Properties

Label 380.2.k.c.343.5
Level $380$
Weight $2$
Character 380.343
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.5
Character \(\chi\) \(=\) 380.343
Dual form 380.2.k.c.267.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34536 - 0.435901i) q^{2} +(-1.82161 + 1.82161i) q^{3} +(1.61998 + 1.17289i) q^{4} +(2.11542 - 0.724569i) q^{5} +(3.24476 - 1.65668i) q^{6} +(-1.36053 - 1.36053i) q^{7} +(-1.66819 - 2.28411i) q^{8} -3.63653i q^{9} +O(q^{10})\) \(q+(-1.34536 - 0.435901i) q^{2} +(-1.82161 + 1.82161i) q^{3} +(1.61998 + 1.17289i) q^{4} +(2.11542 - 0.724569i) q^{5} +(3.24476 - 1.65668i) q^{6} +(-1.36053 - 1.36053i) q^{7} +(-1.66819 - 2.28411i) q^{8} -3.63653i q^{9} +(-3.16184 + 0.0526904i) q^{10} -1.55414i q^{11} +(-5.08752 + 0.814429i) q^{12} +(-2.11246 - 2.11246i) q^{13} +(1.23734 + 2.42345i) q^{14} +(-2.53359 + 5.17335i) q^{15} +(1.24867 + 3.80011i) q^{16} +(0.503748 - 0.503748i) q^{17} +(-1.58517 + 4.89243i) q^{18} +1.00000 q^{19} +(4.27678 + 1.30736i) q^{20} +4.95670 q^{21} +(-0.677450 + 2.09087i) q^{22} +(3.79747 - 3.79747i) q^{23} +(7.19954 + 1.12196i) q^{24} +(3.95000 - 3.06553i) q^{25} +(1.92119 + 3.76283i) q^{26} +(1.15951 + 1.15951i) q^{27} +(-0.608282 - 3.79977i) q^{28} -2.83793i q^{29} +(5.66366 - 5.85562i) q^{30} -4.40335i q^{31} +(-0.0234394 - 5.65681i) q^{32} +(2.83103 + 2.83103i) q^{33} +(-0.897306 + 0.458137i) q^{34} +(-3.86388 - 1.89229i) q^{35} +(4.26524 - 5.89110i) q^{36} +(-2.89859 + 2.89859i) q^{37} +(-1.34536 - 0.435901i) q^{38} +7.69614 q^{39} +(-5.18392 - 3.62312i) q^{40} +5.57983 q^{41} +(-6.66854 - 2.16063i) q^{42} +(5.10385 - 5.10385i) q^{43} +(1.82283 - 2.51767i) q^{44} +(-2.63491 - 7.69278i) q^{45} +(-6.76429 + 3.45364i) q^{46} +(9.15647 + 9.15647i) q^{47} +(-9.19691 - 4.64772i) q^{48} -3.29794i q^{49} +(-6.65044 + 2.40243i) q^{50} +1.83527i q^{51} +(-0.944464 - 5.89981i) q^{52} +(5.52010 + 5.52010i) q^{53} +(-1.05452 - 2.06538i) q^{54} +(-1.12608 - 3.28765i) q^{55} +(-0.837967 + 5.37720i) q^{56} +(-1.82161 + 1.82161i) q^{57} +(-1.23706 + 3.81803i) q^{58} +9.43187 q^{59} +(-10.1721 + 5.40911i) q^{60} -12.6853 q^{61} +(-1.91943 + 5.92409i) q^{62} +(-4.94759 + 4.94759i) q^{63} +(-2.43427 + 7.62065i) q^{64} +(-5.99935 - 2.93811i) q^{65} +(-2.57470 - 5.04280i) q^{66} +(-0.237062 - 0.237062i) q^{67} +(1.40690 - 0.225222i) q^{68} +13.8350i q^{69} +(4.37345 + 4.23008i) q^{70} -11.8257i q^{71} +(-8.30621 + 6.06643i) q^{72} +(-7.73406 - 7.73406i) q^{73} +(5.16314 - 2.63614i) q^{74} +(-1.61116 + 12.7796i) q^{75} +(1.61998 + 1.17289i) q^{76} +(-2.11444 + 2.11444i) q^{77} +(-10.3541 - 3.35476i) q^{78} -12.4310 q^{79} +(5.39490 + 7.13407i) q^{80} +6.68525 q^{81} +(-7.50687 - 2.43225i) q^{82} +(-0.972495 + 0.972495i) q^{83} +(8.02975 + 5.81365i) q^{84} +(0.700639 - 1.43064i) q^{85} +(-9.09128 + 4.64173i) q^{86} +(5.16960 + 5.16960i) q^{87} +(-3.54981 + 2.59260i) q^{88} +4.55517i q^{89} +(0.191610 + 11.4981i) q^{90} +5.74810i q^{91} +(10.6058 - 1.69782i) q^{92} +(8.02119 + 8.02119i) q^{93} +(-8.32742 - 16.3101i) q^{94} +(2.11542 - 0.724569i) q^{95} +(10.3472 + 10.2618i) q^{96} +(13.9158 - 13.9158i) q^{97} +(-1.43757 + 4.43691i) q^{98} -5.65166 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34536 0.435901i −0.951312 0.308229i
\(3\) −1.82161 + 1.82161i −1.05171 + 1.05171i −0.0531190 + 0.998588i \(0.516916\pi\)
−0.998588 + 0.0531190i \(0.983084\pi\)
\(4\) 1.61998 + 1.17289i 0.809990 + 0.586444i
\(5\) 2.11542 0.724569i 0.946044 0.324037i
\(6\) 3.24476 1.65668i 1.32467 0.676336i
\(7\) −1.36053 1.36053i −0.514231 0.514231i 0.401589 0.915820i \(-0.368458\pi\)
−0.915820 + 0.401589i \(0.868458\pi\)
\(8\) −1.66819 2.28411i −0.589795 0.807553i
\(9\) 3.63653i 1.21218i
\(10\) −3.16184 + 0.0526904i −0.999861 + 0.0166622i
\(11\) 1.55414i 0.468590i −0.972166 0.234295i \(-0.924722\pi\)
0.972166 0.234295i \(-0.0752781\pi\)
\(12\) −5.08752 + 0.814429i −1.46864 + 0.235105i
\(13\) −2.11246 2.11246i −0.585890 0.585890i 0.350626 0.936516i \(-0.385969\pi\)
−0.936516 + 0.350626i \(0.885969\pi\)
\(14\) 1.23734 + 2.42345i 0.330693 + 0.647695i
\(15\) −2.53359 + 5.17335i −0.654170 + 1.33575i
\(16\) 1.24867 + 3.80011i 0.312168 + 0.950027i
\(17\) 0.503748 0.503748i 0.122177 0.122177i −0.643375 0.765551i \(-0.722466\pi\)
0.765551 + 0.643375i \(0.222466\pi\)
\(18\) −1.58517 + 4.89243i −0.373627 + 1.15316i
\(19\) 1.00000 0.229416
\(20\) 4.27678 + 1.30736i 0.956316 + 0.292335i
\(21\) 4.95670 1.08164
\(22\) −0.677450 + 2.09087i −0.144433 + 0.445775i
\(23\) 3.79747 3.79747i 0.791828 0.791828i −0.189963 0.981791i \(-0.560837\pi\)
0.981791 + 0.189963i \(0.0608369\pi\)
\(24\) 7.19954 + 1.12196i 1.46960 + 0.229018i
\(25\) 3.95000 3.06553i 0.790000 0.613107i
\(26\) 1.92119 + 3.76283i 0.376776 + 0.737952i
\(27\) 1.15951 + 1.15951i 0.223147 + 0.223147i
\(28\) −0.608282 3.79977i −0.114954 0.718089i
\(29\) 2.83793i 0.526990i −0.964661 0.263495i \(-0.915125\pi\)
0.964661 0.263495i \(-0.0848753\pi\)
\(30\) 5.66366 5.85562i 1.03404 1.06908i
\(31\) 4.40335i 0.790865i −0.918495 0.395433i \(-0.870595\pi\)
0.918495 0.395433i \(-0.129405\pi\)
\(32\) −0.0234394 5.65681i −0.00414353 0.999991i
\(33\) 2.83103 + 2.83103i 0.492819 + 0.492819i
\(34\) −0.897306 + 0.458137i −0.153887 + 0.0785699i
\(35\) −3.86388 1.89229i −0.653115 0.319855i
\(36\) 4.26524 5.89110i 0.710873 0.981851i
\(37\) −2.89859 + 2.89859i −0.476525 + 0.476525i −0.904018 0.427494i \(-0.859397\pi\)
0.427494 + 0.904018i \(0.359397\pi\)
\(38\) −1.34536 0.435901i −0.218246 0.0707125i
\(39\) 7.69614 1.23237
\(40\) −5.18392 3.62312i −0.819649 0.572866i
\(41\) 5.57983 0.871422 0.435711 0.900087i \(-0.356497\pi\)
0.435711 + 0.900087i \(0.356497\pi\)
\(42\) −6.66854 2.16063i −1.02898 0.333393i
\(43\) 5.10385 5.10385i 0.778330 0.778330i −0.201217 0.979547i \(-0.564490\pi\)
0.979547 + 0.201217i \(0.0644896\pi\)
\(44\) 1.82283 2.51767i 0.274801 0.379553i
\(45\) −2.63491 7.69278i −0.392790 1.14677i
\(46\) −6.76429 + 3.45364i −0.997340 + 0.509212i
\(47\) 9.15647 + 9.15647i 1.33561 + 1.33561i 0.900264 + 0.435345i \(0.143374\pi\)
0.435345 + 0.900264i \(0.356626\pi\)
\(48\) −9.19691 4.64772i −1.32746 0.670841i
\(49\) 3.29794i 0.471134i
\(50\) −6.65044 + 2.40243i −0.940514 + 0.339755i
\(51\) 1.83527i 0.256989i
\(52\) −0.944464 5.89981i −0.130974 0.818156i
\(53\) 5.52010 + 5.52010i 0.758244 + 0.758244i 0.976003 0.217759i \(-0.0698747\pi\)
−0.217759 + 0.976003i \(0.569875\pi\)
\(54\) −1.05452 2.06538i −0.143502 0.281063i
\(55\) −1.12608 3.28765i −0.151840 0.443307i
\(56\) −0.837967 + 5.37720i −0.111978 + 0.718559i
\(57\) −1.82161 + 1.82161i −0.241278 + 0.241278i
\(58\) −1.23706 + 3.81803i −0.162434 + 0.501332i
\(59\) 9.43187 1.22793 0.613963 0.789335i \(-0.289575\pi\)
0.613963 + 0.789335i \(0.289575\pi\)
\(60\) −10.1721 + 5.40911i −1.31322 + 0.698314i
\(61\) −12.6853 −1.62418 −0.812092 0.583529i \(-0.801671\pi\)
−0.812092 + 0.583529i \(0.801671\pi\)
\(62\) −1.91943 + 5.92409i −0.243767 + 0.752360i
\(63\) −4.94759 + 4.94759i −0.623338 + 0.623338i
\(64\) −2.43427 + 7.62065i −0.304284 + 0.952581i
\(65\) −5.99935 2.93811i −0.744128 0.364428i
\(66\) −2.57470 5.04280i −0.316924 0.620726i
\(67\) −0.237062 0.237062i −0.0289617 0.0289617i 0.692478 0.721439i \(-0.256519\pi\)
−0.721439 + 0.692478i \(0.756519\pi\)
\(68\) 1.40690 0.225222i 0.170612 0.0273122i
\(69\) 13.8350i 1.66554i
\(70\) 4.37345 + 4.23008i 0.522728 + 0.505591i
\(71\) 11.8257i 1.40345i −0.712446 0.701727i \(-0.752413\pi\)
0.712446 0.701727i \(-0.247587\pi\)
\(72\) −8.30621 + 6.06643i −0.978897 + 0.714935i
\(73\) −7.73406 7.73406i −0.905203 0.905203i 0.0906774 0.995880i \(-0.471097\pi\)
−0.995880 + 0.0906774i \(0.971097\pi\)
\(74\) 5.16314 2.63614i 0.600202 0.306445i
\(75\) −1.61116 + 12.7796i −0.186040 + 1.47566i
\(76\) 1.61998 + 1.17289i 0.185824 + 0.134539i
\(77\) −2.11444 + 2.11444i −0.240963 + 0.240963i
\(78\) −10.3541 3.35476i −1.17237 0.379851i
\(79\) −12.4310 −1.39860 −0.699300 0.714828i \(-0.746505\pi\)
−0.699300 + 0.714828i \(0.746505\pi\)
\(80\) 5.39490 + 7.13407i 0.603168 + 0.797614i
\(81\) 6.68525 0.742805
\(82\) −7.50687 2.43225i −0.828995 0.268597i
\(83\) −0.972495 + 0.972495i −0.106745 + 0.106745i −0.758462 0.651717i \(-0.774049\pi\)
0.651717 + 0.758462i \(0.274049\pi\)
\(84\) 8.02975 + 5.81365i 0.876118 + 0.634321i
\(85\) 0.700639 1.43064i 0.0759949 0.155175i
\(86\) −9.09128 + 4.64173i −0.980338 + 0.500531i
\(87\) 5.16960 + 5.16960i 0.554239 + 0.554239i
\(88\) −3.54981 + 2.59260i −0.378411 + 0.276372i
\(89\) 4.55517i 0.482847i 0.970420 + 0.241423i \(0.0776142\pi\)
−0.970420 + 0.241423i \(0.922386\pi\)
\(90\) 0.191610 + 11.4981i 0.0201975 + 1.21201i
\(91\) 5.74810i 0.602565i
\(92\) 10.6058 1.69782i 1.10574 0.177010i
\(93\) 8.02119 + 8.02119i 0.831758 + 0.831758i
\(94\) −8.32742 16.3101i −0.858908 1.68225i
\(95\) 2.11542 0.724569i 0.217037 0.0743392i
\(96\) 10.3472 + 10.2618i 1.05606 + 1.04734i
\(97\) 13.9158 13.9158i 1.41294 1.41294i 0.676434 0.736503i \(-0.263524\pi\)
0.736503 0.676434i \(-0.236476\pi\)
\(98\) −1.43757 + 4.43691i −0.145217 + 0.448195i
\(99\) −5.65166 −0.568013
\(100\) 9.99445 0.333197i 0.999445 0.0333197i
\(101\) −19.2521 −1.91565 −0.957826 0.287350i \(-0.907226\pi\)
−0.957826 + 0.287350i \(0.907226\pi\)
\(102\) 0.799994 2.46909i 0.0792112 0.244476i
\(103\) −10.7447 + 10.7447i −1.05871 + 1.05871i −0.0605401 + 0.998166i \(0.519282\pi\)
−0.998166 + 0.0605401i \(0.980718\pi\)
\(104\) −1.30109 + 8.34905i −0.127582 + 0.818692i
\(105\) 10.4855 3.59147i 1.02328 0.350491i
\(106\) −5.02029 9.83273i −0.487614 0.955039i
\(107\) 6.30131 + 6.30131i 0.609171 + 0.609171i 0.942729 0.333558i \(-0.108249\pi\)
−0.333558 + 0.942729i \(0.608249\pi\)
\(108\) 0.518407 + 3.23835i 0.0498837 + 0.311610i
\(109\) 12.1283i 1.16168i 0.814018 + 0.580840i \(0.197276\pi\)
−0.814018 + 0.580840i \(0.802724\pi\)
\(110\) 0.0818881 + 4.91393i 0.00780772 + 0.468525i
\(111\) 10.5602i 1.00233i
\(112\) 3.47130 6.86900i 0.328007 0.649059i
\(113\) −9.96634 9.96634i −0.937554 0.937554i 0.0606075 0.998162i \(-0.480696\pi\)
−0.998162 + 0.0606075i \(0.980696\pi\)
\(114\) 3.24476 1.65668i 0.303900 0.155162i
\(115\) 5.28172 10.7848i 0.492523 1.00569i
\(116\) 3.32857 4.59739i 0.309050 0.426857i
\(117\) −7.68200 + 7.68200i −0.710201 + 0.710201i
\(118\) −12.6893 4.11136i −1.16814 0.378482i
\(119\) −1.37073 −0.125654
\(120\) 16.0430 2.84316i 1.46452 0.259544i
\(121\) 8.58466 0.780424
\(122\) 17.0663 + 5.52953i 1.54511 + 0.500620i
\(123\) −10.1643 + 10.1643i −0.916481 + 0.916481i
\(124\) 5.16463 7.13334i 0.463798 0.640593i
\(125\) 6.13472 9.34694i 0.548706 0.836015i
\(126\) 8.81295 4.49963i 0.785120 0.400858i
\(127\) −3.63230 3.63230i −0.322315 0.322315i 0.527340 0.849655i \(-0.323190\pi\)
−0.849655 + 0.527340i \(0.823190\pi\)
\(128\) 6.59682 9.19140i 0.583082 0.812413i
\(129\) 18.5944i 1.63715i
\(130\) 6.79055 + 6.56794i 0.595571 + 0.576046i
\(131\) 5.60922i 0.490080i −0.969513 0.245040i \(-0.921199\pi\)
0.969513 0.245040i \(-0.0788010\pi\)
\(132\) 1.26573 + 7.90669i 0.110168 + 0.688189i
\(133\) −1.36053 1.36053i −0.117973 0.117973i
\(134\) 0.215598 + 0.422269i 0.0186248 + 0.0364785i
\(135\) 3.29298 + 1.61270i 0.283415 + 0.138799i
\(136\) −1.99096 0.310265i −0.170724 0.0266050i
\(137\) 1.49575 1.49575i 0.127790 0.127790i −0.640319 0.768109i \(-0.721198\pi\)
0.768109 + 0.640319i \(0.221198\pi\)
\(138\) 6.03071 18.6131i 0.513368 1.58445i
\(139\) −10.3913 −0.881381 −0.440691 0.897659i \(-0.645266\pi\)
−0.440691 + 0.897659i \(0.645266\pi\)
\(140\) −4.03997 7.59737i −0.341439 0.642095i
\(141\) −33.3590 −2.80934
\(142\) −5.15484 + 15.9098i −0.432585 + 1.33512i
\(143\) −3.28304 + 3.28304i −0.274542 + 0.274542i
\(144\) 13.8192 4.54083i 1.15160 0.378402i
\(145\) −2.05627 6.00341i −0.170764 0.498556i
\(146\) 7.03380 + 13.7764i 0.582121 + 1.14014i
\(147\) 6.00755 + 6.00755i 0.495495 + 0.495495i
\(148\) −8.09537 + 1.29594i −0.665435 + 0.106525i
\(149\) 5.86771i 0.480701i 0.970686 + 0.240351i \(0.0772624\pi\)
−0.970686 + 0.240351i \(0.922738\pi\)
\(150\) 7.73821 16.4908i 0.631822 1.34647i
\(151\) 8.00365i 0.651327i −0.945486 0.325664i \(-0.894412\pi\)
0.945486 0.325664i \(-0.105588\pi\)
\(152\) −1.66819 2.28411i −0.135308 0.185265i
\(153\) −1.83189 1.83189i −0.148100 0.148100i
\(154\) 3.76637 1.92300i 0.303503 0.154959i
\(155\) −3.19053 9.31493i −0.256269 0.748193i
\(156\) 12.4676 + 9.02670i 0.998206 + 0.722715i
\(157\) 3.64795 3.64795i 0.291138 0.291138i −0.546392 0.837530i \(-0.683999\pi\)
0.837530 + 0.546392i \(0.183999\pi\)
\(158\) 16.7242 + 5.41870i 1.33051 + 0.431089i
\(159\) −20.1109 −1.59490
\(160\) −4.14833 11.9495i −0.327954 0.944694i
\(161\) −10.3331 −0.814365
\(162\) −8.99406 2.91411i −0.706640 0.228954i
\(163\) −7.67574 + 7.67574i −0.601210 + 0.601210i −0.940634 0.339424i \(-0.889768\pi\)
0.339424 + 0.940634i \(0.389768\pi\)
\(164\) 9.03921 + 6.54451i 0.705844 + 0.511040i
\(165\) 8.04009 + 3.93754i 0.625920 + 0.306537i
\(166\) 1.73227 0.884443i 0.134450 0.0686461i
\(167\) −2.56389 2.56389i −0.198400 0.198400i 0.600914 0.799314i \(-0.294803\pi\)
−0.799314 + 0.600914i \(0.794803\pi\)
\(168\) −8.26872 11.3216i −0.637946 0.873482i
\(169\) 4.07507i 0.313467i
\(170\) −1.56623 + 1.61931i −0.120124 + 0.124196i
\(171\) 3.63653i 0.278092i
\(172\) 14.2544 2.28190i 1.08689 0.173993i
\(173\) 3.14197 + 3.14197i 0.238879 + 0.238879i 0.816386 0.577507i \(-0.195974\pi\)
−0.577507 + 0.816386i \(0.695974\pi\)
\(174\) −4.70153 9.20840i −0.356422 0.698087i
\(175\) −9.54482 1.20334i −0.721521 0.0909641i
\(176\) 5.90588 1.94061i 0.445173 0.146279i
\(177\) −17.1812 + 17.1812i −1.29142 + 1.29142i
\(178\) 1.98560 6.12833i 0.148827 0.459338i
\(179\) −0.307021 −0.0229478 −0.0114739 0.999934i \(-0.503652\pi\)
−0.0114739 + 0.999934i \(0.503652\pi\)
\(180\) 4.75426 15.5526i 0.354361 1.15922i
\(181\) 21.5665 1.60303 0.801514 0.597976i \(-0.204028\pi\)
0.801514 + 0.597976i \(0.204028\pi\)
\(182\) 2.50561 7.73326i 0.185728 0.573227i
\(183\) 23.1076 23.1076i 1.70817 1.70817i
\(184\) −15.0087 2.33892i −1.10646 0.172427i
\(185\) −4.03150 + 8.23195i −0.296402 + 0.605225i
\(186\) −7.29493 14.2878i −0.534890 1.04763i
\(187\) −0.782893 0.782893i −0.0572508 0.0572508i
\(188\) 4.09380 + 25.5728i 0.298571 + 1.86509i
\(189\) 3.15508i 0.229498i
\(190\) −3.16184 + 0.0526904i −0.229384 + 0.00382257i
\(191\) 16.5890i 1.20033i −0.799874 0.600167i \(-0.795101\pi\)
0.799874 0.600167i \(-0.204899\pi\)
\(192\) −9.44756 18.3162i −0.681819 1.32185i
\(193\) 3.14132 + 3.14132i 0.226117 + 0.226117i 0.811068 0.584951i \(-0.198886\pi\)
−0.584951 + 0.811068i \(0.698886\pi\)
\(194\) −24.7877 + 12.6558i −1.77965 + 0.908637i
\(195\) 16.2806 5.57638i 1.16588 0.399333i
\(196\) 3.86811 5.34259i 0.276293 0.381614i
\(197\) −3.04631 + 3.04631i −0.217041 + 0.217041i −0.807250 0.590209i \(-0.799045\pi\)
0.590209 + 0.807250i \(0.299045\pi\)
\(198\) 7.60351 + 2.46357i 0.540358 + 0.175078i
\(199\) −4.50587 −0.319413 −0.159706 0.987165i \(-0.551055\pi\)
−0.159706 + 0.987165i \(0.551055\pi\)
\(200\) −13.5914 3.90832i −0.961054 0.276360i
\(201\) 0.863669 0.0609185
\(202\) 25.9009 + 8.39200i 1.82238 + 0.590459i
\(203\) −3.86108 + 3.86108i −0.270995 + 0.270995i
\(204\) −2.15256 + 2.97309i −0.150709 + 0.208158i
\(205\) 11.8037 4.04297i 0.824404 0.282373i
\(206\) 19.1391 9.77184i 1.33348 0.680836i
\(207\) −13.8096 13.8096i −0.959835 0.959835i
\(208\) 5.38979 10.6653i 0.373715 0.739507i
\(209\) 1.55414i 0.107502i
\(210\) −15.6723 + 0.261171i −1.08149 + 0.0180225i
\(211\) 5.66687i 0.390123i 0.980791 + 0.195062i \(0.0624907\pi\)
−0.980791 + 0.195062i \(0.937509\pi\)
\(212\) 2.46800 + 15.4169i 0.169503 + 1.05884i
\(213\) 21.5418 + 21.5418i 1.47602 + 1.47602i
\(214\) −5.73078 11.2243i −0.391748 0.767276i
\(215\) 7.09869 14.4949i 0.484127 0.988542i
\(216\) 0.714156 4.58271i 0.0485921 0.311814i
\(217\) −5.99087 + 5.99087i −0.406687 + 0.406687i
\(218\) 5.28674 16.3169i 0.358063 1.10512i
\(219\) 28.1769 1.90402
\(220\) 2.03182 6.64669i 0.136985 0.448120i
\(221\) −2.12829 −0.143164
\(222\) −4.60320 + 14.2072i −0.308947 + 0.953528i
\(223\) −4.78190 + 4.78190i −0.320220 + 0.320220i −0.848851 0.528632i \(-0.822705\pi\)
0.528632 + 0.848851i \(0.322705\pi\)
\(224\) −7.66434 + 7.72812i −0.512096 + 0.516357i
\(225\) −11.1479 14.3643i −0.743193 0.957619i
\(226\) 9.06396 + 17.7526i 0.602926 + 1.18089i
\(227\) −4.16223 4.16223i −0.276257 0.276257i 0.555356 0.831613i \(-0.312582\pi\)
−0.831613 + 0.555356i \(0.812582\pi\)
\(228\) −5.08752 + 0.814429i −0.336929 + 0.0539369i
\(229\) 23.9738i 1.58423i 0.610369 + 0.792117i \(0.291021\pi\)
−0.610369 + 0.792117i \(0.708979\pi\)
\(230\) −11.8069 + 12.2071i −0.778525 + 0.804912i
\(231\) 7.70338i 0.506845i
\(232\) −6.48213 + 4.73421i −0.425573 + 0.310816i
\(233\) 15.2827 + 15.2827i 1.00120 + 1.00120i 0.999999 + 0.00120416i \(0.000383296\pi\)
0.00120416 + 0.999999i \(0.499617\pi\)
\(234\) 13.6836 6.98645i 0.894528 0.456719i
\(235\) 26.0043 + 12.7353i 1.69633 + 0.830759i
\(236\) 15.2794 + 11.0625i 0.994607 + 0.720109i
\(237\) 22.6445 22.6445i 1.47092 1.47092i
\(238\) 1.84412 + 0.597501i 0.119536 + 0.0387302i
\(239\) 3.86042 0.249710 0.124855 0.992175i \(-0.460153\pi\)
0.124855 + 0.992175i \(0.460153\pi\)
\(240\) −22.8229 3.16809i −1.47321 0.204500i
\(241\) −6.43756 −0.414679 −0.207340 0.978269i \(-0.566481\pi\)
−0.207340 + 0.978269i \(0.566481\pi\)
\(242\) −11.5494 3.74206i −0.742427 0.240549i
\(243\) −15.6564 + 15.6564i −1.00436 + 1.00436i
\(244\) −20.5499 14.8784i −1.31557 0.952493i
\(245\) −2.38958 6.97652i −0.152665 0.445713i
\(246\) 18.1052 9.24397i 1.15435 0.589374i
\(247\) −2.11246 2.11246i −0.134412 0.134412i
\(248\) −10.0577 + 7.34563i −0.638666 + 0.466448i
\(249\) 3.54301i 0.224529i
\(250\) −12.3277 + 9.90085i −0.779675 + 0.626185i
\(251\) 21.2078i 1.33862i 0.742982 + 0.669311i \(0.233411\pi\)
−0.742982 + 0.669311i \(0.766589\pi\)
\(252\) −13.8180 + 2.21203i −0.870450 + 0.139345i
\(253\) −5.90179 5.90179i −0.371042 0.371042i
\(254\) 3.30343 + 6.47008i 0.207275 + 0.405969i
\(255\) 1.32978 + 3.88236i 0.0832738 + 0.243123i
\(256\) −12.8816 + 9.49017i −0.805102 + 0.593136i
\(257\) 4.01904 4.01904i 0.250701 0.250701i −0.570557 0.821258i \(-0.693273\pi\)
0.821258 + 0.570557i \(0.193273\pi\)
\(258\) 8.10534 25.0162i 0.504617 1.55744i
\(259\) 7.88721 0.490087
\(260\) −6.27275 11.7962i −0.389020 0.731572i
\(261\) −10.3202 −0.638805
\(262\) −2.44507 + 7.54641i −0.151057 + 0.466219i
\(263\) 17.8228 17.8228i 1.09900 1.09900i 0.104471 0.994528i \(-0.466685\pi\)
0.994528 0.104471i \(-0.0333150\pi\)
\(264\) 1.74367 11.1891i 0.107316 0.688640i
\(265\) 15.6770 + 7.67763i 0.963031 + 0.471633i
\(266\) 1.23734 + 2.42345i 0.0758662 + 0.148591i
\(267\) −8.29774 8.29774i −0.507813 0.507813i
\(268\) −0.105989 0.662082i −0.00647429 0.0404431i
\(269\) 13.5261i 0.824704i −0.911025 0.412352i \(-0.864707\pi\)
0.911025 0.412352i \(-0.135293\pi\)
\(270\) −3.72727 3.60508i −0.226834 0.219398i
\(271\) 16.0044i 0.972195i 0.873905 + 0.486098i \(0.161580\pi\)
−0.873905 + 0.486098i \(0.838420\pi\)
\(272\) 2.54331 + 1.28528i 0.154211 + 0.0779316i
\(273\) −10.4708 10.4708i −0.633722 0.633722i
\(274\) −2.66432 + 1.36032i −0.160957 + 0.0821800i
\(275\) −4.76425 6.13884i −0.287295 0.370186i
\(276\) −16.2269 + 22.4125i −0.976747 + 1.34907i
\(277\) 16.3659 16.3659i 0.983333 0.983333i −0.0165304 0.999863i \(-0.505262\pi\)
0.999863 + 0.0165304i \(0.00526202\pi\)
\(278\) 13.9801 + 4.52959i 0.838469 + 0.271667i
\(279\) −16.0129 −0.958668
\(280\) 2.12350 + 11.9822i 0.126903 + 0.716074i
\(281\) 8.82028 0.526174 0.263087 0.964772i \(-0.415259\pi\)
0.263087 + 0.964772i \(0.415259\pi\)
\(282\) 44.8799 + 14.5413i 2.67256 + 0.865919i
\(283\) −10.7184 + 10.7184i −0.637141 + 0.637141i −0.949849 0.312708i \(-0.898764\pi\)
0.312708 + 0.949849i \(0.398764\pi\)
\(284\) 13.8702 19.1574i 0.823046 1.13678i
\(285\) −2.53359 + 5.17335i −0.150077 + 0.306443i
\(286\) 5.84795 2.98579i 0.345797 0.176553i
\(287\) −7.59150 7.59150i −0.448112 0.448112i
\(288\) −20.5711 + 0.0852379i −1.21217 + 0.00502269i
\(289\) 16.4925i 0.970146i
\(290\) 0.149532 + 8.97307i 0.00878081 + 0.526917i
\(291\) 50.6984i 2.97199i
\(292\) −3.45784 21.6002i −0.202355 1.26406i
\(293\) 4.73427 + 4.73427i 0.276579 + 0.276579i 0.831742 0.555163i \(-0.187344\pi\)
−0.555163 + 0.831742i \(0.687344\pi\)
\(294\) −5.46361 10.7010i −0.318644 0.624096i
\(295\) 19.9524 6.83404i 1.16167 0.397893i
\(296\) 11.4561 + 1.78528i 0.665871 + 0.103767i
\(297\) 1.80203 1.80203i 0.104564 0.104564i
\(298\) 2.55774 7.89417i 0.148166 0.457297i
\(299\) −16.0440 −0.927848
\(300\) −17.5990 + 18.8129i −1.01608 + 1.08617i
\(301\) −13.8878 −0.800482
\(302\) −3.48880 + 10.7678i −0.200758 + 0.619616i
\(303\) 35.0697 35.0697i 2.01470 2.01470i
\(304\) 1.24867 + 3.80011i 0.0716162 + 0.217951i
\(305\) −26.8347 + 9.19136i −1.53655 + 0.526296i
\(306\) 1.66603 + 3.26308i 0.0952406 + 0.186538i
\(307\) 20.1802 + 20.1802i 1.15174 + 1.15174i 0.986203 + 0.165541i \(0.0529370\pi\)
0.165541 + 0.986203i \(0.447063\pi\)
\(308\) −5.90536 + 0.945353i −0.336489 + 0.0538665i
\(309\) 39.1453i 2.22690i
\(310\) 0.232014 + 13.9227i 0.0131775 + 0.790755i
\(311\) 33.6583i 1.90859i 0.298869 + 0.954294i \(0.403391\pi\)
−0.298869 + 0.954294i \(0.596609\pi\)
\(312\) −12.8386 17.5788i −0.726845 0.995203i
\(313\) 13.2867 + 13.2867i 0.751008 + 0.751008i 0.974667 0.223660i \(-0.0718004\pi\)
−0.223660 + 0.974667i \(0.571800\pi\)
\(314\) −6.49795 + 3.31766i −0.366700 + 0.187226i
\(315\) −6.88137 + 14.0511i −0.387721 + 0.791690i
\(316\) −20.1380 14.5802i −1.13285 0.820200i
\(317\) −6.21355 + 6.21355i −0.348988 + 0.348988i −0.859733 0.510745i \(-0.829370\pi\)
0.510745 + 0.859733i \(0.329370\pi\)
\(318\) 27.0564 + 8.76638i 1.51725 + 0.491594i
\(319\) −4.41053 −0.246942
\(320\) 0.372171 + 17.8847i 0.0208050 + 0.999784i
\(321\) −22.9571 −1.28134
\(322\) 13.9018 + 4.50422i 0.774715 + 0.251011i
\(323\) 0.503748 0.503748i 0.0280293 0.0280293i
\(324\) 10.8300 + 7.84104i 0.601665 + 0.435613i
\(325\) −14.8200 1.86840i −0.822066 0.103640i
\(326\) 13.6725 6.98076i 0.757249 0.386628i
\(327\) −22.0930 22.0930i −1.22175 1.22175i
\(328\) −9.30822 12.7449i −0.513960 0.703720i
\(329\) 24.9152i 1.37362i
\(330\) −9.10043 8.80209i −0.500962 0.484539i
\(331\) 8.91952i 0.490261i −0.969490 0.245131i \(-0.921169\pi\)
0.969490 0.245131i \(-0.0788309\pi\)
\(332\) −2.71605 + 0.434796i −0.149063 + 0.0238625i
\(333\) 10.5408 + 10.5408i 0.577632 + 0.577632i
\(334\) 2.33175 + 4.56695i 0.127588 + 0.249893i
\(335\) −0.673253 0.329718i −0.0367837 0.0180144i
\(336\) 6.18929 + 18.8360i 0.337653 + 1.02759i
\(337\) 8.92479 8.92479i 0.486164 0.486164i −0.420929 0.907094i \(-0.638296\pi\)
0.907094 + 0.420929i \(0.138296\pi\)
\(338\) −1.77633 + 5.48243i −0.0966194 + 0.298205i
\(339\) 36.3096 1.97206
\(340\) 2.81300 1.49584i 0.152556 0.0811231i
\(341\) −6.84340 −0.370591
\(342\) −1.58517 + 4.89243i −0.0857160 + 0.264553i
\(343\) −14.0106 + 14.0106i −0.756502 + 0.756502i
\(344\) −20.1719 3.14353i −1.08760 0.169488i
\(345\) 10.0244 + 29.2669i 0.539697 + 1.57568i
\(346\) −2.85748 5.59666i −0.153619 0.300878i
\(347\) 5.26345 + 5.26345i 0.282557 + 0.282557i 0.834128 0.551571i \(-0.185971\pi\)
−0.551571 + 0.834128i \(0.685971\pi\)
\(348\) 2.31129 + 14.4380i 0.123898 + 0.773958i
\(349\) 20.6928i 1.10766i 0.832629 + 0.553831i \(0.186835\pi\)
−0.832629 + 0.553831i \(0.813165\pi\)
\(350\) 12.3167 + 5.77953i 0.658354 + 0.308929i
\(351\) 4.89881i 0.261479i
\(352\) −8.79144 + 0.0364279i −0.468586 + 0.00194162i
\(353\) −21.2548 21.2548i −1.13128 1.13128i −0.989965 0.141312i \(-0.954868\pi\)
−0.141312 0.989965i \(-0.545132\pi\)
\(354\) 30.6042 15.6256i 1.62659 0.830489i
\(355\) −8.56854 25.0163i −0.454771 1.32773i
\(356\) −5.34270 + 7.37928i −0.283162 + 0.391101i
\(357\) 2.49693 2.49693i 0.132151 0.132151i
\(358\) 0.413053 + 0.133831i 0.0218305 + 0.00707317i
\(359\) −3.46265 −0.182752 −0.0913758 0.995816i \(-0.529126\pi\)
−0.0913758 + 0.995816i \(0.529126\pi\)
\(360\) −13.1756 + 18.8515i −0.694414 + 0.993559i
\(361\) 1.00000 0.0526316
\(362\) −29.0147 9.40088i −1.52498 0.494099i
\(363\) −15.6379 + 15.6379i −0.820777 + 0.820777i
\(364\) −6.74188 + 9.31181i −0.353370 + 0.488072i
\(365\) −21.9646 10.7569i −1.14968 0.563043i
\(366\) −41.1607 + 21.0154i −2.15151 + 1.09849i
\(367\) −3.64892 3.64892i −0.190472 0.190472i 0.605428 0.795900i \(-0.293002\pi\)
−0.795900 + 0.605428i \(0.793002\pi\)
\(368\) 19.1726 + 9.68901i 0.999441 + 0.505075i
\(369\) 20.2912i 1.05632i
\(370\) 9.01213 9.31759i 0.468519 0.484398i
\(371\) 15.0205i 0.779824i
\(372\) 3.58622 + 22.4021i 0.185937 + 1.16150i
\(373\) −17.0960 17.0960i −0.885197 0.885197i 0.108860 0.994057i \(-0.465280\pi\)
−0.994057 + 0.108860i \(0.965280\pi\)
\(374\) 0.712008 + 1.39454i 0.0368170 + 0.0721097i
\(375\) 5.85140 + 28.2015i 0.302165 + 1.45632i
\(376\) 5.63960 36.1891i 0.290840 1.86631i
\(377\) −5.99500 + 5.99500i −0.308758 + 0.308758i
\(378\) −1.37530 + 4.24471i −0.0707379 + 0.218324i
\(379\) −30.1318 −1.54777 −0.773883 0.633329i \(-0.781688\pi\)
−0.773883 + 0.633329i \(0.781688\pi\)
\(380\) 4.27678 + 1.30736i 0.219394 + 0.0670663i
\(381\) 13.2333 0.677962
\(382\) −7.23115 + 22.3181i −0.369978 + 1.14189i
\(383\) −4.04584 + 4.04584i −0.206733 + 0.206733i −0.802877 0.596144i \(-0.796699\pi\)
0.596144 + 0.802877i \(0.296699\pi\)
\(384\) 4.72632 + 28.7600i 0.241189 + 1.46765i
\(385\) −2.94088 + 6.00499i −0.149881 + 0.306043i
\(386\) −2.85689 5.59550i −0.145412 0.284803i
\(387\) −18.5603 18.5603i −0.943473 0.943473i
\(388\) 38.8650 6.22167i 1.97307 0.315857i
\(389\) 15.7511i 0.798612i −0.916818 0.399306i \(-0.869251\pi\)
0.916818 0.399306i \(-0.130749\pi\)
\(390\) −24.3340 + 0.405513i −1.23220 + 0.0205340i
\(391\) 3.82594i 0.193486i
\(392\) −7.53283 + 5.50159i −0.380465 + 0.277872i
\(393\) 10.2178 + 10.2178i 0.515420 + 0.515420i
\(394\) 5.42628 2.77049i 0.273372 0.139575i
\(395\) −26.2969 + 9.00714i −1.32314 + 0.453198i
\(396\) −9.15557 6.62876i −0.460085 0.333108i
\(397\) −0.149984 + 0.149984i −0.00752749 + 0.00752749i −0.710861 0.703333i \(-0.751694\pi\)
0.703333 + 0.710861i \(0.251694\pi\)
\(398\) 6.06201 + 1.96412i 0.303861 + 0.0984522i
\(399\) 4.95670 0.248145
\(400\) 16.5816 + 11.1826i 0.829080 + 0.559129i
\(401\) 22.0930 1.10327 0.551637 0.834085i \(-0.314004\pi\)
0.551637 + 0.834085i \(0.314004\pi\)
\(402\) −1.16194 0.376474i −0.0579525 0.0187768i
\(403\) −9.30188 + 9.30188i −0.463360 + 0.463360i
\(404\) −31.1880 22.5805i −1.55166 1.12342i
\(405\) 14.1421 4.84392i 0.702727 0.240696i
\(406\) 6.87758 3.51149i 0.341329 0.174272i
\(407\) 4.50480 + 4.50480i 0.223294 + 0.223294i
\(408\) 4.19194 3.06157i 0.207532 0.151570i
\(409\) 27.0421i 1.33714i 0.743647 + 0.668572i \(0.233094\pi\)
−0.743647 + 0.668572i \(0.766906\pi\)
\(410\) −17.6425 + 0.294003i −0.871301 + 0.0145198i
\(411\) 5.44934i 0.268796i
\(412\) −30.0085 + 4.80388i −1.47841 + 0.236670i
\(413\) −12.8323 12.8323i −0.631437 0.631437i
\(414\) 12.5593 + 24.5985i 0.617254 + 1.20895i
\(415\) −1.35260 + 2.76188i −0.0663963 + 0.135575i
\(416\) −11.9002 + 11.9993i −0.583457 + 0.588312i
\(417\) 18.9290 18.9290i 0.926955 0.926955i
\(418\) −0.677450 + 2.09087i −0.0331352 + 0.102268i
\(419\) −2.29890 −0.112309 −0.0561543 0.998422i \(-0.517884\pi\)
−0.0561543 + 0.998422i \(0.517884\pi\)
\(420\) 21.1987 + 6.48020i 1.03439 + 0.316201i
\(421\) 31.3358 1.52721 0.763607 0.645682i \(-0.223427\pi\)
0.763607 + 0.645682i \(0.223427\pi\)
\(422\) 2.47019 7.62397i 0.120247 0.371129i
\(423\) 33.2978 33.2978i 1.61899 1.61899i
\(424\) 3.39990 21.8171i 0.165114 1.05953i
\(425\) 0.445549 3.53406i 0.0216123 0.171427i
\(426\) −19.5914 38.3716i −0.949206 1.85911i
\(427\) 17.2587 + 17.2587i 0.835206 + 0.835206i
\(428\) 2.81727 + 17.5987i 0.136178 + 0.850667i
\(429\) 11.9608i 0.577475i
\(430\) −15.8686 + 16.4065i −0.765253 + 0.791190i
\(431\) 23.9910i 1.15561i −0.816176 0.577803i \(-0.803910\pi\)
0.816176 0.577803i \(-0.196090\pi\)
\(432\) −2.95841 + 5.85409i −0.142336 + 0.281655i
\(433\) −14.4453 14.4453i −0.694195 0.694195i 0.268957 0.963152i \(-0.413321\pi\)
−0.963152 + 0.268957i \(0.913321\pi\)
\(434\) 10.6713 5.44845i 0.512239 0.261534i
\(435\) 14.6816 + 7.19014i 0.703929 + 0.344741i
\(436\) −14.2251 + 19.6476i −0.681259 + 0.940949i
\(437\) 3.79747 3.79747i 0.181658 0.181658i
\(438\) −37.9080 12.2823i −1.81131 0.586873i
\(439\) 21.8570 1.04318 0.521590 0.853197i \(-0.325339\pi\)
0.521590 + 0.853197i \(0.325339\pi\)
\(440\) −5.63082 + 8.05651i −0.268439 + 0.384079i
\(441\) −11.9930 −0.571097
\(442\) 2.86331 + 0.927724i 0.136194 + 0.0441274i
\(443\) −1.78277 + 1.78277i −0.0847021 + 0.0847021i −0.748188 0.663486i \(-0.769076\pi\)
0.663486 + 0.748188i \(0.269076\pi\)
\(444\) 12.3859 17.1073i 0.587809 0.811876i
\(445\) 3.30053 + 9.63609i 0.156460 + 0.456795i
\(446\) 8.51781 4.34894i 0.403330 0.205928i
\(447\) −10.6887 10.6887i −0.505557 0.505557i
\(448\) 13.6800 7.05620i 0.646319 0.333374i
\(449\) 9.43772i 0.445394i 0.974888 + 0.222697i \(0.0714860\pi\)
−0.974888 + 0.222697i \(0.928514\pi\)
\(450\) 8.73651 + 24.1845i 0.411843 + 1.14007i
\(451\) 8.67181i 0.408339i
\(452\) −4.45588 27.8347i −0.209587 1.30923i
\(453\) 14.5795 + 14.5795i 0.685006 + 0.685006i
\(454\) 3.78537 + 7.41401i 0.177656 + 0.347957i
\(455\) 4.16489 + 12.1597i 0.195253 + 0.570053i
\(456\) 7.19954 + 1.12196i 0.337150 + 0.0525404i
\(457\) 14.1913 14.1913i 0.663842 0.663842i −0.292441 0.956283i \(-0.594468\pi\)
0.956283 + 0.292441i \(0.0944676\pi\)
\(458\) 10.4502 32.2534i 0.488306 1.50710i
\(459\) 1.16820 0.0545268
\(460\) 21.2056 11.2763i 0.988717 0.525759i
\(461\) −30.7713 −1.43316 −0.716582 0.697503i \(-0.754294\pi\)
−0.716582 + 0.697503i \(0.754294\pi\)
\(462\) −3.35791 + 10.3638i −0.156224 + 0.482168i
\(463\) −19.8356 + 19.8356i −0.921839 + 0.921839i −0.997159 0.0753202i \(-0.976002\pi\)
0.0753202 + 0.997159i \(0.476002\pi\)
\(464\) 10.7844 3.54364i 0.500655 0.164509i
\(465\) 22.7801 + 11.1563i 1.05640 + 0.517360i
\(466\) −13.8990 27.2225i −0.643857 1.26106i
\(467\) 15.9671 + 15.9671i 0.738868 + 0.738868i 0.972359 0.233491i \(-0.0750150\pi\)
−0.233491 + 0.972359i \(0.575015\pi\)
\(468\) −21.4548 + 3.43457i −0.991749 + 0.158763i
\(469\) 0.645058i 0.0297860i
\(470\) −29.4337 28.4688i −1.35768 1.31317i
\(471\) 13.2903i 0.612384i
\(472\) −15.7342 21.5434i −0.724224 0.991615i
\(473\) −7.93207 7.93207i −0.364717 0.364717i
\(474\) −40.3357 + 20.5942i −1.85268 + 0.945923i
\(475\) 3.95000 3.06553i 0.181238 0.140656i
\(476\) −2.22055 1.60771i −0.101779 0.0736891i
\(477\) 20.0740 20.0740i 0.919125 0.919125i
\(478\) −5.19365 1.68276i −0.237552 0.0769678i
\(479\) 36.8494 1.68369 0.841845 0.539720i \(-0.181470\pi\)
0.841845 + 0.539720i \(0.181470\pi\)
\(480\) 29.3240 + 14.2108i 1.33845 + 0.648629i
\(481\) 12.2463 0.558382
\(482\) 8.66082 + 2.80614i 0.394490 + 0.127816i
\(483\) 18.8229 18.8229i 0.856473 0.856473i
\(484\) 13.9070 + 10.0688i 0.632136 + 0.457675i
\(485\) 19.3548 39.5208i 0.878858 1.79455i
\(486\) 27.8882 14.2389i 1.26503 0.645888i
\(487\) 2.71997 + 2.71997i 0.123253 + 0.123253i 0.766043 0.642789i \(-0.222223\pi\)
−0.642789 + 0.766043i \(0.722223\pi\)
\(488\) 21.1615 + 28.9745i 0.957936 + 1.31162i
\(489\) 27.9644i 1.26459i
\(490\) 0.173770 + 10.4275i 0.00785011 + 0.471068i
\(491\) 13.3446i 0.602234i −0.953587 0.301117i \(-0.902641\pi\)
0.953587 0.301117i \(-0.0973594\pi\)
\(492\) −28.3875 + 4.54437i −1.27981 + 0.204876i
\(493\) −1.42960 1.42960i −0.0643860 0.0643860i
\(494\) 1.92119 + 3.76283i 0.0864383 + 0.169298i
\(495\) −11.9556 + 4.09501i −0.537366 + 0.184057i
\(496\) 16.7332 5.49834i 0.751343 0.246883i
\(497\) −16.0892 + 16.0892i −0.721699 + 0.721699i
\(498\) −1.54440 + 4.76663i −0.0692064 + 0.213598i
\(499\) 22.8419 1.02255 0.511273 0.859418i \(-0.329174\pi\)
0.511273 + 0.859418i \(0.329174\pi\)
\(500\) 20.9010 7.94651i 0.934722 0.355379i
\(501\) 9.34081 0.417317
\(502\) 9.24449 28.5320i 0.412602 1.27345i
\(503\) 18.6666 18.6666i 0.832302 0.832302i −0.155529 0.987831i \(-0.549708\pi\)
0.987831 + 0.155529i \(0.0497082\pi\)
\(504\) 19.5544 + 3.04729i 0.871020 + 0.135737i
\(505\) −40.7262 + 13.9494i −1.81229 + 0.620742i
\(506\) 5.36743 + 10.5126i 0.238611 + 0.467343i
\(507\) 7.42318 + 7.42318i 0.329675 + 0.329675i
\(508\) −1.62398 10.1445i −0.0720524 0.450091i
\(509\) 19.4380i 0.861575i −0.902453 0.430787i \(-0.858236\pi\)
0.902453 0.430787i \(-0.141764\pi\)
\(510\) −0.0967009 5.80281i −0.00428199 0.256953i
\(511\) 21.0448i 0.930966i
\(512\) 21.4672 7.15256i 0.948725 0.316102i
\(513\) 1.15951 + 1.15951i 0.0511934 + 0.0511934i
\(514\) −7.15895 + 3.65514i −0.315768 + 0.161222i
\(515\) −14.9443 + 30.5148i −0.658523 + 1.34464i
\(516\) −21.8092 + 30.1226i −0.960096 + 1.32608i
\(517\) 14.2304 14.2304i 0.625852 0.625852i
\(518\) −10.6111 3.43804i −0.466226 0.151059i
\(519\) −11.4469 −0.502462
\(520\) 3.29711 + 18.6045i 0.144588 + 0.815860i
\(521\) 22.4977 0.985643 0.492821 0.870130i \(-0.335966\pi\)
0.492821 + 0.870130i \(0.335966\pi\)
\(522\) 13.8844 + 4.49859i 0.607703 + 0.196898i
\(523\) 28.0028 28.0028i 1.22448 1.22448i 0.258455 0.966023i \(-0.416787\pi\)
0.966023 0.258455i \(-0.0832134\pi\)
\(524\) 6.57898 9.08682i 0.287404 0.396960i
\(525\) 19.5790 15.1949i 0.854496 0.663161i
\(526\) −31.7470 + 16.2091i −1.38423 + 0.706748i
\(527\) −2.21818 2.21818i −0.0966254 0.0966254i
\(528\) −7.22319 + 14.2932i −0.314349 + 0.622034i
\(529\) 5.84161i 0.253983i
\(530\) −17.7445 17.1628i −0.770772 0.745504i
\(531\) 34.2993i 1.48846i
\(532\) −0.608282 3.79977i −0.0263724 0.164741i
\(533\) −11.7871 11.7871i −0.510557 0.510557i
\(534\) 7.54644 + 14.7804i 0.326566 + 0.639612i
\(535\) 17.8957 + 8.76419i 0.773697 + 0.378909i
\(536\) −0.146010 + 0.936939i −0.00630666 + 0.0404696i
\(537\) 0.559272 0.559272i 0.0241344 0.0241344i
\(538\) −5.89607 + 18.1975i −0.254197 + 0.784551i
\(539\) −5.12544 −0.220768
\(540\) 3.44305 + 6.47484i 0.148165 + 0.278633i
\(541\) −26.0323 −1.11922 −0.559609 0.828757i \(-0.689049\pi\)
−0.559609 + 0.828757i \(0.689049\pi\)
\(542\) 6.97632 21.5316i 0.299658 0.924861i
\(543\) −39.2858 + 39.2858i −1.68592 + 1.68592i
\(544\) −2.86141 2.83780i −0.122682 0.121670i
\(545\) 8.78778 + 25.6564i 0.376427 + 1.09900i
\(546\) 9.52275 + 18.6512i 0.407536 + 0.798199i
\(547\) 10.1318 + 10.1318i 0.433205 + 0.433205i 0.889717 0.456512i \(-0.150902\pi\)
−0.456512 + 0.889717i \(0.650902\pi\)
\(548\) 4.17743 0.668739i 0.178451 0.0285671i
\(549\) 46.1304i 1.96880i
\(550\) 3.73370 + 10.3357i 0.159206 + 0.440715i
\(551\) 2.83793i 0.120900i
\(552\) 31.6007 23.0795i 1.34501 0.982328i
\(553\) 16.9128 + 16.9128i 0.719203 + 0.719203i
\(554\) −29.1520 + 14.8841i −1.23855 + 0.632365i
\(555\) −7.65158 22.3392i −0.324791 0.948248i
\(556\) −16.8337 12.1879i −0.713910 0.516880i
\(557\) −24.1253 + 24.1253i −1.02222 + 1.02222i −0.0224738 + 0.999747i \(0.507154\pi\)
−0.999747 + 0.0224738i \(0.992846\pi\)
\(558\) 21.5431 + 6.98005i 0.911992 + 0.295489i
\(559\) −21.5633 −0.912031
\(560\) 2.36619 17.0460i 0.0999898 0.720325i
\(561\) 2.85225 0.120422
\(562\) −11.8664 3.84477i −0.500555 0.162182i
\(563\) −8.87395 + 8.87395i −0.373992 + 0.373992i −0.868929 0.494937i \(-0.835191\pi\)
0.494937 + 0.868929i \(0.335191\pi\)
\(564\) −54.0410 39.1264i −2.27554 1.64752i
\(565\) −28.3043 13.8617i −1.19077 0.583166i
\(566\) 19.0922 9.74790i 0.802505 0.409735i
\(567\) −9.09546 9.09546i −0.381973 0.381973i
\(568\) −27.0112 + 19.7275i −1.13336 + 0.827750i
\(569\) 26.0482i 1.09200i 0.837785 + 0.546000i \(0.183850\pi\)
−0.837785 + 0.546000i \(0.816150\pi\)
\(570\) 5.66366 5.85562i 0.237224 0.245265i
\(571\) 6.33339i 0.265044i 0.991180 + 0.132522i \(0.0423076\pi\)
−0.991180 + 0.132522i \(0.957692\pi\)
\(572\) −9.16910 + 1.46783i −0.383379 + 0.0613729i
\(573\) 30.2186 + 30.2186i 1.26240 + 1.26240i
\(574\) 6.90415 + 13.5224i 0.288174 + 0.564416i
\(575\) 3.35874 26.6413i 0.140069 1.11102i
\(576\) 27.7127 + 8.85231i 1.15470 + 0.368846i
\(577\) −30.3721 + 30.3721i −1.26441 + 1.26441i −0.315474 + 0.948934i \(0.602164\pi\)
−0.948934 + 0.315474i \(0.897836\pi\)
\(578\) 7.18909 22.1883i 0.299027 0.922911i
\(579\) −11.4445 −0.475617
\(580\) 3.71020 12.1372i 0.154058 0.503969i
\(581\) 2.64621 0.109783
\(582\) 22.0995 68.2075i 0.916054 2.82729i
\(583\) 8.57898 8.57898i 0.355305 0.355305i
\(584\) −4.76351 + 30.5673i −0.197116 + 1.26488i
\(585\) −10.6845 + 21.8168i −0.441751 + 0.902014i
\(586\) −4.30562 8.43296i −0.177863 0.348362i
\(587\) −5.54610 5.54610i −0.228912 0.228912i 0.583326 0.812238i \(-0.301751\pi\)
−0.812238 + 0.583326i \(0.801751\pi\)
\(588\) 2.68593 + 16.7783i 0.110766 + 0.691925i
\(589\) 4.40335i 0.181437i
\(590\) −29.8221 + 0.496969i −1.22775 + 0.0204599i
\(591\) 11.0984i 0.456527i
\(592\) −14.6343 7.39556i −0.601467 0.303956i
\(593\) 33.0633 + 33.0633i 1.35775 + 1.35775i 0.876689 + 0.481057i \(0.159747\pi\)
0.481057 + 0.876689i \(0.340253\pi\)
\(594\) −3.20988 + 1.63887i −0.131703 + 0.0672436i
\(595\) −2.89966 + 0.993184i −0.118874 + 0.0407166i
\(596\) −6.88216 + 9.50557i −0.281904 + 0.389363i
\(597\) 8.20794 8.20794i 0.335929 0.335929i
\(598\) 21.5849 + 6.99359i 0.882673 + 0.285989i
\(599\) −7.71075 −0.315053 −0.157526 0.987515i \(-0.550352\pi\)
−0.157526 + 0.987515i \(0.550352\pi\)
\(600\) 31.8776 17.6387i 1.30140 0.720098i
\(601\) 10.0646 0.410543 0.205272 0.978705i \(-0.434192\pi\)
0.205272 + 0.978705i \(0.434192\pi\)
\(602\) 18.6841 + 6.05373i 0.761508 + 0.246732i
\(603\) −0.862082 + 0.862082i −0.0351067 + 0.0351067i
\(604\) 9.38737 12.9657i 0.381967 0.527569i
\(605\) 18.1602 6.22018i 0.738316 0.252886i
\(606\) −62.4683 + 31.8944i −2.53760 + 1.29562i
\(607\) 2.42796 + 2.42796i 0.0985480 + 0.0985480i 0.754662 0.656114i \(-0.227801\pi\)
−0.656114 + 0.754662i \(0.727801\pi\)
\(608\) −0.0234394 5.65681i −0.000950591 0.229414i
\(609\) 14.0668i 0.570014i
\(610\) 40.1088 0.668393i 1.62396 0.0270625i
\(611\) 38.6853i 1.56504i
\(612\) −0.819027 5.11624i −0.0331072 0.206812i
\(613\) 14.7300 + 14.7300i 0.594939 + 0.594939i 0.938961 0.344022i \(-0.111790\pi\)
−0.344022 + 0.938961i \(0.611790\pi\)
\(614\) −18.3530 35.9462i −0.740668 1.45067i
\(615\) −14.1370 + 28.8664i −0.570058 + 1.16401i
\(616\) 8.35691 + 1.30231i 0.336709 + 0.0524718i
\(617\) −24.8801 + 24.8801i −1.00163 + 1.00163i −0.00163535 + 0.999999i \(0.500521\pi\)
−0.999999 + 0.00163535i \(0.999479\pi\)
\(618\) −17.0635 + 52.6644i −0.686394 + 2.11847i
\(619\) 33.6028 1.35061 0.675306 0.737537i \(-0.264011\pi\)
0.675306 + 0.737537i \(0.264011\pi\)
\(620\) 5.75677 18.8321i 0.231198 0.756317i
\(621\) 8.80639 0.353388
\(622\) 14.6717 45.2825i 0.588282 1.81566i
\(623\) 6.19743 6.19743i 0.248295 0.248295i
\(624\) 9.60995 + 29.2462i 0.384706 + 1.17078i
\(625\) 6.20502 24.2177i 0.248201 0.968709i
\(626\) −12.0837 23.6670i −0.482961 0.945925i
\(627\) 2.83103 + 2.83103i 0.113060 + 0.113060i
\(628\) 10.1882 1.63097i 0.406555 0.0650829i
\(629\) 2.92031i 0.116441i
\(630\) 15.3828 15.9042i 0.612865 0.633638i
\(631\) 30.0536i 1.19642i −0.801341 0.598208i \(-0.795880\pi\)
0.801341 0.598208i \(-0.204120\pi\)
\(632\) 20.7373 + 28.3938i 0.824887 + 1.12944i
\(633\) −10.3228 10.3228i −0.410295 0.410295i
\(634\) 11.0680 5.65096i 0.439565 0.224428i
\(635\) −10.3157 5.05199i −0.409366 0.200482i
\(636\) −32.5793 23.5879i −1.29185 0.935319i
\(637\) −6.96674 + 6.96674i −0.276032 + 0.276032i
\(638\) 5.93374 + 1.92255i 0.234919 + 0.0761147i
\(639\) −43.0045 −1.70123
\(640\) 7.29525 24.2235i 0.288370 0.957519i
\(641\) 9.06116 0.357894 0.178947 0.983859i \(-0.442731\pi\)
0.178947 + 0.983859i \(0.442731\pi\)
\(642\) 30.8855 + 10.0070i 1.21895 + 0.394946i
\(643\) −16.3493 + 16.3493i −0.644754 + 0.644754i −0.951720 0.306966i \(-0.900686\pi\)
0.306966 + 0.951720i \(0.400686\pi\)
\(644\) −16.7395 12.1196i −0.659627 0.477579i
\(645\) 13.4730 + 39.3351i 0.530497 + 1.54882i
\(646\) −0.897306 + 0.458137i −0.0353040 + 0.0180252i
\(647\) 19.2785 + 19.2785i 0.757918 + 0.757918i 0.975943 0.218025i \(-0.0699616\pi\)
−0.218025 + 0.975943i \(0.569962\pi\)
\(648\) −11.1523 15.2698i −0.438103 0.599855i
\(649\) 14.6584i 0.575393i
\(650\) 19.1238 + 8.97372i 0.750096 + 0.351978i
\(651\) 21.8261i 0.855431i
\(652\) −21.4373 + 3.43177i −0.839550 + 0.134398i
\(653\) −11.7195 11.7195i −0.458618 0.458618i 0.439584 0.898202i \(-0.355126\pi\)
−0.898202 + 0.439584i \(0.855126\pi\)
\(654\) 20.0927 + 39.3534i 0.785685 + 1.53884i
\(655\) −4.06426 11.8659i −0.158804 0.463637i
\(656\) 6.96737 + 21.2039i 0.272030 + 0.827875i
\(657\) −28.1251 + 28.1251i −1.09727 + 1.09727i
\(658\) −10.8606 + 33.5199i −0.423390 + 1.30674i
\(659\) 14.1085 0.549589 0.274795 0.961503i \(-0.411390\pi\)
0.274795 + 0.961503i \(0.411390\pi\)
\(660\) 8.40650 + 15.8089i 0.327222 + 0.615359i
\(661\) −16.3969 −0.637767 −0.318883 0.947794i \(-0.603308\pi\)
−0.318883 + 0.947794i \(0.603308\pi\)
\(662\) −3.88803 + 12.0000i −0.151113 + 0.466392i
\(663\) 3.87692 3.87692i 0.150567 0.150567i
\(664\) 3.84359 + 0.598973i 0.149160 + 0.0232447i
\(665\) −3.86388 1.89229i −0.149835 0.0733799i
\(666\) −9.58640 18.7759i −0.371465 0.727551i
\(667\) −10.7770 10.7770i −0.417286 0.417286i
\(668\) −1.14630 7.16060i −0.0443516 0.277052i
\(669\) 17.4215i 0.673555i
\(670\) 0.762042 + 0.737060i 0.0294403 + 0.0284751i
\(671\) 19.7147i 0.761076i
\(672\) −0.116182 28.0391i −0.00448181 1.08163i
\(673\) −6.64730 6.64730i −0.256235 0.256235i 0.567286 0.823521i \(-0.307993\pi\)
−0.823521 + 0.567286i \(0.807993\pi\)
\(674\) −15.8974 + 8.11672i −0.612344 + 0.312644i
\(675\) 8.13455 + 1.02555i 0.313099 + 0.0394733i
\(676\) 4.77959 6.60153i 0.183830 0.253905i
\(677\) −3.20710 + 3.20710i −0.123259 + 0.123259i −0.766045 0.642787i \(-0.777778\pi\)
0.642787 + 0.766045i \(0.277778\pi\)
\(678\) −48.8494 15.8274i −1.87605 0.607847i
\(679\) −37.8657 −1.45315
\(680\) −4.43653 + 0.786247i −0.170133 + 0.0301512i
\(681\) 15.1639 0.581082
\(682\) 9.20683 + 2.98305i 0.352548 + 0.114227i
\(683\) 10.8321 10.8321i 0.414479 0.414479i −0.468817 0.883296i \(-0.655319\pi\)
0.883296 + 0.468817i \(0.155319\pi\)
\(684\) 4.26524 5.89110i 0.163085 0.225252i
\(685\) 2.08036 4.24791i 0.0794866 0.162304i
\(686\) 24.9565 12.7421i 0.952845 0.486494i
\(687\) −43.6709 43.6709i −1.66615 1.66615i
\(688\) 25.7682 + 13.0221i 0.982404 + 0.496465i
\(689\) 23.3219i 0.888494i
\(690\) −0.728974 43.7441i −0.0277516 1.66531i
\(691\) 6.63308i 0.252334i −0.992009 0.126167i \(-0.959732\pi\)
0.992009 0.126167i \(-0.0402676\pi\)
\(692\) 1.40475 + 8.77509i 0.0534006 + 0.333579i
\(693\) 7.68923 + 7.68923i 0.292090 + 0.292090i
\(694\) −4.78688 9.37557i −0.181708 0.355892i
\(695\) −21.9820 + 7.52923i −0.833826 + 0.285600i
\(696\) 3.18403 20.4318i 0.120690 0.774465i
\(697\) 2.81083 2.81083i 0.106468 0.106468i
\(698\) 9.02003 27.8393i 0.341413 1.05373i
\(699\) −55.6783 −2.10595
\(700\) −14.0510 13.1444i −0.531079 0.496811i
\(701\) 7.90872 0.298708 0.149354 0.988784i \(-0.452281\pi\)
0.149354 + 0.988784i \(0.452281\pi\)
\(702\) −2.13540 + 6.59066i −0.0805954 + 0.248748i
\(703\) −2.89859 + 2.89859i −0.109322 + 0.109322i
\(704\) 11.8435 + 3.78319i 0.446370 + 0.142584i
\(705\) −70.5684 + 24.1709i −2.65776 + 0.910329i
\(706\) 19.3303 + 37.8603i 0.727506 + 1.42489i
\(707\) 26.1929 + 26.1929i 0.985087 + 0.985087i
\(708\) −47.9848 + 7.68159i −1.80338 + 0.288692i
\(709\) 19.6967i 0.739724i −0.929087 0.369862i \(-0.879405\pi\)
0.929087 0.369862i \(-0.120595\pi\)
\(710\) 0.623102 + 37.3910i 0.0233846 + 1.40326i
\(711\) 45.2058i 1.69535i
\(712\) 10.4045 7.59889i 0.389924 0.284780i
\(713\) −16.7216 16.7216i −0.626229 0.626229i
\(714\) −4.44768 + 2.27085i −0.166450 + 0.0849844i
\(715\) −4.56622 + 9.32380i −0.170767 + 0.348690i
\(716\) −0.497367 0.360101i −0.0185875 0.0134576i
\(717\) −7.03219 + 7.03219i −0.262622 + 0.262622i
\(718\) 4.65850 + 1.50937i 0.173854 + 0.0563293i
\(719\) 18.8983 0.704788 0.352394 0.935852i \(-0.385368\pi\)
0.352394 + 0.935852i \(0.385368\pi\)
\(720\) 25.9433 19.6187i 0.966848 0.731146i
\(721\) 29.2369 1.08884
\(722\) −1.34536 0.435901i −0.0500691 0.0162226i
\(723\) 11.7267 11.7267i 0.436121 0.436121i
\(724\) 34.9374 + 25.2951i 1.29844 + 0.940086i
\(725\) −8.69976 11.2098i −0.323101 0.416322i
\(726\) 27.8552 14.2220i 1.03380 0.527828i
\(727\) 8.62977 + 8.62977i 0.320060 + 0.320060i 0.848790 0.528730i \(-0.177332\pi\)
−0.528730 + 0.848790i \(0.677332\pi\)
\(728\) 13.1293 9.58894i 0.486603 0.355390i
\(729\) 36.9841i 1.36978i
\(730\) 24.8614 + 24.0463i 0.920160 + 0.889995i
\(731\) 5.14211i 0.190188i
\(732\) 64.5366 10.3313i 2.38534 0.381855i
\(733\) −11.4060 11.4060i −0.421292 0.421292i 0.464357 0.885648i \(-0.346286\pi\)
−0.885648 + 0.464357i \(0.846286\pi\)
\(734\) 3.31854 + 6.49968i 0.122490 + 0.239908i
\(735\) 17.0614 + 8.35561i 0.629318 + 0.308201i
\(736\) −21.5706 21.3926i −0.795102 0.788540i
\(737\) −0.368426 + 0.368426i −0.0135712 + 0.0135712i
\(738\) −8.84496 + 27.2989i −0.325587 + 1.00489i
\(739\) 17.0455 0.627028 0.313514 0.949584i \(-0.398494\pi\)
0.313514 + 0.949584i \(0.398494\pi\)
\(740\) −16.1861 + 8.60710i −0.595013 + 0.316403i
\(741\) 7.69614 0.282725
\(742\) −6.54744 + 20.2079i −0.240364 + 0.741856i
\(743\) 9.28212 9.28212i 0.340528 0.340528i −0.516038 0.856566i \(-0.672594\pi\)
0.856566 + 0.516038i \(0.172594\pi\)
\(744\) 4.94036 31.7021i 0.181122 1.16226i
\(745\) 4.25156 + 12.4127i 0.155765 + 0.454765i
\(746\) 15.5481 + 30.4524i 0.569256 + 1.11494i
\(747\) 3.53651 + 3.53651i 0.129394 + 0.129394i
\(748\) −0.350026 2.18652i −0.0127982 0.0799469i
\(749\) 17.1462i 0.626509i
\(750\) 4.42085 40.4918i 0.161427 1.47855i
\(751\) 17.9990i 0.656793i −0.944540 0.328397i \(-0.893492\pi\)
0.944540 0.328397i \(-0.106508\pi\)
\(752\) −23.3622 + 46.2290i −0.851930 + 1.68580i
\(753\) −38.6323 38.6323i −1.40784 1.40784i
\(754\) 10.6786 5.45220i 0.388893 0.198557i
\(755\) −5.79919 16.9311i −0.211054 0.616185i
\(756\) 3.70055 5.11116i 0.134588 0.185891i
\(757\) 0.425732 0.425732i 0.0154735 0.0154735i −0.699328 0.714801i \(-0.746517\pi\)
0.714801 + 0.699328i \(0.246517\pi\)
\(758\) 40.5381 + 13.1345i 1.47241 + 0.477066i
\(759\) 21.5015 0.780456
\(760\) −5.18392 3.62312i −0.188040 0.131424i
\(761\) −6.38301 −0.231384 −0.115692 0.993285i \(-0.536909\pi\)
−0.115692 + 0.993285i \(0.536909\pi\)
\(762\) −17.8035 5.76840i −0.644953 0.208967i
\(763\) 16.5009 16.5009i 0.597371 0.597371i
\(764\) 19.4570 26.8738i 0.703929 0.972259i
\(765\) −5.20256 2.54789i −0.188099 0.0921192i
\(766\) 7.20669 3.67952i 0.260388 0.132946i
\(767\) −19.9244 19.9244i −0.719429 0.719429i
\(768\) 6.17793 40.7527i 0.222927 1.47054i
\(769\) 7.71179i 0.278094i 0.990286 + 0.139047i \(0.0444039\pi\)
−0.990286 + 0.139047i \(0.955596\pi\)
\(770\) 6.57412