Properties

Label 380.2.k.c.267.8
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.8
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.830627 - 1.14458i) q^{2} +(-1.85040 - 1.85040i) q^{3} +(-0.620117 + 1.90143i) q^{4} +(1.13686 + 1.92550i) q^{5} +(-0.580936 + 3.65493i) q^{6} +(1.96775 - 1.96775i) q^{7} +(2.69143 - 0.869611i) q^{8} +3.84798i q^{9} +O(q^{10})\) \(q+(-0.830627 - 1.14458i) q^{2} +(-1.85040 - 1.85040i) q^{3} +(-0.620117 + 1.90143i) q^{4} +(1.13686 + 1.92550i) q^{5} +(-0.580936 + 3.65493i) q^{6} +(1.96775 - 1.96775i) q^{7} +(2.69143 - 0.869611i) q^{8} +3.84798i q^{9} +(1.25958 - 2.90060i) q^{10} -1.03788i q^{11} +(4.66589 - 2.37095i) q^{12} +(3.02834 - 3.02834i) q^{13} +(-3.88672 - 0.617778i) q^{14} +(1.45930 - 5.66660i) q^{15} +(-3.23091 - 2.35823i) q^{16} +(-1.50342 - 1.50342i) q^{17} +(4.40432 - 3.19624i) q^{18} +1.00000 q^{19} +(-4.36620 + 0.967629i) q^{20} -7.28228 q^{21} +(-1.18793 + 0.862088i) q^{22} +(2.06546 + 2.06546i) q^{23} +(-6.58935 - 3.37109i) q^{24} +(-2.41510 + 4.37805i) q^{25} +(-5.98160 - 0.950751i) q^{26} +(1.56911 - 1.56911i) q^{27} +(2.52132 + 4.96179i) q^{28} -2.61679i q^{29} +(-7.69800 + 3.03655i) q^{30} -6.46970i q^{31} +(-0.0154926 + 5.65683i) q^{32} +(-1.92049 + 1.92049i) q^{33} +(-0.472001 + 2.96957i) q^{34} +(6.02597 + 1.55185i) q^{35} +(-7.31669 - 2.38620i) q^{36} +(-5.69050 - 5.69050i) q^{37} +(-0.830627 - 1.14458i) q^{38} -11.2073 q^{39} +(4.73421 + 4.19372i) q^{40} +9.51266 q^{41} +(6.04886 + 8.33513i) q^{42} +(-7.42165 - 7.42165i) q^{43} +(1.97345 + 0.643605i) q^{44} +(-7.40929 + 4.37462i) q^{45} +(0.648453 - 4.07971i) q^{46} +(-1.72310 + 1.72310i) q^{47} +(1.61482 + 10.3422i) q^{48} -0.744112i q^{49} +(7.01706 - 0.872254i) q^{50} +5.56388i q^{51} +(3.88027 + 7.63613i) q^{52} +(6.31339 - 6.31339i) q^{53} +(-3.09931 - 0.492623i) q^{54} +(1.99843 - 1.17992i) q^{55} +(3.58489 - 7.00725i) q^{56} +(-1.85040 - 1.85040i) q^{57} +(-2.99512 + 2.17358i) q^{58} -12.7281 q^{59} +(9.86973 + 6.28872i) q^{60} -0.547956 q^{61} +(-7.40508 + 5.37391i) q^{62} +(7.57188 + 7.57188i) q^{63} +(6.48755 - 4.68099i) q^{64} +(9.27388 + 2.38827i) q^{65} +(3.79336 + 0.602939i) q^{66} +(9.32750 - 9.32750i) q^{67} +(3.79096 - 1.92636i) q^{68} -7.64387i q^{69} +(-3.22912 - 8.18620i) q^{70} -0.212626i q^{71} +(3.34625 + 10.3566i) q^{72} +(7.18693 - 7.18693i) q^{73} +(-1.78654 + 11.2399i) q^{74} +(12.5701 - 3.63224i) q^{75} +(-0.620117 + 1.90143i) q^{76} +(-2.04229 - 2.04229i) q^{77} +(9.30910 + 12.8276i) q^{78} +2.35125 q^{79} +(0.867673 - 8.90209i) q^{80} +5.73698 q^{81} +(-7.90148 - 10.8880i) q^{82} +(8.09918 + 8.09918i) q^{83} +(4.51587 - 13.8468i) q^{84} +(1.18566 - 4.60402i) q^{85} +(-2.33003 + 14.6593i) q^{86} +(-4.84212 + 4.84212i) q^{87} +(-0.902548 - 2.79337i) q^{88} +12.3109i q^{89} +(11.1614 + 4.84683i) q^{90} -11.9181i q^{91} +(-5.20817 + 2.64651i) q^{92} +(-11.9716 + 11.9716i) q^{93} +(3.40348 + 0.540969i) q^{94} +(1.13686 + 1.92550i) q^{95} +(10.4961 - 10.4388i) q^{96} +(-9.28193 - 9.28193i) q^{97} +(-0.851695 + 0.618080i) q^{98} +3.99373 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.830627 1.14458i −0.587342 0.809339i
\(3\) −1.85040 1.85040i −1.06833 1.06833i −0.997487 0.0708431i \(-0.977431\pi\)
−0.0708431 0.997487i \(-0.522569\pi\)
\(4\) −0.620117 + 1.90143i −0.310059 + 0.950717i
\(5\) 1.13686 + 1.92550i 0.508419 + 0.861110i
\(6\) −0.580936 + 3.65493i −0.237166 + 1.49212i
\(7\) 1.96775 1.96775i 0.743741 0.743741i −0.229555 0.973296i \(-0.573727\pi\)
0.973296 + 0.229555i \(0.0737270\pi\)
\(8\) 2.69143 0.869611i 0.951563 0.307454i
\(9\) 3.84798i 1.28266i
\(10\) 1.25958 2.90060i 0.398314 0.917249i
\(11\) 1.03788i 0.312931i −0.987683 0.156466i \(-0.949990\pi\)
0.987683 0.156466i \(-0.0500101\pi\)
\(12\) 4.66589 2.37095i 1.34693 0.684435i
\(13\) 3.02834 3.02834i 0.839912 0.839912i −0.148935 0.988847i \(-0.547585\pi\)
0.988847 + 0.148935i \(0.0475846\pi\)
\(14\) −3.88672 0.617778i −1.03877 0.165108i
\(15\) 1.45930 5.66660i 0.376790 1.46311i
\(16\) −3.23091 2.35823i −0.807727 0.589556i
\(17\) −1.50342 1.50342i −0.364634 0.364634i 0.500882 0.865516i \(-0.333009\pi\)
−0.865516 + 0.500882i \(0.833009\pi\)
\(18\) 4.40432 3.19624i 1.03811 0.753360i
\(19\) 1.00000 0.229416
\(20\) −4.36620 + 0.967629i −0.976312 + 0.216368i
\(21\) −7.28228 −1.58912
\(22\) −1.18793 + 0.862088i −0.253268 + 0.183798i
\(23\) 2.06546 + 2.06546i 0.430678 + 0.430678i 0.888859 0.458181i \(-0.151499\pi\)
−0.458181 + 0.888859i \(0.651499\pi\)
\(24\) −6.58935 3.37109i −1.34505 0.688122i
\(25\) −2.41510 + 4.37805i −0.483020 + 0.875609i
\(26\) −5.98160 0.950751i −1.17309 0.186458i
\(27\) 1.56911 1.56911i 0.301975 0.301975i
\(28\) 2.52132 + 4.96179i 0.476484 + 0.937691i
\(29\) 2.61679i 0.485926i −0.970036 0.242963i \(-0.921881\pi\)
0.970036 0.242963i \(-0.0781193\pi\)
\(30\) −7.69800 + 3.03655i −1.40546 + 0.554395i
\(31\) 6.46970i 1.16199i −0.813906 0.580997i \(-0.802663\pi\)
0.813906 0.580997i \(-0.197337\pi\)
\(32\) −0.0154926 + 5.65683i −0.00273874 + 0.999996i
\(33\) −1.92049 + 1.92049i −0.334314 + 0.334314i
\(34\) −0.472001 + 2.96957i −0.0809475 + 0.509277i
\(35\) 6.02597 + 1.55185i 1.01857 + 0.262311i
\(36\) −7.31669 2.38620i −1.21945 0.397700i
\(37\) −5.69050 5.69050i −0.935512 0.935512i 0.0625306 0.998043i \(-0.480083\pi\)
−0.998043 + 0.0625306i \(0.980083\pi\)
\(38\) −0.830627 1.14458i −0.134746 0.185675i
\(39\) −11.2073 −1.79461
\(40\) 4.73421 + 4.19372i 0.748544 + 0.663085i
\(41\) 9.51266 1.48563 0.742814 0.669498i \(-0.233491\pi\)
0.742814 + 0.669498i \(0.233491\pi\)
\(42\) 6.04886 + 8.33513i 0.933359 + 1.28614i
\(43\) −7.42165 7.42165i −1.13179 1.13179i −0.989879 0.141911i \(-0.954675\pi\)
−0.141911 0.989879i \(-0.545325\pi\)
\(44\) 1.97345 + 0.643605i 0.297509 + 0.0970271i
\(45\) −7.40929 + 4.37462i −1.10451 + 0.652129i
\(46\) 0.648453 4.07971i 0.0956092 0.601520i
\(47\) −1.72310 + 1.72310i −0.251340 + 0.251340i −0.821520 0.570180i \(-0.806874\pi\)
0.570180 + 0.821520i \(0.306874\pi\)
\(48\) 1.61482 + 10.3422i 0.233079 + 1.49276i
\(49\) 0.744112i 0.106302i
\(50\) 7.01706 0.872254i 0.992363 0.123355i
\(51\) 5.56388i 0.779099i
\(52\) 3.88027 + 7.63613i 0.538097 + 1.05894i
\(53\) 6.31339 6.31339i 0.867210 0.867210i −0.124952 0.992163i \(-0.539878\pi\)
0.992163 + 0.124952i \(0.0398778\pi\)
\(54\) −3.09931 0.492623i −0.421763 0.0670375i
\(55\) 1.99843 1.17992i 0.269468 0.159100i
\(56\) 3.58489 7.00725i 0.479051 0.936383i
\(57\) −1.85040 1.85040i −0.245092 0.245092i
\(58\) −2.99512 + 2.17358i −0.393279 + 0.285405i
\(59\) −12.7281 −1.65706 −0.828531 0.559943i \(-0.810823\pi\)
−0.828531 + 0.559943i \(0.810823\pi\)
\(60\) 9.86973 + 6.28872i 1.27418 + 0.811871i
\(61\) −0.547956 −0.0701585 −0.0350793 0.999385i \(-0.511168\pi\)
−0.0350793 + 0.999385i \(0.511168\pi\)
\(62\) −7.40508 + 5.37391i −0.940446 + 0.682487i
\(63\) 7.57188 + 7.57188i 0.953967 + 0.953967i
\(64\) 6.48755 4.68099i 0.810944 0.585123i
\(65\) 9.27388 + 2.38827i 1.15028 + 0.296229i
\(66\) 3.79336 + 0.602939i 0.466930 + 0.0742167i
\(67\) 9.32750 9.32750i 1.13954 1.13954i 0.151002 0.988533i \(-0.451750\pi\)
0.988533 0.151002i \(-0.0482501\pi\)
\(68\) 3.79096 1.92636i 0.459721 0.233606i
\(69\) 7.64387i 0.920214i
\(70\) −3.22912 8.18620i −0.385954 0.978438i
\(71\) 0.212626i 0.0252340i −0.999920 0.0126170i \(-0.995984\pi\)
0.999920 0.0126170i \(-0.00401623\pi\)
\(72\) 3.34625 + 10.3566i 0.394359 + 1.22053i
\(73\) 7.18693 7.18693i 0.841166 0.841166i −0.147845 0.989011i \(-0.547234\pi\)
0.989011 + 0.147845i \(0.0472335\pi\)
\(74\) −1.78654 + 11.2399i −0.207681 + 1.30661i
\(75\) 12.5701 3.63224i 1.45147 0.419415i
\(76\) −0.620117 + 1.90143i −0.0711323 + 0.218110i
\(77\) −2.04229 2.04229i −0.232740 0.232740i
\(78\) 9.30910 + 12.8276i 1.05405 + 1.45244i
\(79\) 2.35125 0.264536 0.132268 0.991214i \(-0.457774\pi\)
0.132268 + 0.991214i \(0.457774\pi\)
\(80\) 0.867673 8.90209i 0.0970088 0.995284i
\(81\) 5.73698 0.637442
\(82\) −7.90148 10.8880i −0.872572 1.20238i
\(83\) 8.09918 + 8.09918i 0.889000 + 0.889000i 0.994427 0.105427i \(-0.0336209\pi\)
−0.105427 + 0.994427i \(0.533621\pi\)
\(84\) 4.51587 13.8468i 0.492721 1.51081i
\(85\) 1.18566 4.60402i 0.128603 0.499376i
\(86\) −2.33003 + 14.6593i −0.251254 + 1.58075i
\(87\) −4.84212 + 4.84212i −0.519129 + 0.519129i
\(88\) −0.902548 2.79337i −0.0962120 0.297774i
\(89\) 12.3109i 1.30495i 0.757809 + 0.652477i \(0.226270\pi\)
−0.757809 + 0.652477i \(0.773730\pi\)
\(90\) 11.1614 + 4.84683i 1.17652 + 0.510901i
\(91\) 11.9181i 1.24935i
\(92\) −5.20817 + 2.64651i −0.542989 + 0.275918i
\(93\) −11.9716 + 11.9716i −1.24139 + 1.24139i
\(94\) 3.40348 + 0.540969i 0.351042 + 0.0557967i
\(95\) 1.13686 + 1.92550i 0.116639 + 0.197552i
\(96\) 10.4961 10.4388i 1.07125 1.06540i
\(97\) −9.28193 9.28193i −0.942438 0.942438i 0.0559936 0.998431i \(-0.482167\pi\)
−0.998431 + 0.0559936i \(0.982167\pi\)
\(98\) −0.851695 + 0.618080i −0.0860342 + 0.0624355i
\(99\) 3.99373 0.401385
\(100\) −6.82693 7.30706i −0.682693 0.730706i
\(101\) −5.10423 −0.507889 −0.253945 0.967219i \(-0.581728\pi\)
−0.253945 + 0.967219i \(0.581728\pi\)
\(102\) 6.36829 4.62151i 0.630555 0.457597i
\(103\) 12.3348 + 12.3348i 1.21539 + 1.21539i 0.969230 + 0.246156i \(0.0791677\pi\)
0.246156 + 0.969230i \(0.420832\pi\)
\(104\) 5.51709 10.7840i 0.540995 1.05746i
\(105\) −8.27893 14.0220i −0.807940 1.36841i
\(106\) −12.4702 1.98209i −1.21122 0.192518i
\(107\) −9.93034 + 9.93034i −0.960003 + 0.960003i −0.999230 0.0392276i \(-0.987510\pi\)
0.0392276 + 0.999230i \(0.487510\pi\)
\(108\) 2.01053 + 3.95659i 0.193463 + 0.380723i
\(109\) 11.4759i 1.09919i 0.835430 + 0.549597i \(0.185219\pi\)
−0.835430 + 0.549597i \(0.814781\pi\)
\(110\) −3.01046 1.30729i −0.287036 0.124645i
\(111\) 21.0594i 1.99887i
\(112\) −10.9980 + 1.71723i −1.03922 + 0.162263i
\(113\) 3.15808 3.15808i 0.297087 0.297087i −0.542785 0.839872i \(-0.682630\pi\)
0.839872 + 0.542785i \(0.182630\pi\)
\(114\) −0.580936 + 3.65493i −0.0544096 + 0.342315i
\(115\) −1.62891 + 6.32519i −0.151896 + 0.589827i
\(116\) 4.97566 + 1.62272i 0.461978 + 0.150666i
\(117\) 11.6530 + 11.6530i 1.07732 + 1.07732i
\(118\) 10.5723 + 14.5683i 0.973262 + 1.34113i
\(119\) −5.91673 −0.542386
\(120\) −1.00013 16.5203i −0.0912990 1.50809i
\(121\) 9.92281 0.902074
\(122\) 0.455147 + 0.627178i 0.0412071 + 0.0567820i
\(123\) −17.6023 17.6023i −1.58714 1.58714i
\(124\) 12.3017 + 4.01198i 1.10473 + 0.360286i
\(125\) −11.1756 + 0.326951i −0.999572 + 0.0292434i
\(126\) 2.37720 14.9560i 0.211778 1.33239i
\(127\) −1.96834 + 1.96834i −0.174662 + 0.174662i −0.789024 0.614362i \(-0.789413\pi\)
0.614362 + 0.789024i \(0.289413\pi\)
\(128\) −10.7465 3.53736i −0.949865 0.312661i
\(129\) 27.4661i 2.41825i
\(130\) −4.96957 12.5984i −0.435860 1.10496i
\(131\) 12.7341i 1.11258i 0.830987 + 0.556292i \(0.187776\pi\)
−0.830987 + 0.556292i \(0.812224\pi\)
\(132\) −2.46076 4.84261i −0.214181 0.421495i
\(133\) 1.96775 1.96775i 0.170626 0.170626i
\(134\) −18.4237 2.92838i −1.59157 0.252973i
\(135\) 4.80517 + 1.23746i 0.413563 + 0.106504i
\(136\) −5.35374 2.73896i −0.459080 0.234864i
\(137\) 9.29462 + 9.29462i 0.794093 + 0.794093i 0.982157 0.188064i \(-0.0602212\pi\)
−0.188064 + 0.982157i \(0.560221\pi\)
\(138\) −8.74901 + 6.34921i −0.744765 + 0.540480i
\(139\) 1.49578 0.126871 0.0634353 0.997986i \(-0.479794\pi\)
0.0634353 + 0.997986i \(0.479794\pi\)
\(140\) −6.68755 + 10.4957i −0.565201 + 0.887045i
\(141\) 6.37687 0.537029
\(142\) −0.243367 + 0.176613i −0.0204229 + 0.0148210i
\(143\) −3.14305 3.14305i −0.262835 0.262835i
\(144\) 9.07441 12.4325i 0.756201 1.03604i
\(145\) 5.03863 2.97492i 0.418435 0.247054i
\(146\) −14.1957 2.25634i −1.17484 0.186736i
\(147\) −1.37691 + 1.37691i −0.113565 + 0.113565i
\(148\) 14.3489 7.29134i 1.17947 0.599344i
\(149\) 11.6245i 0.952314i −0.879360 0.476157i \(-0.842029\pi\)
0.879360 0.476157i \(-0.157971\pi\)
\(150\) −14.5984 11.3704i −1.19196 0.928387i
\(151\) 7.58726i 0.617442i 0.951153 + 0.308721i \(0.0999010\pi\)
−0.951153 + 0.308721i \(0.900099\pi\)
\(152\) 2.69143 0.869611i 0.218304 0.0705347i
\(153\) 5.78514 5.78514i 0.467701 0.467701i
\(154\) −0.641177 + 4.03393i −0.0516675 + 0.325064i
\(155\) 12.4574 7.35515i 1.00060 0.590779i
\(156\) 6.94985 21.3100i 0.556433 1.70616i
\(157\) −7.05006 7.05006i −0.562656 0.562656i 0.367405 0.930061i \(-0.380246\pi\)
−0.930061 + 0.367405i \(0.880246\pi\)
\(158\) −1.95301 2.69119i −0.155373 0.214099i
\(159\) −23.3646 −1.85293
\(160\) −10.9098 + 6.40119i −0.862499 + 0.506059i
\(161\) 8.12864 0.640627
\(162\) −4.76529 6.56642i −0.374397 0.515907i
\(163\) −8.64721 8.64721i −0.677302 0.677302i 0.282087 0.959389i \(-0.408973\pi\)
−0.959389 + 0.282087i \(0.908973\pi\)
\(164\) −5.89897 + 18.0877i −0.460632 + 1.41241i
\(165\) −5.88123 1.51458i −0.457853 0.117910i
\(166\) 2.54274 15.9975i 0.197355 1.24165i
\(167\) 4.32665 4.32665i 0.334806 0.334806i −0.519602 0.854408i \(-0.673920\pi\)
0.854408 + 0.519602i \(0.173920\pi\)
\(168\) −19.5997 + 6.33274i −1.51215 + 0.488582i
\(169\) 5.34174i 0.410903i
\(170\) −6.25450 + 2.46715i −0.479698 + 0.189221i
\(171\) 3.84798i 0.294263i
\(172\) 18.7141 9.50949i 1.42693 0.725091i
\(173\) −6.78296 + 6.78296i −0.515699 + 0.515699i −0.916267 0.400568i \(-0.868813\pi\)
0.400568 + 0.916267i \(0.368813\pi\)
\(174\) 9.56417 + 1.52019i 0.725058 + 0.115245i
\(175\) 3.86260 + 13.3672i 0.291985 + 1.01047i
\(176\) −2.44755 + 3.35328i −0.184491 + 0.252763i
\(177\) 23.5522 + 23.5522i 1.77029 + 1.77029i
\(178\) 14.0908 10.2258i 1.05615 0.766454i
\(179\) 21.2426 1.58775 0.793875 0.608081i \(-0.208061\pi\)
0.793875 + 0.608081i \(0.208061\pi\)
\(180\) −3.72342 16.8011i −0.277527 1.25228i
\(181\) 7.04939 0.523977 0.261988 0.965071i \(-0.415622\pi\)
0.261988 + 0.965071i \(0.415622\pi\)
\(182\) −13.6412 + 9.89947i −1.01115 + 0.733798i
\(183\) 1.01394 + 1.01394i 0.0749525 + 0.0749525i
\(184\) 7.35519 + 3.76289i 0.542231 + 0.277404i
\(185\) 4.48776 17.4264i 0.329946 1.28121i
\(186\) 23.6463 + 3.75848i 1.73383 + 0.275585i
\(187\) −1.56037 + 1.56037i −0.114105 + 0.114105i
\(188\) −2.20784 4.34489i −0.161023 0.316884i
\(189\) 6.17524i 0.449182i
\(190\) 1.25958 2.90060i 0.0913794 0.210431i
\(191\) 19.1334i 1.38445i 0.721684 + 0.692223i \(0.243368\pi\)
−0.721684 + 0.692223i \(0.756632\pi\)
\(192\) −20.6663 3.34288i −1.49146 0.241252i
\(193\) −11.6404 + 11.6404i −0.837896 + 0.837896i −0.988582 0.150686i \(-0.951852\pi\)
0.150686 + 0.988582i \(0.451852\pi\)
\(194\) −2.91407 + 18.3337i −0.209218 + 1.31628i
\(195\) −12.7411 21.5797i −0.912412 1.54535i
\(196\) 1.41488 + 0.461437i 0.101063 + 0.0329598i
\(197\) 2.90195 + 2.90195i 0.206755 + 0.206755i 0.802887 0.596132i \(-0.203296\pi\)
−0.596132 + 0.802887i \(0.703296\pi\)
\(198\) −3.31730 4.57113i −0.235750 0.324856i
\(199\) 10.8066 0.766058 0.383029 0.923736i \(-0.374881\pi\)
0.383029 + 0.923736i \(0.374881\pi\)
\(200\) −2.69287 + 13.8834i −0.190415 + 0.981704i
\(201\) −34.5193 −2.43480
\(202\) 4.23971 + 5.84218i 0.298305 + 0.411055i
\(203\) −5.14920 5.14920i −0.361403 0.361403i
\(204\) −10.5793 3.45026i −0.740703 0.241566i
\(205\) 10.8146 + 18.3166i 0.755322 + 1.27929i
\(206\) 3.87253 24.3638i 0.269812 1.69751i
\(207\) −7.94786 + 7.94786i −0.552414 + 0.552414i
\(208\) −16.9258 + 2.64279i −1.17359 + 0.183244i
\(209\) 1.03788i 0.0717914i
\(210\) −9.17260 + 21.1229i −0.632969 + 1.45762i
\(211\) 12.5073i 0.861037i −0.902582 0.430519i \(-0.858331\pi\)
0.902582 0.430519i \(-0.141669\pi\)
\(212\) 8.08945 + 15.9195i 0.555586 + 1.09336i
\(213\) −0.393443 + 0.393443i −0.0269583 + 0.0269583i
\(214\) 19.6145 + 3.11764i 1.34082 + 0.213118i
\(215\) 5.85301 22.7278i 0.399172 1.55002i
\(216\) 2.85863 5.58765i 0.194505 0.380192i
\(217\) −12.7308 12.7308i −0.864222 0.864222i
\(218\) 13.1351 9.53221i 0.889620 0.645603i
\(219\) −26.5974 −1.79729
\(220\) 1.00428 + 4.53157i 0.0677085 + 0.305519i
\(221\) −9.10576 −0.612520
\(222\) 24.1042 17.4925i 1.61777 1.17402i
\(223\) −10.6640 10.6640i −0.714115 0.714115i 0.253278 0.967393i \(-0.418491\pi\)
−0.967393 + 0.253278i \(0.918491\pi\)
\(224\) 11.1008 + 11.1617i 0.741701 + 0.745775i
\(225\) −16.8466 9.29326i −1.12311 0.619551i
\(226\) −6.23785 0.991482i −0.414936 0.0659524i
\(227\) −20.0388 + 20.0388i −1.33002 + 1.33002i −0.424676 + 0.905345i \(0.639612\pi\)
−0.905345 + 0.424676i \(0.860388\pi\)
\(228\) 4.66589 2.37095i 0.309006 0.157020i
\(229\) 4.26484i 0.281828i 0.990022 + 0.140914i \(0.0450042\pi\)
−0.990022 + 0.140914i \(0.954996\pi\)
\(230\) 8.59268 3.38946i 0.566585 0.223494i
\(231\) 7.55810i 0.497287i
\(232\) −2.27559 7.04290i −0.149400 0.462389i
\(233\) 5.66793 5.66793i 0.371318 0.371318i −0.496639 0.867957i \(-0.665433\pi\)
0.867957 + 0.496639i \(0.165433\pi\)
\(234\) 3.65847 23.0171i 0.239162 1.50467i
\(235\) −5.27676 1.35891i −0.344218 0.0886454i
\(236\) 7.89294 24.2017i 0.513787 1.57540i
\(237\) −4.35076 4.35076i −0.282612 0.282612i
\(238\) 4.91460 + 6.77216i 0.318566 + 0.438974i
\(239\) 12.9188 0.835649 0.417825 0.908528i \(-0.362793\pi\)
0.417825 + 0.908528i \(0.362793\pi\)
\(240\) −18.0780 + 14.8669i −1.16693 + 0.959654i
\(241\) 11.4927 0.740311 0.370155 0.928970i \(-0.379304\pi\)
0.370155 + 0.928970i \(0.379304\pi\)
\(242\) −8.24216 11.3574i −0.529826 0.730083i
\(243\) −15.3231 15.3231i −0.982974 0.982974i
\(244\) 0.339797 1.04190i 0.0217533 0.0667009i
\(245\) 1.43279 0.845951i 0.0915375 0.0540459i
\(246\) −5.52625 + 34.7681i −0.352341 + 2.21673i
\(247\) 3.02834 3.02834i 0.192689 0.192689i
\(248\) −5.62612 17.4127i −0.357259 1.10571i
\(249\) 29.9735i 1.89949i
\(250\) 9.65694 + 12.5197i 0.610759 + 0.791817i
\(251\) 0.449035i 0.0283428i −0.999900 0.0141714i \(-0.995489\pi\)
0.999900 0.0141714i \(-0.00451105\pi\)
\(252\) −19.0929 + 9.70198i −1.20274 + 0.611168i
\(253\) 2.14369 2.14369i 0.134773 0.134773i
\(254\) 3.88787 + 0.617962i 0.243947 + 0.0387744i
\(255\) −10.7132 + 6.32535i −0.670889 + 0.396109i
\(256\) 4.87754 + 15.2384i 0.304847 + 0.952401i
\(257\) −14.1398 14.1398i −0.882018 0.882018i 0.111722 0.993740i \(-0.464363\pi\)
−0.993740 + 0.111722i \(0.964363\pi\)
\(258\) 31.4371 22.8141i 1.95719 1.42034i
\(259\) −22.3950 −1.39156
\(260\) −10.2920 + 16.1527i −0.638285 + 1.00175i
\(261\) 10.0694 0.623278
\(262\) 14.5752 10.5773i 0.900457 0.653467i
\(263\) 13.5610 + 13.5610i 0.836207 + 0.836207i 0.988357 0.152150i \(-0.0486198\pi\)
−0.152150 + 0.988357i \(0.548620\pi\)
\(264\) −3.49878 + 6.83893i −0.215335 + 0.420907i
\(265\) 19.3339 + 4.97899i 1.18767 + 0.305857i
\(266\) −3.88672 0.617778i −0.238310 0.0378784i
\(267\) 22.7801 22.7801i 1.39412 1.39412i
\(268\) 11.9515 + 23.5198i 0.730054 + 1.43670i
\(269\) 18.6745i 1.13861i −0.822128 0.569303i \(-0.807213\pi\)
0.822128 0.569303i \(-0.192787\pi\)
\(270\) −2.57494 6.52776i −0.156706 0.397267i
\(271\) 17.2153i 1.04575i 0.852408 + 0.522877i \(0.175141\pi\)
−0.852408 + 0.522877i \(0.824859\pi\)
\(272\) 1.31201 + 8.40283i 0.0795524 + 0.509497i
\(273\) −22.0532 + 22.0532i −1.33472 + 1.33472i
\(274\) 2.91805 18.3588i 0.176286 1.10909i
\(275\) 4.54387 + 2.50657i 0.274006 + 0.151152i
\(276\) 14.5343 + 4.74010i 0.874864 + 0.285320i
\(277\) 12.8068 + 12.8068i 0.769487 + 0.769487i 0.978016 0.208529i \(-0.0668675\pi\)
−0.208529 + 0.978016i \(0.566868\pi\)
\(278\) −1.24244 1.71204i −0.0745164 0.102681i
\(279\) 24.8953 1.49044
\(280\) 17.5680 1.06356i 1.04989 0.0635597i
\(281\) −17.6380 −1.05219 −0.526096 0.850425i \(-0.676345\pi\)
−0.526096 + 0.850425i \(0.676345\pi\)
\(282\) −5.29680 7.29882i −0.315420 0.434638i
\(283\) 11.1509 + 11.1509i 0.662854 + 0.662854i 0.956052 0.293198i \(-0.0947195\pi\)
−0.293198 + 0.956052i \(0.594719\pi\)
\(284\) 0.404294 + 0.131853i 0.0239904 + 0.00782403i
\(285\) 1.45930 5.66660i 0.0864416 0.335660i
\(286\) −0.986762 + 6.20816i −0.0583485 + 0.367096i
\(287\) 18.7186 18.7186i 1.10492 1.10492i
\(288\) −21.7674 0.0596154i −1.28266 0.00351287i
\(289\) 12.4794i 0.734085i
\(290\) −7.59025 3.29605i −0.445715 0.193551i
\(291\) 34.3506i 2.01367i
\(292\) 9.20873 + 18.1222i 0.538900 + 1.06052i
\(293\) −9.77537 + 9.77537i −0.571083 + 0.571083i −0.932431 0.361348i \(-0.882317\pi\)
0.361348 + 0.932431i \(0.382317\pi\)
\(294\) 2.71968 + 0.432281i 0.158615 + 0.0252112i
\(295\) −14.4701 24.5080i −0.842482 1.42691i
\(296\) −20.2641 10.3670i −1.17783 0.602572i
\(297\) −1.62854 1.62854i −0.0944975 0.0944975i
\(298\) −13.3051 + 9.65560i −0.770745 + 0.559334i
\(299\) 12.5099 0.723464
\(300\) −0.888439 + 26.1536i −0.0512940 + 1.50998i
\(301\) −29.2080 −1.68352
\(302\) 8.68421 6.30218i 0.499720 0.362650i
\(303\) 9.44488 + 9.44488i 0.542594 + 0.542594i
\(304\) −3.23091 2.35823i −0.185305 0.135254i
\(305\) −0.622949 1.05509i −0.0356699 0.0604142i
\(306\) −11.4268 1.81625i −0.653229 0.103828i
\(307\) 4.12272 4.12272i 0.235296 0.235296i −0.579603 0.814899i \(-0.696792\pi\)
0.814899 + 0.579603i \(0.196792\pi\)
\(308\) 5.14973 2.61682i 0.293433 0.149107i
\(309\) 45.6488i 2.59687i
\(310\) −18.7660 8.14910i −1.06584 0.462838i
\(311\) 1.78593i 0.101271i 0.998717 + 0.0506355i \(0.0161247\pi\)
−0.998717 + 0.0506355i \(0.983875\pi\)
\(312\) −30.1637 + 9.74600i −1.70768 + 0.551759i
\(313\) −17.3651 + 17.3651i −0.981531 + 0.981531i −0.999833 0.0183017i \(-0.994174\pi\)
0.0183017 + 0.999833i \(0.494174\pi\)
\(314\) −2.21337 + 13.9253i −0.124908 + 0.785850i
\(315\) −5.97149 + 23.1878i −0.336455 + 1.30649i
\(316\) −1.45805 + 4.47075i −0.0820217 + 0.251499i
\(317\) 18.8911 + 18.8911i 1.06103 + 1.06103i 0.998012 + 0.0630180i \(0.0200725\pi\)
0.0630180 + 0.998012i \(0.479927\pi\)
\(318\) 19.4073 + 26.7426i 1.08831 + 1.49965i
\(319\) −2.71591 −0.152061
\(320\) 16.3887 + 7.17016i 0.916155 + 0.400824i
\(321\) 36.7503 2.05120
\(322\) −6.75187 9.30386i −0.376267 0.518484i
\(323\) −1.50342 1.50342i −0.0836527 0.0836527i
\(324\) −3.55760 + 10.9085i −0.197645 + 0.606028i
\(325\) 5.94448 + 20.5720i 0.329740 + 1.14113i
\(326\) −2.71480 + 17.0800i −0.150359 + 0.945975i
\(327\) 21.2351 21.2351i 1.17430 1.17430i
\(328\) 25.6026 8.27231i 1.41367 0.456762i
\(329\) 6.78128i 0.373864i
\(330\) 3.15156 + 7.98957i 0.173488 + 0.439811i
\(331\) 10.4089i 0.572123i 0.958211 + 0.286062i \(0.0923462\pi\)
−0.958211 + 0.286062i \(0.907654\pi\)
\(332\) −20.4225 + 10.3776i −1.12083 + 0.569546i
\(333\) 21.8969 21.8969i 1.19995 1.19995i
\(334\) −8.54602 1.35836i −0.467618 0.0743259i
\(335\) 28.5642 + 7.35604i 1.56063 + 0.401904i
\(336\) 23.5284 + 17.1732i 1.28358 + 0.936878i
\(337\) 0.815754 + 0.815754i 0.0444370 + 0.0444370i 0.728976 0.684539i \(-0.239997\pi\)
−0.684539 + 0.728976i \(0.739997\pi\)
\(338\) −6.11404 + 4.43699i −0.332560 + 0.241341i
\(339\) −11.6874 −0.634774
\(340\) 8.01900 + 5.10949i 0.434891 + 0.277101i
\(341\) −6.71475 −0.363624
\(342\) 4.40432 3.19624i 0.238158 0.172833i
\(343\) 12.3100 + 12.3100i 0.664680 + 0.664680i
\(344\) −26.4288 13.5209i −1.42494 0.728997i
\(345\) 14.7183 8.69001i 0.792405 0.467854i
\(346\) 13.3977 + 2.12952i 0.720267 + 0.114484i
\(347\) 1.21322 1.21322i 0.0651292 0.0651292i −0.673792 0.738921i \(-0.735336\pi\)
0.738921 + 0.673792i \(0.235336\pi\)
\(348\) −6.20429 12.2097i −0.332585 0.654506i
\(349\) 17.7577i 0.950546i 0.879838 + 0.475273i \(0.157651\pi\)
−0.879838 + 0.475273i \(0.842349\pi\)
\(350\) 12.0915 15.5242i 0.646316 0.829805i
\(351\) 9.50360i 0.507265i
\(352\) 5.87109 + 0.0160795i 0.312930 + 0.000857038i
\(353\) −11.7628 + 11.7628i −0.626071 + 0.626071i −0.947077 0.321006i \(-0.895979\pi\)
0.321006 + 0.947077i \(0.395979\pi\)
\(354\) 7.39423 46.5204i 0.392999 2.47253i
\(355\) 0.409411 0.241726i 0.0217293 0.0128295i
\(356\) −23.4084 7.63421i −1.24064 0.404612i
\(357\) 10.9483 + 10.9483i 0.579448 + 0.579448i
\(358\) −17.6447 24.3139i −0.932552 1.28503i
\(359\) 18.0679 0.953588 0.476794 0.879015i \(-0.341799\pi\)
0.476794 + 0.879015i \(0.341799\pi\)
\(360\) −16.1373 + 18.2172i −0.850513 + 0.960128i
\(361\) 1.00000 0.0526316
\(362\) −5.85541 8.06858i −0.307754 0.424075i
\(363\) −18.3612 18.3612i −0.963713 0.963713i
\(364\) 22.6614 + 7.39060i 1.18778 + 0.387373i
\(365\) 22.0090 + 5.66790i 1.15200 + 0.296671i
\(366\) 0.318327 2.00274i 0.0166392 0.104685i
\(367\) −6.35282 + 6.35282i −0.331615 + 0.331615i −0.853199 0.521585i \(-0.825341\pi\)
0.521585 + 0.853199i \(0.325341\pi\)
\(368\) −1.80249 11.5441i −0.0939615 0.601780i
\(369\) 36.6046i 1.90556i
\(370\) −23.6735 + 9.33822i −1.23073 + 0.485471i
\(371\) 24.8464i 1.28996i
\(372\) −15.3394 30.1869i −0.795309 1.56512i
\(373\) 16.2918 16.2918i 0.843559 0.843559i −0.145760 0.989320i \(-0.546563\pi\)
0.989320 + 0.145760i \(0.0465629\pi\)
\(374\) 3.08204 + 0.489879i 0.159369 + 0.0253310i
\(375\) 21.2843 + 20.0743i 1.09912 + 1.03663i
\(376\) −3.13918 + 6.13603i −0.161891 + 0.316442i
\(377\) −7.92454 7.92454i −0.408135 0.408135i
\(378\) −7.06804 + 5.12932i −0.363541 + 0.263824i
\(379\) −13.5325 −0.695117 −0.347558 0.937658i \(-0.612989\pi\)
−0.347558 + 0.937658i \(0.612989\pi\)
\(380\) −4.36620 + 0.967629i −0.223981 + 0.0496383i
\(381\) 7.28444 0.373193
\(382\) 21.8997 15.8927i 1.12049 0.813143i
\(383\) −19.1908 19.1908i −0.980603 0.980603i 0.0192125 0.999815i \(-0.493884\pi\)
−0.999815 + 0.0192125i \(0.993884\pi\)
\(384\) 13.3398 + 26.4309i 0.680744 + 1.34880i
\(385\) 1.61063 6.25421i 0.0820852 0.318744i
\(386\) 22.9922 + 3.65452i 1.17027 + 0.186010i
\(387\) 28.5584 28.5584i 1.45170 1.45170i
\(388\) 23.4049 11.8931i 1.18820 0.603781i
\(389\) 9.02156i 0.457411i 0.973496 + 0.228706i \(0.0734493\pi\)
−0.973496 + 0.228706i \(0.926551\pi\)
\(390\) −14.1165 + 32.5079i −0.714816 + 1.64610i
\(391\) 6.21052i 0.314080i
\(392\) −0.647088 2.00272i −0.0326829 0.101153i
\(393\) 23.5632 23.5632i 1.18861 1.18861i
\(394\) 0.911069 5.73194i 0.0458990 0.288771i
\(395\) 2.67304 + 4.52733i 0.134495 + 0.227795i
\(396\) −2.47658 + 7.59382i −0.124453 + 0.381604i
\(397\) 4.24421 + 4.24421i 0.213011 + 0.213011i 0.805545 0.592534i \(-0.201873\pi\)
−0.592534 + 0.805545i \(0.701873\pi\)
\(398\) −8.97624 12.3690i −0.449938 0.620001i
\(399\) −7.28228 −0.364570
\(400\) 18.1274 8.44972i 0.906369 0.422486i
\(401\) −5.54417 −0.276863 −0.138431 0.990372i \(-0.544206\pi\)
−0.138431 + 0.990372i \(0.544206\pi\)
\(402\) 28.6726 + 39.5100i 1.43006 + 1.97058i
\(403\) −19.5925 19.5925i −0.975971 0.975971i
\(404\) 3.16522 9.70535i 0.157476 0.482859i
\(405\) 6.52214 + 11.0466i 0.324088 + 0.548908i
\(406\) −1.61660 + 10.1707i −0.0802303 + 0.504765i
\(407\) −5.90604 + 5.90604i −0.292751 + 0.292751i
\(408\) 4.83841 + 14.9748i 0.239537 + 0.741361i
\(409\) 9.73164i 0.481199i 0.970625 + 0.240599i \(0.0773440\pi\)
−0.970625 + 0.240599i \(0.922656\pi\)
\(410\) 11.9819 27.5924i 0.591746 1.36269i
\(411\) 34.3976i 1.69671i
\(412\) −31.1029 + 15.8048i −1.53233 + 0.778648i
\(413\) −25.0458 + 25.0458i −1.23243 + 1.23243i
\(414\) 15.6986 + 2.49524i 0.771547 + 0.122634i
\(415\) −6.38734 + 24.8026i −0.313542 + 1.21751i
\(416\) 17.0839 + 17.1778i 0.837608 + 0.842209i
\(417\) −2.76780 2.76780i −0.135540 0.135540i
\(418\) −1.18793 + 0.862088i −0.0581036 + 0.0421661i
\(419\) 14.5558 0.711095 0.355548 0.934658i \(-0.384294\pi\)
0.355548 + 0.934658i \(0.384294\pi\)
\(420\) 31.7959 7.04654i 1.55148 0.343836i
\(421\) −16.2488 −0.791917 −0.395958 0.918268i \(-0.629588\pi\)
−0.395958 + 0.918268i \(0.629588\pi\)
\(422\) −14.3156 + 10.3889i −0.696871 + 0.505723i
\(423\) −6.63047 6.63047i −0.322384 0.322384i
\(424\) 11.5018 22.4822i 0.558578 1.09183i
\(425\) 10.2130 2.95114i 0.495402 0.143151i
\(426\) 0.777131 + 0.123522i 0.0376521 + 0.00598466i
\(427\) −1.07824 + 1.07824i −0.0521798 + 0.0521798i
\(428\) −12.7239 25.0399i −0.615034 1.21035i
\(429\) 11.6318i 0.561589i
\(430\) −30.8754 + 12.1791i −1.48894 + 0.587326i
\(431\) 6.61387i 0.318579i −0.987232 0.159289i \(-0.949080\pi\)
0.987232 0.159289i \(-0.0509203\pi\)
\(432\) −8.76996 + 1.36933i −0.421945 + 0.0658821i
\(433\) −7.49867 + 7.49867i −0.360363 + 0.360363i −0.863947 0.503584i \(-0.832015\pi\)
0.503584 + 0.863947i \(0.332015\pi\)
\(434\) −3.99684 + 25.1459i −0.191855 + 1.20704i
\(435\) −14.8283 3.81869i −0.710963 0.183092i
\(436\) −21.8207 7.11642i −1.04502 0.340814i
\(437\) 2.06546 + 2.06546i 0.0988044 + 0.0988044i
\(438\) 22.0925 + 30.4428i 1.05562 + 1.45461i
\(439\) −27.5314 −1.31400 −0.657001 0.753889i \(-0.728175\pi\)
−0.657001 + 0.753889i \(0.728175\pi\)
\(440\) 4.35256 4.91352i 0.207500 0.234243i
\(441\) 2.86333 0.136349
\(442\) 7.56349 + 10.4223i 0.359759 + 0.495736i
\(443\) −21.2911 21.2911i −1.01157 1.01157i −0.999932 0.0116391i \(-0.996295\pi\)
−0.0116391 0.999932i \(-0.503705\pi\)
\(444\) −40.0431 13.0593i −1.90036 0.619768i
\(445\) −23.7047 + 13.9958i −1.12371 + 0.663464i
\(446\) −3.34798 + 21.0636i −0.158531 + 0.997391i
\(447\) −21.5100 + 21.5100i −1.01739 + 1.01739i
\(448\) 3.55488 21.9769i 0.167952 1.03831i
\(449\) 4.80815i 0.226910i 0.993543 + 0.113455i \(0.0361919\pi\)
−0.993543 + 0.113455i \(0.963808\pi\)
\(450\) 3.35642 + 27.0015i 0.158223 + 1.27286i
\(451\) 9.87297i 0.464900i
\(452\) 4.04650 + 7.96326i 0.190331 + 0.374560i
\(453\) 14.0395 14.0395i 0.659632 0.659632i
\(454\) 39.5807 + 6.29120i 1.85762 + 0.295261i
\(455\) 22.9483 13.5492i 1.07583 0.635195i
\(456\) −6.58935 3.37109i −0.308575 0.157866i
\(457\) −15.7382 15.7382i −0.736201 0.736201i 0.235640 0.971840i \(-0.424281\pi\)
−0.971840 + 0.235640i \(0.924281\pi\)
\(458\) 4.88144 3.54249i 0.228095 0.165530i
\(459\) −4.71807 −0.220220
\(460\) −11.0168 7.01962i −0.513662 0.327291i
\(461\) −21.0202 −0.979008 −0.489504 0.872001i \(-0.662822\pi\)
−0.489504 + 0.872001i \(0.662822\pi\)
\(462\) 8.65084 6.27796i 0.402473 0.292077i
\(463\) 25.9750 + 25.9750i 1.20716 + 1.20716i 0.971942 + 0.235221i \(0.0755813\pi\)
0.235221 + 0.971942i \(0.424419\pi\)
\(464\) −6.17098 + 8.45461i −0.286481 + 0.392496i
\(465\) −36.6612 9.44125i −1.70012 0.437828i
\(466\) −11.1953 1.77945i −0.518613 0.0824315i
\(467\) 14.1486 14.1486i 0.654720 0.654720i −0.299406 0.954126i \(-0.596789\pi\)
0.954126 + 0.299406i \(0.0967885\pi\)
\(468\) −29.3837 + 14.9312i −1.35826 + 0.690195i
\(469\) 36.7085i 1.69504i
\(470\) 2.82764 + 7.16841i 0.130429 + 0.330654i
\(471\) 26.0909i 1.20220i
\(472\) −34.2569 + 11.0685i −1.57680 + 0.509470i
\(473\) −7.70275 + 7.70275i −0.354173 + 0.354173i
\(474\) −1.36592 + 8.59364i −0.0627390 + 0.394719i
\(475\) −2.41510 + 4.37805i −0.110812 + 0.200879i
\(476\) 3.66907 11.2503i 0.168172 0.515656i
\(477\) 24.2938 + 24.2938i 1.11234 + 1.11234i
\(478\) −10.7307 14.7866i −0.490812 0.676323i
\(479\) 19.7192 0.900995 0.450497 0.892778i \(-0.351247\pi\)
0.450497 + 0.892778i \(0.351247\pi\)
\(480\) 32.0324 + 8.34282i 1.46207 + 0.380796i
\(481\) −34.4656 −1.57150
\(482\) −9.54616 13.1543i −0.434816 0.599162i
\(483\) −15.0413 15.0413i −0.684401 0.684401i
\(484\) −6.15331 + 18.8676i −0.279696 + 0.857617i
\(485\) 7.32011 28.4246i 0.332389 1.29070i
\(486\) −4.81069 + 30.2662i −0.218217 + 1.37290i
\(487\) −2.44306 + 2.44306i −0.110705 + 0.110705i −0.760290 0.649584i \(-0.774943\pi\)
0.649584 + 0.760290i \(0.274943\pi\)
\(488\) −1.47478 + 0.476508i −0.0667603 + 0.0215705i
\(489\) 32.0017i 1.44716i
\(490\) −2.15837 0.937268i −0.0975052 0.0423414i
\(491\) 10.1967i 0.460172i −0.973170 0.230086i \(-0.926099\pi\)
0.973170 0.230086i \(-0.0739008\pi\)
\(492\) 44.3850 22.5541i 2.00103 1.01682i
\(493\) −3.93414 + 3.93414i −0.177185 + 0.177185i
\(494\) −5.98160 0.950751i −0.269125 0.0427763i
\(495\) 4.54031 + 7.68993i 0.204072 + 0.345636i
\(496\) −15.2570 + 20.9030i −0.685060 + 0.938573i
\(497\) −0.418395 0.418395i −0.0187676 0.0187676i
\(498\) −34.3070 + 24.8968i −1.53733 + 1.11565i
\(499\) 41.0266 1.83660 0.918302 0.395880i \(-0.129561\pi\)
0.918302 + 0.395880i \(0.129561\pi\)
\(500\) 6.30848 21.4523i 0.282124 0.959378i
\(501\) −16.0121 −0.715368
\(502\) −0.513955 + 0.372981i −0.0229390 + 0.0166469i
\(503\) −18.8172 18.8172i −0.839018 0.839018i 0.149711 0.988730i \(-0.452166\pi\)
−0.988730 + 0.149711i \(0.952166\pi\)
\(504\) 26.9638 + 13.7946i 1.20106 + 0.614459i
\(505\) −5.80279 9.82819i −0.258221 0.437349i
\(506\) −4.23423 0.673015i −0.188235 0.0299191i
\(507\) −9.88437 + 9.88437i −0.438980 + 0.438980i
\(508\) −2.52207 4.96327i −0.111899 0.220210i
\(509\) 23.1012i 1.02394i 0.859003 + 0.511971i \(0.171084\pi\)
−0.859003 + 0.511971i \(0.828916\pi\)
\(510\) 16.1386 + 7.00814i 0.714628 + 0.310326i
\(511\) 28.2842i 1.25122i
\(512\) 13.3901 18.2402i 0.591766 0.806110i
\(513\) 1.56911 1.56911i 0.0692778 0.0692778i
\(514\) −4.43921 + 27.9290i −0.195805 + 1.23190i
\(515\) −9.72774 + 37.7737i −0.428655 + 1.66451i
\(516\) −52.2249 17.0322i −2.29908 0.749800i
\(517\) 1.78837 + 1.78837i 0.0786523 + 0.0786523i
\(518\) 18.6019 + 25.6328i 0.817321 + 1.12624i
\(519\) 25.1024 1.10187
\(520\) 27.0368 1.63680i 1.18564 0.0717784i
\(521\) 17.4818 0.765892 0.382946 0.923771i \(-0.374910\pi\)
0.382946 + 0.923771i \(0.374910\pi\)
\(522\) −8.36389 11.5252i −0.366077 0.504443i
\(523\) 22.9784 + 22.9784i 1.00478 + 1.00478i 0.999989 + 0.00478820i \(0.00152414\pi\)
0.00478820 + 0.999989i \(0.498476\pi\)
\(524\) −24.2131 7.89664i −1.05775 0.344966i
\(525\) 17.5874 31.8821i 0.767578 1.39145i
\(526\) 4.25749 26.7857i 0.185635 1.16791i
\(527\) −9.72670 + 9.72670i −0.423702 + 0.423702i
\(528\) 10.7339 1.67598i 0.467132 0.0729376i
\(529\) 14.4677i 0.629032i
\(530\) −10.3604 26.2648i −0.450026 1.14087i
\(531\) 48.9776i 2.12545i
\(532\) 2.52132 + 4.96179i 0.109313 + 0.215121i
\(533\) 28.8076 28.8076i 1.24780 1.24780i
\(534\) −44.9955 7.15185i −1.94714 0.309491i
\(535\) −30.4103 7.83147i −1.31475 0.338584i
\(536\) 16.9930 33.2156i 0.733986 1.43469i
\(537\) −39.3074 39.3074i −1.69624 1.69624i
\(538\) −21.3745 + 15.5116i −0.921519 + 0.668751i
\(539\) −0.772297 −0.0332652
\(540\) −5.33272 + 8.36935i −0.229484 + 0.360160i
\(541\) 35.7902 1.53874 0.769371 0.638802i \(-0.220570\pi\)
0.769371 + 0.638802i \(0.220570\pi\)
\(542\) 19.7042 14.2995i 0.846369 0.614215i
\(543\) −13.0442 13.0442i −0.559781 0.559781i
\(544\) 8.52790 8.48132i 0.365631 0.363634i
\(545\) −22.0969 + 13.0465i −0.946526 + 0.558851i
\(546\) 43.5597 + 6.92363i 1.86418 + 0.296304i
\(547\) 19.9722 19.9722i 0.853950 0.853950i −0.136667 0.990617i \(-0.543639\pi\)
0.990617 + 0.136667i \(0.0436390\pi\)
\(548\) −23.4369 + 11.9094i −1.00117 + 0.508742i
\(549\) 2.10852i 0.0899896i
\(550\) −0.905292 7.28284i −0.0386018 0.310541i
\(551\) 2.61679i 0.111479i
\(552\) −6.64719 20.5729i −0.282923 0.875642i
\(553\) 4.62668 4.62668i 0.196746 0.196746i
\(554\) 4.02071 25.2961i 0.170824 1.07473i
\(555\) −40.5499 + 23.9416i −1.72125 + 1.01627i
\(556\) −0.927560 + 2.84413i −0.0393373 + 0.120618i
\(557\) −18.9695 18.9695i −0.803765 0.803765i 0.179917 0.983682i \(-0.442417\pi\)
−0.983682 + 0.179917i \(0.942417\pi\)
\(558\) −20.6787 28.4946i −0.875400 1.20627i
\(559\) −44.9506 −1.90121
\(560\) −15.8098 19.2245i −0.668084 0.812383i
\(561\) 5.77462 0.243804
\(562\) 14.6506 + 20.1880i 0.617997 + 0.851581i
\(563\) 33.3205 + 33.3205i 1.40429 + 1.40429i 0.785757 + 0.618535i \(0.212274\pi\)
0.618535 + 0.785757i \(0.287726\pi\)
\(564\) −3.95441 + 12.1252i −0.166511 + 0.510563i
\(565\) 9.67117 + 2.49059i 0.406869 + 0.104780i
\(566\) 3.50084 22.0254i 0.147151 0.925795i
\(567\) 11.2890 11.2890i 0.474092 0.474092i
\(568\) −0.184902 0.572267i −0.00775830 0.0240118i
\(569\) 44.6559i 1.87207i −0.351905 0.936036i \(-0.614466\pi\)
0.351905 0.936036i \(-0.385534\pi\)
\(570\) −7.69800 + 3.03655i −0.322434 + 0.127187i
\(571\) 2.61268i 0.109337i 0.998505 + 0.0546686i \(0.0174102\pi\)
−0.998505 + 0.0546686i \(0.982590\pi\)
\(572\) 7.92536 4.02724i 0.331376 0.168387i
\(573\) 35.4045 35.4045i 1.47905 1.47905i
\(574\) −36.9730 5.87672i −1.54322 0.245289i
\(575\) −14.0310 + 4.05439i −0.585132 + 0.169080i
\(576\) 18.0123 + 24.9640i 0.750515 + 1.04017i
\(577\) 9.78791 + 9.78791i 0.407476 + 0.407476i 0.880857 0.473382i \(-0.156967\pi\)
−0.473382 + 0.880857i \(0.656967\pi\)
\(578\) −14.2837 + 10.3658i −0.594123 + 0.431159i
\(579\) 43.0789 1.79030
\(580\) 2.53208 + 11.4254i 0.105139 + 0.474415i
\(581\) 31.8744 1.32237
\(582\) 39.3170 28.5326i 1.62974 1.18271i
\(583\) −6.55251 6.55251i −0.271377 0.271377i
\(584\) 13.0933 25.5929i 0.541803 1.05904i
\(585\) −9.19003 + 35.6857i −0.379961 + 1.47542i
\(586\) 19.3084 + 3.06898i 0.797621 + 0.126779i
\(587\) 4.41302 4.41302i 0.182145 0.182145i −0.610145 0.792290i \(-0.708889\pi\)
0.792290 + 0.610145i \(0.208889\pi\)
\(588\) −1.76426 3.47194i −0.0727567 0.143181i
\(589\) 6.46970i 0.266579i
\(590\) −16.0321 + 36.9192i −0.660031 + 1.51994i
\(591\) 10.7395i 0.441766i
\(592\) 4.96600 + 31.8050i 0.204102 + 1.30718i
\(593\) −14.5035 + 14.5035i −0.595586 + 0.595586i −0.939135 0.343549i \(-0.888371\pi\)
0.343549 + 0.939135i \(0.388371\pi\)
\(594\) −0.511282 + 3.21670i −0.0209781 + 0.131983i
\(595\) −6.72650 11.3927i −0.275759 0.467054i
\(596\) 22.1032 + 7.20854i 0.905382 + 0.295273i
\(597\) −19.9965 19.9965i −0.818404 0.818404i
\(598\) −10.3910 14.3185i −0.424921 0.585527i
\(599\) −16.3544 −0.668223 −0.334112 0.942534i \(-0.608436\pi\)
−0.334112 + 0.942534i \(0.608436\pi\)
\(600\) 30.6728 20.7070i 1.25221 0.845359i
\(601\) −26.4268 −1.07797 −0.538986 0.842315i \(-0.681193\pi\)
−0.538986 + 0.842315i \(0.681193\pi\)
\(602\) 24.2609 + 33.4308i 0.988801 + 1.36254i
\(603\) 35.8921 + 35.8921i 1.46164 + 1.46164i
\(604\) −14.4267 4.70499i −0.587013 0.191443i
\(605\) 11.2808 + 19.1064i 0.458632 + 0.776785i
\(606\) 2.96523 18.6556i 0.120454 0.757831i
\(607\) −29.7918 + 29.7918i −1.20921 + 1.20921i −0.237928 + 0.971283i \(0.576468\pi\)
−0.971283 + 0.237928i \(0.923532\pi\)
\(608\) −0.0154926 + 5.65683i −0.000628310 + 0.229415i
\(609\) 19.0562i 0.772196i
\(610\) −0.690193 + 1.58940i −0.0279451 + 0.0643529i
\(611\) 10.4363i 0.422207i
\(612\) 7.41261 + 14.5875i 0.299637 + 0.589666i
\(613\) 7.62941 7.62941i 0.308149 0.308149i −0.536042 0.844191i \(-0.680081\pi\)
0.844191 + 0.536042i \(0.180081\pi\)
\(614\) −8.14322 1.29433i −0.328634 0.0522350i
\(615\) 13.8818 53.9045i 0.559770 2.17364i
\(616\) −7.27265 3.72067i −0.293024 0.149910i
\(617\) −15.2565 15.2565i −0.614202 0.614202i 0.329836 0.944038i \(-0.393006\pi\)
−0.944038 + 0.329836i \(0.893006\pi\)
\(618\) −52.2486 + 37.9171i −2.10175 + 1.52525i
\(619\) 3.44832 0.138600 0.0692998 0.997596i \(-0.477923\pi\)
0.0692998 + 0.997596i \(0.477923\pi\)
\(620\) 6.26027 + 28.2480i 0.251419 + 1.13447i
\(621\) 6.48186 0.260108
\(622\) 2.04414 1.48344i 0.0819626 0.0594807i
\(623\) 24.2248 + 24.2248i 0.970548 + 0.970548i
\(624\) 36.2098 + 26.4294i 1.44955 + 1.05802i
\(625\) −13.3346 21.1468i −0.533383 0.845874i
\(626\) 34.2995 + 5.45177i 1.37089 + 0.217897i
\(627\) −1.92049 + 1.92049i −0.0766970 + 0.0766970i
\(628\) 17.7771 9.03336i 0.709383 0.360470i
\(629\) 17.1105i 0.682239i
\(630\) 31.5004 12.4256i 1.25500 0.495048i
\(631\) 0.748834i 0.0298106i 0.999889 + 0.0149053i \(0.00474468\pi\)
−0.999889 + 0.0149053i \(0.995255\pi\)
\(632\) 6.32821 2.04467i 0.251723 0.0813326i
\(633\) −23.1435 + 23.1435i −0.919873 + 0.919873i
\(634\) 5.93088 37.3138i 0.235545 1.48192i
\(635\) −6.02776 1.55231i −0.239205 0.0616016i
\(636\) 14.4888 44.4263i 0.574518 1.76162i
\(637\) −2.25343 2.25343i −0.0892841 0.0892841i
\(638\) 2.25590 + 3.10857i 0.0893121 + 0.123069i
\(639\) 0.818180 0.0323667
\(640\) −5.40607 24.7139i −0.213694 0.976901i
\(641\) 31.9208 1.26080 0.630399 0.776272i \(-0.282891\pi\)
0.630399 + 0.776272i \(0.282891\pi\)
\(642\) −30.5258 42.0636i −1.20476 1.66012i
\(643\) −17.2796 17.2796i −0.681442 0.681442i 0.278883 0.960325i \(-0.410036\pi\)
−0.960325 + 0.278883i \(0.910036\pi\)
\(644\) −5.04071 + 15.4561i −0.198632 + 0.609055i
\(645\) −52.8859 + 31.2251i −2.08238 + 1.22949i
\(646\) −0.472001 + 2.96957i −0.0185706 + 0.116836i
\(647\) −5.83342 + 5.83342i −0.229335 + 0.229335i −0.812415 0.583080i \(-0.801848\pi\)
0.583080 + 0.812415i \(0.301848\pi\)
\(648\) 15.4407 4.98894i 0.606567 0.195984i
\(649\) 13.2102i 0.518547i
\(650\) 18.6086 23.8916i 0.729889 0.937104i
\(651\) 47.1142i 1.84655i
\(652\) 21.8044 11.0798i 0.853926 0.433919i
\(653\) −12.2450 + 12.2450i −0.479186 + 0.479186i −0.904871 0.425685i \(-0.860033\pi\)
0.425685 + 0.904871i \(0.360033\pi\)
\(654\) −41.9436 6.66677i −1.64013 0.260691i
\(655\) −24.5195 + 14.4769i −0.958056 + 0.565659i
\(656\) −30.7346 22.4330i −1.19998 0.875862i
\(657\) 27.6552 + 27.6552i 1.07893 + 1.07893i
\(658\) 7.76171 5.63272i 0.302583 0.219586i
\(659\) 33.1519 1.29141 0.645707 0.763586i \(-0.276563\pi\)
0.645707 + 0.763586i \(0.276563\pi\)
\(660\) 6.52692 10.2436i 0.254060 0.398730i
\(661\) 13.0904 0.509157 0.254578 0.967052i \(-0.418063\pi\)
0.254578 + 0.967052i \(0.418063\pi\)
\(662\) 11.9138 8.64589i 0.463042 0.336032i
\(663\) 16.8493 + 16.8493i 0.654374 + 0.654374i
\(664\) 28.8415 + 14.7552i 1.11927 + 0.572613i
\(665\) 6.02597 + 1.55185i 0.233677 + 0.0601782i
\(666\) −43.2509 6.87456i −1.67594 0.266384i
\(667\) 5.40488 5.40488i 0.209278 0.209278i
\(668\) 5.54381 + 10.9099i 0.214497 + 0.422116i
\(669\) 39.4654i 1.52582i
\(670\) −15.3066 38.8040i −0.591346 1.49913i
\(671\) 0.568710i 0.0219548i
\(672\) 0.112822 41.1946i 0.00435219 1.58912i
\(673\) −17.0954 + 17.0954i −0.658979 + 0.658979i −0.955138 0.296160i \(-0.904294\pi\)
0.296160 + 0.955138i \(0.404294\pi\)
\(674\) 0.256107 1.61128i 0.00986486 0.0620642i
\(675\) 3.08008 + 10.6592i 0.118552 + 0.410272i
\(676\) 10.1570 + 3.31251i 0.390653 + 0.127404i
\(677\) −19.8258 19.8258i −0.761966 0.761966i 0.214712 0.976678i \(-0.431119\pi\)
−0.976678 + 0.214712i \(0.931119\pi\)
\(678\) 9.70790 + 13.3772i 0.372830 + 0.513748i
\(679\) −36.5291 −1.40186
\(680\) −0.812590 13.4224i −0.0311614 0.514727i
\(681\) 74.1597 2.84181
\(682\) 5.57745 + 7.68556i 0.213572 + 0.294295i
\(683\) −9.54011 9.54011i −0.365042 0.365042i 0.500623 0.865665i \(-0.333104\pi\)
−0.865665 + 0.500623i \(0.833104\pi\)
\(684\) −7.31669 2.38620i −0.279761 0.0912387i
\(685\) −7.33011 + 28.4635i −0.280069 + 1.08753i
\(686\) 3.86475 24.3149i 0.147557 0.928346i
\(687\) 7.89167 7.89167i 0.301086 0.301086i
\(688\) 6.47675 + 41.4806i 0.246924 + 1.58143i
\(689\) 38.2382i 1.45676i
\(690\) −22.1718 9.62805i −0.844066 0.366534i
\(691\) 6.36671i 0.242201i −0.992640 0.121101i \(-0.961358\pi\)
0.992640 0.121101i \(-0.0386423\pi\)
\(692\) −8.69113 17.1036i −0.330387 0.650181i
\(693\) 7.85868 7.85868i 0.298526 0.298526i
\(694\) −2.39636 0.380892i −0.0909647 0.0144585i
\(695\) 1.70049 + 2.88013i 0.0645034 + 0.109249i
\(696\) −8.82145 + 17.2430i −0.334376 + 0.653593i
\(697\) −14.3016 14.3016i −0.541710 0.541710i
\(698\) 20.3250 14.7500i 0.769314 0.558296i
\(699\) −20.9759 −0.793382
\(700\) −27.8122 0.944783i −1.05120 0.0357094i
\(701\) −6.31090 −0.238359 −0.119180 0.992873i \(-0.538026\pi\)
−0.119180 + 0.992873i \(0.538026\pi\)
\(702\) −10.8776 + 7.89395i −0.410549 + 0.297938i
\(703\) −5.69050 5.69050i −0.214621 0.214621i
\(704\) −4.85828 6.73328i −0.183103 0.253770i
\(705\) 7.24960 + 12.2787i 0.273036 + 0.462441i
\(706\) 23.2340 + 3.69294i 0.874421 + 0.138986i
\(707\) −10.0439 + 10.0439i −0.377738 + 0.377738i
\(708\) −59.3881 + 30.1778i −2.23194 + 1.13415i
\(709\) 8.83115i 0.331661i 0.986154 + 0.165830i \(0.0530305\pi\)
−0.986154 + 0.165830i \(0.946970\pi\)
\(710\) −0.616742 0.267819i −0.0231459 0.0100511i
\(711\) 9.04756i 0.339310i
\(712\) 10.7057 + 33.1339i 0.401213 + 1.24175i
\(713\) 13.3629 13.3629i 0.500445 0.500445i
\(714\) 3.43724 21.6252i 0.128636 0.809303i
\(715\) 2.47873 9.62514i 0.0926994 0.359960i
\(716\) −13.1729 + 40.3915i −0.492295 + 1.50950i
\(717\) −23.9050 23.9050i −0.892749 0.892749i
\(718\) −15.0077 20.6801i −0.560082 0.771776i
\(719\) −6.07284 −0.226479 −0.113239 0.993568i \(-0.536123\pi\)
−0.113239 + 0.993568i \(0.536123\pi\)
\(720\) 34.2551 + 3.33879i 1.27661 + 0.124429i
\(721\) 48.5438 1.80787
\(722\) −0.830627 1.14458i −0.0309127 0.0425968i
\(723\) −21.2661 21.2661i −0.790897 0.790897i
\(724\) −4.37145 + 13.4040i −0.162464 + 0.498154i
\(725\) 11.4564 + 6.31981i 0.425481 + 0.234712i
\(726\) −5.76452 + 36.2671i −0.213941 + 1.34600i
\(727\) −7.04427 + 7.04427i −0.261257 + 0.261257i −0.825565 0.564307i \(-0.809143\pi\)
0.564307 + 0.825565i \(0.309143\pi\)
\(728\) −10.3641 32.0766i −0.384118 1.18884i
\(729\) 39.4967i 1.46284i
\(730\) −11.7939 29.8989i −0.436511 1.10661i
\(731\) 22.3157i 0.825378i
\(732\) −2.55670 + 1.29918i −0.0944983 + 0.0480190i
\(733\) −5.60729 + 5.60729i −0.207110 + 0.207110i −0.803038 0.595928i \(-0.796784\pi\)
0.595928 + 0.803038i \(0.296784\pi\)
\(734\) 12.5481 + 1.99447i 0.463160 + 0.0736174i
\(735\) −4.21659 1.08588i −0.155531 0.0400535i
\(736\) −11.7160 + 11.6520i −0.431856 + 0.429497i
\(737\) −9.68079 9.68079i −0.356597 0.356597i
\(738\) 41.8968 30.4047i 1.54224 1.11921i
\(739\) 1.95220 0.0718127 0.0359063 0.999355i \(-0.488568\pi\)
0.0359063 + 0.999355i \(0.488568\pi\)
\(740\) 30.3521 + 19.3396i 1.11577 + 0.710937i
\(741\) −11.2073 −0.411711
\(742\) −28.4386 + 20.6381i −1.04401 + 0.757648i
\(743\) 15.3093 + 15.3093i 0.561643 + 0.561643i 0.929774 0.368131i \(-0.120002\pi\)
−0.368131 + 0.929774i \(0.620002\pi\)
\(744\) −21.8100 + 42.6312i −0.799593 + 1.56293i
\(745\) 22.3829 13.2154i 0.820047 0.484175i
\(746\) −32.1797 5.11484i −1.17818 0.187267i
\(747\) −31.1655 + 31.1655i −1.14029 + 1.14029i
\(748\) −1.99933 3.93455i −0.0731026 0.143861i
\(749\) 39.0810i 1.42799i
\(750\) 5.29730 41.0358i 0.193430 1.49841i
\(751\) 24.6066i 0.897906i −0.893555 0.448953i \(-0.851797\pi\)
0.893555 0.448953i \(-0.148203\pi\)
\(752\) 9.63065 1.50372i 0.351194 0.0548351i
\(753\) −0.830896 + 0.830896i −0.0302795 + 0.0302795i
\(754\) −2.48792 + 15.6526i −0.0906046 + 0.570034i
\(755\) −14.6093 + 8.62565i −0.531685 + 0.313919i
\(756\) 11.7418 + 3.82937i 0.427046 + 0.139273i
\(757\) 11.5888 + 11.5888i 0.421202 + 0.421202i 0.885617 0.464415i \(-0.153736\pi\)
−0.464415 + 0.885617i \(0.653736\pi\)
\(758\) 11.2404 + 15.4890i 0.408271 + 0.562585i
\(759\) −7.93339 −0.287964
\(760\) 4.73421 + 4.19372i 0.171728 + 0.152122i
\(761\) 7.77947 0.282006 0.141003 0.990009i \(-0.454967\pi\)
0.141003 + 0.990009i \(0.454967\pi\)
\(762\) −6.05065 8.33761i −0.219192 0.302040i
\(763\) 22.5818 + 22.5818i 0.817515 + 0.817515i
\(764\) −36.3809 11.8650i −1.31622 0.429259i
\(765\) 17.7162 + 4.56240i 0.640530 + 0.164954i
\(766\) −6.02496 + 37.9057i −0.217691 + 1.36959i
\(767\) −38.5452 + 38.5452i −1.39179 + 1.39179i
\(768\) 19.1718 37.2226i 0.691803 1.34316i
\(769\) 8.36208i 0.301544i −0.988569 0.150772i \(-0.951824\pi\)
0.988569 0.150772i \(-0.0481760\pi\)
\(770\) −8.49627