 0.349424i
\(259\) 6.75811 0.419929
\(260\) 2.76706 + 25.1763i 0.171606 + 1.56137i
\(261\) 15.0832 0.933627
\(262\) −4.47789 + 4.65996i −0.276645 + 0.287893i
\(263\) 11.7656 11.7656i 0.725497 0.725497i −0.244222 0.969719i \(-0.578533\pi\)
0.969719 + 0.244222i \(0.0785326\pi\)
\(264\) −11.0147 + 0.659070i −0.677906 + 0.0405629i
\(265\) 11.5144 0.802994i 0.707326 0.0493275i
\(266\) −0.0387619 1.94548i −0.00237664 0.119285i
\(267\) 5.05400 + 5.05400i 0.309300 + 0.309300i
\(268\) −6.14218 + 6.65222i −0.375194 + 0.406349i
\(269\) 5.80800i 0.354120i 0.984200 + 0.177060i \(0.0566587\pi\)
−0.984200 + 0.177060i \(0.943341\pi\)
\(270\) −10.6368 8.88412i −0.647338 0.540670i
\(271\) 15.9470i 0.968709i −0.874872 0.484354i \(-0.839055\pi\)
0.874872 0.484354i \(-0.160945\pi\)
\(272\) −4.50054 + 5.28170i −0.272885 + 0.320250i
\(273\) 4.53769 + 4.53769i 0.274634 + 0.274634i
\(274\) 15.4930 0.308683i 0.935963 0.0186482i
\(275\) −23.4574 + 3.28774i −1.41453 + 0.198258i
\(276\) −4.26298 + 0.169940i −0.256601 + 0.0102292i
\(277\) 14.1246 14.1246i 0.848667 0.848667i −0.141300 0.989967i \(-0.545128\pi\)
0.989967 + 0.141300i \(0.0451282\pi\)
\(278\) 22.6620 + 21.7766i 1.35917 + 1.30607i
\(279\) 3.21224 0.192312
\(280\) 5.30797 6.89589i 0.317212 0.412109i
\(281\) −31.6384 −1.88739 −0.943693 0.330821i \(-0.892674\pi\)
−0.943693 + 0.330821i \(0.892674\pi\)
\(282\) 7.27770 + 6.99336i 0.433381 + 0.416449i
\(283\) −3.72139 + 3.72139i −0.221214 + 0.221214i −0.809009 0.587796i \(-0.799996\pi\)
0.587796 + 0.809009i \(0.299996\pi\)
\(284\) −29.6268 + 1.18104i −1.75803 + 0.0700820i
\(285\) −0.128106 1.83696i −0.00758836 0.108812i
\(286\) −37.9356 + 0.755831i −2.24318 + 0.0446933i
\(287\) −6.50331 6.50331i −0.383878 0.383878i
\(288\) −8.31774 + 10.1649i −0.490127 + 0.598970i
\(289\) 13.9905i 0.822973i
\(290\) 1.83710 + 20.4606i 0.107878 + 1.20149i
\(291\) 3.66065i 0.214591i
\(292\) −11.5327 + 12.4904i −0.674901 + 0.730943i
\(293\) −6.12424 6.12424i −0.357782 0.357782i 0.505213 0.862995i \(-0.331414\pi\)
−0.862995 + 0.505213i \(0.831414\pi\)
\(294\) 0.118475 + 5.94630i 0.00690957 + 0.346795i
\(295\) −0.424176 + 0.487773i −0.0246965 + 0.0283993i
\(296\) −0.829767 13.8674i −0.0482292 0.806029i
\(297\) 14.6808 14.6808i 0.851865 0.851865i
\(298\) −14.2619 + 14.8417i −0.826169 + 0.859759i
\(299\) −14.6705 −0.848414
\(300\) 4.69264 6.76727i 0.270930 0.390708i
\(301\) −9.19624 −0.530062
\(302\) −19.1674 + 19.9467i −1.10296 + 1.14781i
\(303\) −0.572340 + 0.572340i −0.0328801 + 0.0328801i
\(304\) −3.98731 + 0.318406i −0.228688 + 0.0182618i
\(305\) −6.80415 + 7.82431i −0.389605 + 0.448019i
\(306\) −0.113470 5.69512i −0.00648666 0.325569i
\(307\) 4.24256 + 4.24256i 0.242136 + 0.242136i 0.817733 0.575597i \(-0.195230\pi\)
−0.575597 + 0.817733i \(0.695230\pi\)
\(308\) 9.57809 + 8.84372i 0.545762 + 0.503918i
\(309\) 6.06592i 0.345078i
\(310\) 0.391243 + 4.35746i 0.0222211 + 0.247487i
\(311\) 3.28417i 0.186228i −0.995655 0.0931141i \(-0.970318\pi\)
0.995655 0.0931141i \(-0.0296821\pi\)
\(312\) 8.75407 9.86835i 0.495602 0.558686i
\(313\) −2.98777 2.98777i −0.168879 0.168879i 0.617608 0.786486i \(-0.288102\pi\)
−0.786486 + 0.617608i \(0.788102\pi\)
\(314\) −28.8609 + 0.575027i −1.62872 + 0.0324507i
\(315\) 0.496970 + 7.12624i 0.0280011 + 0.401518i
\(316\) 0.417675 + 10.4775i 0.0234960 + 0.589405i
\(317\) −5.46173 + 5.46173i −0.306761 + 0.306761i −0.843652 0.536891i \(-0.819599\pi\)
0.536891 + 0.843652i \(0.319599\pi\)
\(318\) −4.33472 4.16536i −0.243079 0.233582i
\(319\) −30.7749 −1.72306
\(320\) −14.8019 10.0451i −0.827451 0.561539i
\(321\) 16.3496 0.912546
\(322\) 3.63446 + 3.49246i 0.202540 + 0.194627i
\(323\) 1.22667 1.22667i 0.0682539 0.0682539i
\(324\) −0.267387 6.70747i −0.0148548 0.372637i
\(325\) 17.0503 22.6089i 0.945783 1.25412i
\(326\) 27.0139 0.538228i 1.49616 0.0298097i
\(327\) 7.61887 + 7.61887i 0.421324 + 0.421324i
\(328\) −12.5461 + 14.1431i −0.692743 + 0.780921i
\(329\) 11.9245i 0.657422i
\(330\) 9.46860 + 7.90837i 0.521229 + 0.435342i
\(331\) 27.0645i 1.48760i 0.668403 + 0.743799i \(0.266978\pi\)
−0.668403 + 0.743799i \(0.733022\pi\)
\(332\) −9.18557 8.48130i −0.504124 0.465472i
\(333\) 8.06387 + 8.06387i 0.441897 + 0.441897i
\(334\) −0.460075 23.0914i −0.0251742 1.26350i
\(335\) 10.0984 0.704241i 0.551733 0.0384768i
\(336\) −4.51800 + 0.360784i −0.246477 + 0.0196824i
\(337\) −7.05018 + 7.05018i −0.384048 + 0.384048i −0.872558 0.488510i \(-0.837541\pi\)
0.488510 + 0.872558i \(0.337541\pi\)
\(338\) 18.6913 19.4512i 1.01667 1.05801i
\(339\) 0.687185 0.0373228
\(340\) 7.71172 0.847577i 0.418227 0.0459663i
\(341\) −6.55408 −0.354923
\(342\) 2.27512 2.36762i 0.123024 0.128026i
\(343\) 11.7791 11.7791i 0.636012 0.636012i
\(344\) 1.12912 + 18.8704i 0.0608782 + 1.01742i
\(345\) 3.59934 + 3.13004i 0.193782 + 0.168516i
\(346\) 0.432254 + 21.6950i 0.0232381 + 1.16633i
\(347\) 6.37184 + 6.37184i 0.342058 + 0.342058i 0.857141 0.515083i \(-0.172239\pi\)
−0.515083 + 0.857141i \(0.672239\pi\)
\(348\) 7.25829 7.86100i 0.389085 0.421394i
\(349\) 2.28416i 0.122268i 0.998130 + 0.0611342i \(0.0194718\pi\)
−0.998130 + 0.0611342i \(0.980528\pi\)
\(350\) −9.60634 + 1.54211i −0.513480 + 0.0824291i
\(351\) 24.8207i 1.32483i
\(352\) 16.9710 20.7398i 0.904560 1.10543i
\(353\) 17.1646 + 17.1646i 0.913578 + 0.913578i 0.996552 0.0829741i \(-0.0264419\pi\)
−0.0829741 + 0.996552i \(0.526442\pi\)
\(354\) 0.336606 0.00670656i 0.0178904 0.000356450i
\(355\) 25.0146 + 21.7531i 1.32764 + 1.15454i
\(356\) −17.3447 + 0.691429i −0.919267 + 0.0366456i
\(357\) 1.38994 1.38994i 0.0735633 0.0735633i
\(358\) 4.69325 + 4.50989i 0.248046 + 0.238355i
\(359\) 28.3972 1.49875 0.749373 0.662148i \(-0.230355\pi\)
0.749373 + 0.662148i \(0.230355\pi\)
\(360\) 14.5618 1.89473i 0.767475 0.0998612i
\(361\) 1.00000 0.0526316
\(362\) 14.2992 + 13.7405i 0.751548 + 0.722186i
\(363\) −6.66298 + 6.66298i −0.349716 + 0.349716i
\(364\) −15.5728 + 0.620794i −0.816237 + 0.0325385i
\(365\) 18.9609 1.32230i 0.992461 0.0692123i
\(366\) 5.39945 0.107579i 0.282234 0.00562325i
\(367\) −1.41139 1.41139i −0.0736740 0.0736740i 0.669310 0.742984i \(-0.266590\pi\)
−0.742984 + 0.669310i \(0.766590\pi\)
\(368\) 6.72018 7.88660i 0.350314 0.411118i
\(369\) 15.5197i 0.807922i
\(370\) −9.95663 + 11.9209i −0.517620 + 0.619740i
\(371\) 7.10246i 0.368741i
\(372\) 1.54578 1.67414i 0.0801452 0.0868003i
\(373\) 10.2157 + 10.2157i 0.528949 + 0.528949i 0.920259 0.391310i \(-0.127978\pi\)
−0.391310 + 0.920259i \(0.627978\pi\)
\(374\) 0.231518 + 11.6200i 0.0119715 + 0.600856i
\(375\) −9.00700 + 1.90919i −0.465119 + 0.0985903i
\(376\) −24.4688 + 1.46411i −1.26188 + 0.0755055i
\(377\) 26.0155 26.0155i 1.33986 1.33986i
\(378\) 5.90883 6.14907i 0.303917 0.316274i
\(379\) 16.8864 0.867397 0.433699 0.901058i \(-0.357208\pi\)
0.433699 + 0.901058i \(0.357208\pi\)
\(380\) 3.48883 + 2.79787i 0.178973 + 0.143528i
\(381\) −12.9587 −0.663895
\(382\) 1.30817 1.36135i 0.0669316 0.0696529i
\(383\) 6.02950 6.02950i 0.308093 0.308093i −0.536076 0.844169i \(-0.680094\pi\)
0.844169 + 0.536076i \(0.180094\pi\)
\(384\) 1.29504 + 9.22650i 0.0660874 + 0.470838i
\(385\) −1.01399 14.5400i −0.0516777 0.741025i
\(386\) −0.411513 20.6541i −0.0209455 1.05126i
\(387\) −10.9731 10.9731i −0.557792 0.557792i
\(388\) −6.53185 6.03104i −0.331604 0.306180i
\(389\) 33.3599i 1.69141i −0.533647 0.845707i \(-0.679179\pi\)
0.533647 0.845707i \(-0.320821\pi\)
\(390\) −14.6896 + 1.31893i −0.743835 + 0.0667866i
\(391\) 4.49369i 0.227256i
\(392\) −10.8054 9.58532i −0.545756 0.484132i
\(393\) −2.66105 2.66105i −0.134232 0.134232i
\(394\) 2.83314 0.0564477i 0.142732 0.00284380i
\(395\) 7.69296 8.84639i 0.387075 0.445110i
\(396\) 0.876256 + 21.9811i 0.0440335 + 1.10459i
\(397\) −12.0949 + 12.0949i −0.607027 + 0.607027i −0.942168 0.335141i \(-0.891216\pi\)
0.335141 + 0.942168i \(0.391216\pi\)
\(398\) −15.5147 14.9086i −0.777683 0.747299i
\(399\) 1.13310 0.0567257
\(400\) 4.34383 + 19.5226i 0.217192 + 0.976129i
\(401\) −8.90471 −0.444680 −0.222340 0.974969i \(-0.571369\pi\)
−0.222340 + 0.974969i \(0.571369\pi\)
\(402\) −3.80163 3.65310i −0.189608 0.182200i
\(403\) 5.54046 5.54046i 0.275990 0.275990i
\(404\) −0.0783009 1.96420i −0.00389561 0.0977226i
\(405\) −4.92488 + 5.66328i −0.244719 + 0.281410i
\(406\) −12.6383 + 0.251807i −0.627229 + 0.0124970i
\(407\) −16.4531 16.4531i −0.815548 0.815548i
\(408\) −3.02277 2.68145i −0.149649 0.132752i
\(409\) 13.2705i 0.656186i −0.944645 0.328093i \(-0.893594\pi\)
0.944645 0.328093i \(-0.106406\pi\)
\(410\) 21.0527 1.89026i 1.03972 0.0933532i
\(411\) 9.02348i 0.445095i
\(412\) −10.8237 9.99381i −0.533244 0.492360i
\(413\) −0.281259 0.281259i −0.0138399 0.0138399i
\(414\) 0.169433 + 8.50393i 0.00832718 + 0.417945i
\(415\) 0.972435 + 13.9441i 0.0477350 + 0.684489i
\(416\) 3.18589 + 31.8787i 0.156201 + 1.56298i
\(417\) −12.9410 + 12.9410i −0.633726 + 0.633726i
\(418\) −4.64203 + 4.83076i −0.227049 + 0.236280i
\(419\) −11.4136 −0.557592 −0.278796 0.960350i \(-0.589935\pi\)
−0.278796 + 0.960350i \(0.589935\pi\)
\(420\) 3.95317 + 3.17026i 0.192895 + 0.154693i
\(421\) 16.0960 0.784472 0.392236 0.919865i \(-0.371702\pi\)
0.392236 + 0.919865i \(0.371702\pi\)
\(422\) −9.16269 + 9.53523i −0.446033 + 0.464168i
\(423\) 14.2285 14.2285i 0.691814 0.691814i
\(424\) 14.5740 0.872046i 0.707778 0.0423503i
\(425\) −6.92531 5.22268i −0.335927 0.253337i
\(426\) −0.343934 17.2622i −0.0166637 0.836358i
\(427\) −4.51165 4.51165i −0.218334 0.218334i
\(428\) −26.9365 + 29.1733i −1.30203 + 1.41014i
\(429\) 22.0946i 1.06674i
\(430\) 13.5487 16.2217i 0.653375 0.782278i
\(431\) 16.7831i 0.808415i −0.914667 0.404208i \(-0.867547\pi\)
0.914667 0.404208i \(-0.132453\pi\)
\(432\) −13.3432 11.3697i −0.641975 0.547027i
\(433\) −0.362193 0.362193i −0.0174059 0.0174059i 0.698350 0.715756i \(-0.253918\pi\)
−0.715756 + 0.698350i \(0.753918\pi\)
\(434\) −2.69156 + 0.0536269i −0.129199 + 0.00257417i
\(435\) −11.9334 + 0.832210i −0.572161 + 0.0399014i
\(436\) −26.1470 + 1.04232i −1.25221 + 0.0499183i
\(437\) −1.83166 + 1.83166i −0.0876202 + 0.0876202i
\(438\) −7.13803 6.85915i −0.341068 0.327743i
\(439\) −15.6404 −0.746477 −0.373239 0.927735i \(-0.621753\pi\)
−0.373239 + 0.927735i \(0.621753\pi\)
\(440\) −29.7111 + 3.86591i −1.41642 + 0.184300i
\(441\) 11.8571 0.564626
\(442\) −10.0186 9.62722i −0.476538 0.457920i
\(443\) −15.7362 + 15.7362i −0.747651 + 0.747651i −0.974037 0.226387i \(-0.927309\pi\)
0.226387 + 0.974037i \(0.427309\pi\)
\(444\) 8.08317 0.322227i 0.383610 0.0152922i
\(445\) 14.6445 + 12.7351i 0.694217 + 0.603703i
\(446\) −35.5368 + 0.708039i −1.68272 + 0.0335266i
\(447\) −8.47534 8.47534i −0.400870 0.400870i
\(448\) 6.79979 8.65606i 0.321260 0.408960i
\(449\) 36.0983i 1.70359i −0.523878 0.851793i \(-0.675515\pi\)
0.523878 0.851793i \(-0.324485\pi\)
\(450\) −13.3025 9.62234i −0.627084 0.453602i
\(451\) 31.6655i 1.49107i
\(452\) −1.13216 + 1.22617i −0.0532524 + 0.0576744i
\(453\) −11.3905 11.3905i −0.535173 0.535173i
\(454\) −0.270445 13.5738i −0.0126926 0.637048i
\(455\) 13.1485 + 11.4341i 0.616410 + 0.536041i
\(456\) −0.139122 2.32508i −0.00651501 0.108882i
\(457\) 24.9941 24.9941i 1.16918 1.16918i 0.186773 0.982403i \(-0.440197\pi\)
0.982403 0.186773i \(-0.0598028\pi\)
\(458\) 22.0425 22.9387i 1.02998 1.07186i
\(459\) 7.60280 0.354868
\(460\) −11.5151 + 1.26560i −0.536894 + 0.0590088i
\(461\) 33.6026 1.56503 0.782514 0.622633i \(-0.213937\pi\)
0.782514 + 0.622633i \(0.213937\pi\)
\(462\) −5.25986 + 5.47372i −0.244711 + 0.254660i
\(463\) −18.6594 + 18.6594i −0.867175 + 0.867175i −0.992159 0.124983i \(-0.960112\pi\)
0.124983 + 0.992159i \(0.460112\pi\)
\(464\) 2.06844 + 25.9025i 0.0960251 + 1.20250i
\(465\) −2.54143 + 0.177234i −0.117856 + 0.00821904i
\(466\) 0.770773 + 38.6855i 0.0357054 + 1.79207i
\(467\) −3.14547 3.14547i −0.145555 0.145555i 0.630574 0.776129i \(-0.282819\pi\)
−0.776129 + 0.630574i \(0.782819\pi\)
\(468\) −19.3224 17.8409i −0.893179 0.824697i
\(469\) 6.22899i 0.287628i
\(470\) 21.0342 + 17.5682i 0.970238 + 0.810363i
\(471\) 16.8093i 0.774532i
\(472\) −0.542603 + 0.611669i −0.0249753 + 0.0281544i
\(473\) 22.3888 + 22.3888i 1.02944 + 1.02944i
\(474\) −6.10477 + 0.121632i −0.280401 + 0.00558674i
\(475\) −0.694006 4.95160i −0.0318432 0.227195i
\(476\) 0.190155 + 4.77009i 0.00871574 + 0.218637i
\(477\) −8.47474 + 8.47474i −0.388032 + 0.388032i
\(478\) 26.1477 + 25.1261i 1.19597 + 1.14924i
\(479\) −34.5022 −1.57645 −0.788223 0.615389i \(-0.788999\pi\)
−0.788223 + 0.615389i \(0.788999\pi\)
\(480\) 6.01989 8.50104i 0.274769 0.388018i
\(481\) 27.8171 1.26835
\(482\) 1.99640 + 1.91840i 0.0909335 + 0.0873808i
\(483\) −2.07545 + 2.07545i −0.0944361 + 0.0944361i
\(484\) −0.911551 22.8665i −0.0414341 1.03939i
\(485\) 0.691498 + 9.91564i 0.0313993 + 0.450246i
\(486\) 22.4982 0.448255i 1.02054 0.0203333i
\(487\) −14.8873 14.8873i −0.674607 0.674607i 0.284167 0.958775i \(-0.408283\pi\)
−0.958775 + 0.284167i \(0.908283\pi\)
\(488\) −8.70382 + 9.81171i −0.394003 + 0.444155i
\(489\) 15.7336i 0.711497i
\(490\) 1.44417 + 16.0844i 0.0652410 + 0.726620i
\(491\) 14.7286i 0.664692i −0.943158 0.332346i \(-0.892160\pi\)
0.943158 0.332346i \(-0.107840\pi\)
\(492\) −8.08848 7.46832i −0.364657 0.336698i
\(493\) −7.96877 7.96877i −0.358895 0.358895i
\(494\) −0.159548 8.00779i −0.00717840 0.360287i
\(495\) 16.1394 18.5592i 0.725411 0.834173i
\(496\) 0.440513 + 5.51642i 0.0197796 + 0.247694i
\(497\) −14.4239 + 14.4239i −0.647000 + 0.647000i
\(498\) 5.04431 5.24940i 0.226041 0.235231i
\(499\) 32.1745 1.44033 0.720165 0.693803i \(-0.244066\pi\)
0.720165 + 0.693803i \(0.244066\pi\)
\(500\) 11.4327 19.2170i 0.511285 0.859411i
\(501\) 13.4490 0.600857
\(502\) 3.46036 3.60105i 0.154443 0.160723i
\(503\) 14.5815 14.5815i 0.650157 0.650157i −0.302874 0.953031i \(-0.597946\pi\)
0.953031 + 0.302874i \(0.0979461\pi\)
\(504\) 0.539706 + 9.01982i 0.0240404 + 0.401775i
\(505\) −1.44219 + 1.65842i −0.0641766 + 0.0737987i
\(506\) −0.345701 17.3509i −0.0153683 0.771343i
\(507\) 11.1076 + 11.1076i 0.493305 + 0.493305i
\(508\) 21.3499 23.1228i 0.947250 1.02591i
\(509\) 30.8387i 1.36690i 0.729996 + 0.683452i \(0.239522\pi\)
−0.729996 + 0.683452i \(0.760478\pi\)
\(510\) 0.404000 + 4.49955i 0.0178894 + 0.199243i
\(511\) 11.6957i 0.517387i
\(512\) −18.5969 12.8902i −0.821873 0.569671i
\(513\) 3.09895 + 3.09895i 0.136822 + 0.136822i
\(514\) 3.23886 0.0645314i 0.142860 0.00284636i
\(515\) 1.14586 + 16.4308i 0.0504924 + 0.724029i
\(516\) −10.9993 + 0.438477i −0.484218 + 0.0193029i
\(517\) −29.0311 + 29.0311i −1.27679 + 1.27679i
\(518\) −6.89140 6.62215i −0.302791 0.290961i
\(519\) −12.6357 −0.554647
\(520\) 21.8481 28.3842i 0.958104 1.24473i
\(521\) −15.7674 −0.690782 −0.345391 0.938459i \(-0.612254\pi\)
−0.345391 + 0.938459i \(0.612254\pi\)
\(522\) −15.3807 14.7797i −0.673193 0.646892i
\(523\) 24.2821 24.2821i 1.06178 1.06178i 0.0638230 0.997961i \(-0.479671\pi\)
0.997961 0.0638230i \(-0.0203293\pi\)
\(524\) 9.13241 0.364054i 0.398951 0.0159038i
\(525\) −0.786375 5.61064i −0.0343202 0.244868i
\(526\) −23.5265 + 0.468744i −1.02580 + 0.0204382i
\(527\) −1.69709 1.69709i −0.0739266 0.0739266i
\(528\) 11.8777 + 10.1210i 0.516911 + 0.440460i
\(529\) 16.2900i 0.708263i
\(530\) −12.5283 10.4639i −0.544197 0.454525i
\(531\) 0.671205i 0.0291278i
\(532\) −1.86681 + 2.02183i −0.0809366 + 0.0876575i
\(533\) −26.7683 26.7683i −1.15946 1.15946i
\(534\) −0.201353 10.1060i −0.00871338 0.437329i
\(535\) 44.2864 3.08845i 1.91467 0.133525i
\(536\) 12.7817 0.764801i 0.552086 0.0330344i
\(537\) −2.68007 + 2.68007i −0.115654 + 0.115654i
\(538\) 5.69115 5.92255i 0.245363 0.255339i
\(539\) −24.1926 −1.04205
\(540\) 2.14124 + 19.4822i 0.0921443 + 0.838379i
\(541\) −13.1301 −0.564506 −0.282253 0.959340i \(-0.591082\pi\)
−0.282253 + 0.959340i \(0.591082\pi\)
\(542\) −15.6261 + 16.2615i −0.671200 + 0.698490i
\(543\) −8.16551 + 8.16551i −0.350415 + 0.350415i
\(544\) 9.76474 0.975868i 0.418660 0.0418400i
\(545\) 22.0765 + 19.1981i 0.945655 + 0.822357i
\(546\) −0.180783 9.07359i −0.00773680 0.388314i
\(547\) −6.67431 6.67431i −0.285373 0.285373i 0.549875 0.835247i \(-0.314676\pi\)
−0.835247 + 0.549875i \(0.814676\pi\)
\(548\) −16.1010 14.8665i −0.687799 0.635065i
\(549\) 10.7667i 0.459512i
\(550\) 27.1416 + 19.6329i 1.15732 + 0.837149i
\(551\) 6.49625i 0.276750i
\(552\) 4.51358 + 4.00393i 0.192111 + 0.170418i
\(553\) 5.10100 + 5.10100i 0.216916 + 0.216916i
\(554\) −28.2437 + 0.562729i −1.19996 + 0.0239081i
\(555\) −6.82480 5.93496i −0.289697 0.251925i
\(556\) −1.77044 44.4121i −0.0750835 1.88349i
\(557\) −10.5667 + 10.5667i −0.447725 + 0.447725i −0.894598 0.446873i \(-0.852538\pi\)
0.446873 + 0.894598i \(0.352538\pi\)
\(558\) −3.27559 3.14762i −0.138667 0.133249i
\(559\) −37.8526 −1.60100
\(560\) −12.1698 + 1.83071i −0.514268 + 0.0773617i
\(561\) −6.76778 −0.285736
\(562\) 32.2623 + 31.0019i 1.36090 + 1.30773i
\(563\) 18.7352 18.7352i 0.789595 0.789595i −0.191833 0.981428i \(-0.561443\pi\)
0.981428 + 0.191833i \(0.0614431\pi\)
\(564\) −0.568563 14.2626i −0.0239408 0.600563i
\(565\) 1.86139 0.129810i 0.0783091 0.00546113i
\(566\) 7.44130 0.148261i 0.312781 0.00623188i
\(567\) −3.26555 3.26555i −0.137140 0.137140i
\(568\) 31.3684 + 27.8264i 1.31619 + 1.16757i
\(569\) 33.1004i 1.38764i −0.720147 0.693821i \(-0.755926\pi\)
0.720147 0.693821i \(-0.244074\pi\)
\(570\) −1.66937 + 1.99872i −0.0699223 + 0.0837171i
\(571\) 17.4026i 0.728277i −0.931345 0.364138i \(-0.881364\pi\)
0.931345 0.364138i \(-0.118636\pi\)
\(572\) 39.4243 + 36.4016i 1.64841 + 1.52203i
\(573\) 0.777397 + 0.777397i 0.0324762 + 0.0324762i
\(574\) 0.259094 + 13.0040i 0.0108144 + 0.542778i
\(575\) 10.3408 + 7.79847i 0.431243 + 0.325219i
\(576\) 18.4421 2.21492i 0.768422 0.0922884i
\(577\) 4.50750 4.50750i 0.187650 0.187650i −0.607030 0.794679i \(-0.707639\pi\)
0.794679 + 0.607030i \(0.207639\pi\)
\(578\) 13.7091 14.2665i 0.570223 0.593407i
\(579\) 12.0294 0.499927
\(580\) 18.1757 22.6643i 0.754704 0.941084i
\(581\) −8.60116 −0.356836
\(582\) 3.58700 3.73284i 0.148686 0.154731i
\(583\) 17.2914 17.2914i 0.716136 0.716136i
\(584\) 23.9992 1.43601i 0.993095 0.0594224i
\(585\) 2.04558 + 29.3323i 0.0845742 + 1.21274i
\(586\) 0.243991 + 12.2461i 0.0100792 + 0.505880i
\(587\) −6.94211 6.94211i −0.286531 0.286531i 0.549176 0.835707i \(-0.314942\pi\)
−0.835707 + 0.549176i \(0.814942\pi\)
\(588\) 5.70585 6.17966i 0.235305 0.254845i
\(589\) 1.38349i 0.0570059i
\(590\) 0.910501 0.0817511i 0.0374847 0.00336564i
\(591\) 1.65009i 0.0678757i
\(592\) −12.7423 + 14.9540i −0.523706 + 0.614606i
\(593\) −6.95256 6.95256i −0.285507 0.285507i 0.549793 0.835301i \(-0.314706\pi\)
−0.835301 + 0.549793i \(0.814706\pi\)
\(594\) −29.3557 + 0.584886i −1.20448 + 0.0239982i
\(595\) 3.50238 4.02750i 0.143584 0.165111i
\(596\) 29.0863 1.15950i 1.19142 0.0474948i
\(597\) 8.85964 8.85964i 0.362601 0.362601i
\(598\) 14.9598 + 14.3753i 0.611751 + 0.587850i
\(599\) 41.8628 1.71047 0.855233 0.518243i \(-0.173414\pi\)
0.855233 + 0.518243i \(0.173414\pi\)
\(600\) −11.4163 + 2.30250i −0.466069 + 0.0939990i
\(601\) 9.08392 0.370541 0.185270 0.982688i \(-0.440684\pi\)
0.185270 + 0.982688i \(0.440684\pi\)
\(602\) 9.37760 + 9.01122i 0.382203 + 0.367270i
\(603\) −7.43251 + 7.43251i −0.302675 + 0.302675i
\(604\) 39.0909 1.55832i 1.59058 0.0634070i
\(605\) −16.7895 + 19.3067i −0.682589 + 0.784931i
\(606\) 1.14445 0.0228022i 0.0464902 0.000926275i
\(607\) −4.79286 4.79286i −0.194536 0.194536i 0.603117 0.797653i \(-0.293925\pi\)
−0.797653 + 0.603117i \(0.793925\pi\)
\(608\) 4.37794 + 3.58240i 0.177549 + 0.145286i
\(609\) 7.36087i 0.298278i
\(610\) 14.6052 1.31136i 0.591349 0.0530954i
\(611\) 49.0826i 1.98567i
\(612\) −5.46484 + 5.91863i −0.220903 + 0.239246i
\(613\) −17.4802 17.4802i −0.706018 0.706018i 0.259677 0.965696i \(-0.416384\pi\)
−0.965696 + 0.259677i \(0.916384\pi\)
\(614\) −0.169025 8.48344i −0.00682128 0.342364i
\(615\) 0.856292 + 12.2787i 0.0345290 + 0.495124i
\(616\) −1.10119 18.4035i −0.0443680 0.741499i
\(617\) 5.32574 5.32574i 0.214406 0.214406i −0.591730 0.806136i \(-0.701555\pi\)
0.806136 + 0.591730i \(0.201555\pi\)
\(618\) 5.94388 6.18555i 0.239098 0.248819i
\(619\) 4.51100 0.181312 0.0906562 0.995882i \(-0.471104\pi\)
0.0906562 + 0.995882i \(0.471104\pi\)
\(620\) 3.87084 4.82677i 0.155457 0.193848i
\(621\) −11.3525 −0.455558
\(622\) −3.21810 + 3.34894i −0.129034 + 0.134280i
\(623\) −8.44431 + 8.44431i −0.338314 + 0.338314i
\(624\) −18.5965 + 1.48502i −0.744457 + 0.0594485i
\(625\) −24.0367 + 6.87288i −0.961468 + 0.274915i
\(626\) 0.119033 + 5.97435i 0.00475753 + 0.238783i
\(627\) −2.75859 2.75859i −0.110168 0.110168i
\(628\) 29.9936 + 27.6939i 1.19687 + 1.10511i
\(629\) 8.52062i 0.339739i
\(630\) 6.47610 7.75375i 0.258014 0.308917i
\(631\) 5.20294i 0.207126i −0.994623 0.103563i \(-0.966976\pi\)
0.994623 0.103563i \(-0.0330243\pi\)
\(632\) 9.84078 11.0934i 0.391445 0.441271i
\(633\) −5.44507 5.44507i −0.216422 0.216422i
\(634\) 10.9213 0.217597i 0.433740 0.00864186i
\(635\) −35.1014 + 2.44791i −1.39296 + 0.0971422i
\(636\) 0.338646 + 8.49502i 0.0134282 + 0.336850i
\(637\) 20.4512 20.4512i 0.810304 0.810304i
\(638\) 31.3818 + 30.1558i 1.24242 + 1.19388i
\(639\) −34.4216 −1.36170
\(640\) 5.25079 + 24.7473i 0.207556 + 0.978223i
\(641\) −3.06495 −0.121058 −0.0605290 0.998166i \(-0.519279\pi\)
−0.0605290 + 0.998166i \(0.519279\pi\)
\(642\) −16.6721 16.0207i −0.657993 0.632286i
\(643\) −14.6071 + 14.6071i −0.576047 + 0.576047i −0.933812 0.357764i \(-0.883539\pi\)
0.357764 + 0.933812i \(0.383539\pi\)
\(644\) −0.283938 7.12267i −0.0111887 0.280673i
\(645\) 9.28699 + 8.07612i 0.365675 + 0.317997i
\(646\) −2.45286 + 0.0488710i −0.0965064 + 0.00192280i
\(647\) 0.586994 + 0.586994i 0.0230771 + 0.0230771i 0.718551 0.695474i \(-0.244806\pi\)
−0.695474 + 0.718551i \(0.744806\pi\)
\(648\) −6.29987 + 7.10176i −0.247482 + 0.278984i
\(649\) 1.36949i 0.0537571i
\(650\) −39.5406 + 6.34747i −1.55091 + 0.248968i
\(651\) 1.56763i 0.0614403i
\(652\) −28.0741 25.9216i −1.09947 1.01517i
\(653\) −3.62988 3.62988i −0.142048 0.142048i 0.632507 0.774555i \(-0.282026\pi\)
−0.774555 + 0.632507i \(0.782026\pi\)
\(654\) −0.303538 15.2347i −0.0118693 0.595724i
\(655\) −7.71070 6.70536i −0.301282 0.262000i
\(656\) 26.6521 2.12830i 1.04059 0.0830962i
\(657\) −13.9555 + 13.9555i −0.544454 + 0.544454i
\(658\) −11.6846 + 12.1597i −0.455515 + 0.474035i
\(659\) 33.1760 1.29235 0.646177 0.763188i \(-0.276367\pi\)
0.646177 + 0.763188i \(0.276367\pi\)
\(660\) −1.90607 17.3424i −0.0741936 0.675054i
\(661\) 14.2978 0.556121 0.278060 0.960564i \(-0.410308\pi\)
0.278060 + 0.960564i \(0.410308\pi\)
\(662\) 26.5200 27.5982i 1.03073 1.07264i
\(663\) 5.72112 5.72112i 0.222190 0.222190i
\(664\) 1.05606 + 17.6493i 0.0409830 + 0.684927i
\(665\) 3.06923 0.214042i 0.119020 0.00830020i
\(666\) −0.321267 16.1245i −0.0124488 0.624813i
\(667\) 11.8989 + 11.8989i 0.460728 + 0.460728i
\(668\) −22.1577 + 23.9976i −0.857306 + 0.928495i
\(669\) 20.6975i 0.800213i
\(670\) −10.9876 9.17708i −0.424488 0.354541i
\(671\) 21.9678i 0.848057i
\(672\) 4.96063 + 4.05920i 0.191360 + 0.156587i
\(673\) −11.6828 11.6828i −0.450341 0.450341i 0.445127 0.895468i \(-0.353159\pi\)
−0.895468 + 0.445127i \(0.853159\pi\)
\(674\) 14.0976 0.280881i 0.543018 0.0108191i
\(675\) 13.1941 17.4955i 0.507840 0.673401i
\(676\) −38.1198 + 1.51961i −1.46615 + 0.0584465i
\(677\) −27.7047 + 27.7047i −1.06478 + 1.06478i −0.0670286 + 0.997751i \(0.521352\pi\)
−0.997751 + 0.0670286i \(0.978648\pi\)
\(678\) −0.700738 0.673360i −0.0269117 0.0258602i
\(679\) −6.11628 −0.234721
\(680\) −8.69433 6.69228i −0.333412 0.256637i
\(681\) 7.90569 0.302947
\(682\) 6.68333 + 6.42222i 0.255918 + 0.245919i
\(683\) −17.0782 + 17.0782i −0.653480 + 0.653480i −0.953829 0.300349i \(-0.902897\pi\)
0.300349 + 0.953829i \(0.402897\pi\)
\(684\) −4.63998 + 0.184968i −0.177414 + 0.00707243i
\(685\) 1.70454 + 24.4420i 0.0651271 + 0.933881i
\(686\) −23.5535 + 0.469283i −0.899278 + 0.0179173i
\(687\) 13.0991 + 13.0991i 0.499762 + 0.499762i
\(688\) 17.3394 20.3490i 0.661057 0.775797i
\(689\) 29.2344i 1.11374i
\(690\) −0.603251 6.71869i −0.0229654 0.255776i
\(691\) 40.9903i 1.55934i 0.626188 + 0.779672i \(0.284614\pi\)
−0.626188 + 0.779672i \(0.715386\pi\)
\(692\) 20.8178 22.5465i 0.791373 0.857088i
\(693\) 10.7016 + 10.7016i 0.406519 + 0.406519i
\(694\) −0.253856 12.7411i −0.00963623 0.483647i
\(695\) −32.6090 + 37.4981i −1.23693 + 1.42239i
\(696\) −15.1043 + 0.903774i −0.572527 + 0.0342575i
\(697\) −8.19937 + 8.19937i −0.310573 + 0.310573i
\(698\) 2.23821 2.32921i 0.0847175 0.0881619i
\(699\) −22.5314 −0.852216
\(700\) 11.3069 + 7.84055i 0.427360 + 0.296345i
\(701\) −14.1506 −0.534461 −0.267231 0.963633i \(-0.586109\pi\)
−0.267231 + 0.963633i \(0.586109\pi\)
\(702\) 24.3213 25.3102i 0.917949 0.955271i
\(703\) 3.47306 3.47306i 0.130989 0.130989i
\(704\) −37.6283 + 4.51920i −1.41817 + 0.170324i
\(705\) −10.4721 + 12.0422i −0.394403 + 0.453536i
\(706\) −0.683841 34.3223i −0.0257367 1.29174i
\(707\) −0.956277 0.956277i −0.0359645 0.0359645i
\(708\) −0.349816 0.322995i −0.0131469 0.0121389i
\(709\) 12.9874i 0.487753i −0.969806 0.243877i \(-0.921581\pi\)
0.969806 0.243877i \(-0.0784192\pi\)
\(710\) −4.19246 46.6935i −0.157340 1.75237i
\(711\) 12.1731i 0.456529i
\(712\) 18.3643 + 16.2907i 0.688230 + 0.610519i
\(713\) 2.53409 + 2.53409i 0.0949025 + 0.0949025i
\(714\) −2.77932 + 0.0553755i −0.104014 + 0.00207237i
\(715\) −4.17368 59.8480i −0.156087 2.23819i
\(716\) −0.366656 9.19766i −0.0137026 0.343733i
\(717\) −14.9315 + 14.9315i −0.557629 + 0.557629i
\(718\) −28.9572 27.8259i −1.08067 1.03845i
\(719\) 45.7262 1.70530 0.852649 0.522484i \(-0.174995\pi\)
0.852649 + 0.522484i \(0.174995\pi\)
\(720\) −16.7056 12.3367i −0.622581 0.459763i
\(721\) −10.1351 −0.377449
\(722\) −1.01972 0.979881i −0.0379501 0.0364674i
\(723\) −1.14004 + 1.14004i −0.0423985 + 0.0423985i
\(724\) −1.11711 28.0230i −0.0415170 1.04147i
\(725\) −32.1668 + 4.50843i −1.19465 + 0.167439i
\(726\) 13.3233 0.265455i 0.494475 0.00985196i
\(727\) 19.0449 + 19.0449i 0.706336 + 0.706336i 0.965763 0.259427i \(-0.0835337\pi\)
−0.259427 + 0.965763i \(0.583534\pi\)
\(728\) 16.4882 + 14.6265i 0.611094 + 0.542093i
\(729\) 3.03429i 0.112381i
\(730\) −20.6306 17.2311i −0.763572 0.637751i
\(731\) 11.5946i 0.428842i
\(732\) −5.61135 5.18112i −0.207402 0.191500i
\(733\) −31.4767 31.4767i −1.16262 1.16262i −0.983900 0.178718i \(-0.942805\pi\)
−0.178718 0.983900i \(-0.557195\pi\)
\(734\) 0.0562302 + 2.82222i 0.00207549 + 0.104170i
\(735\) −9.38100 + 0.654213i −0.346023 + 0.0241310i
\(736\) −14.5806 + 1.45716i −0.537450 + 0.0537116i
\(737\) 15.1649 15.1649i 0.558606 0.558606i
\(738\) −15.2074 + 15.8257i −0.559793 + 0.582554i
\(739\) 53.0093 1.94998 0.974989 0.222254i \(-0.0713416\pi\)
0.974989 + 0.222254i \(0.0713416\pi\)
\(740\) 21.8341 2.39973i 0.802637 0.0882160i
\(741\) 4.66393 0.171334
\(742\) 6.95957 7.24253i 0.255494 0.265882i
\(743\) −18.7441 + 18.7441i −0.687655 + 0.687655i −0.961713 0.274058i \(-0.911634\pi\)
0.274058 + 0.961713i \(0.411634\pi\)
\(744\) −3.21673 + 0.192475i −0.117931 + 0.00705648i
\(745\) −24.5582 21.3563i −0.899744 0.782433i
\(746\) −0.406996 20.4273i −0.0149012 0.747898i
\(747\) −10.2630 10.2630i −0.375504 0.375504i
\(748\) 11.1501 12.0760i 0.407690 0.441544i
\(749\) 27.3172i 0.998150i
\(750\) 11.0554 + 6.87894i 0.403687 + 0.251183i
\(751\) 12.1326i 0.442724i 0.975192 + 0.221362i \(0.0710502\pi\)
−0.975192 + 0.221362i \(0.928950\pi\)
\(752\) 26.3860 + 22.4836i 0.962200 + 0.819891i
\(753\) 2.05637 + 2.05637i 0.0749383 + 0.0749383i
\(754\) −52.0206 + 1.03646i −1.89448 + 0.0377457i
\(755\) −33.0053 28.7020i −1.20119 1.04457i
\(756\) −12.0507 + 0.480390i −0.438280 + 0.0174716i
\(757\) −13.7820 + 13.7820i −0.500914 + 0.500914i −0.911722 0.410808i \(-0.865247\pi\)
0.410808 + 0.911722i \(0.365247\pi\)
\(758\) −17.2195 16.5467i −0.625439 0.601003i
\(759\) 10.1056 0.366810
\(760\) −0.816051 6.27169i −0.0296013 0.227498i
\(761\) 6.65971 0.241414 0.120707 0.992688i \(-0.461484\pi\)
0.120707 + 0.992688i \(0.461484\pi\)
\(762\) 13.2143 + 12.6980i 0.478703 + 0.460000i
\(763\) −12.7297 + 12.7297i −0.460848 + 0.460848i
\(764\) −2.66793 + 0.106354i −0.0965224 + 0.00384777i
\(765\) 8.98475 0.626579i 0.324844 0.0226540i
\(766\) −12.0566 + 0.240217i −0.435623 + 0.00867938i
\(767\) −1.15769 1.15769i −0.0418018 0.0418018i
\(768\) 7.72030 10.6775i 0.278582 0.385289i
\(769\) 39.7893i 1.43484i 0.696641 + 0.717420i \(0.254677\pi\)