Properties

Label 380.2.k.c.267.3
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.3
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38463 - 0.287770i) q^{2} +(1.15541 + 1.15541i) q^{3} +(1.83438 + 0.796907i) q^{4} +(-0.283261 - 2.21805i) q^{5} +(-1.26732 - 1.93230i) q^{6} +(-3.26325 + 3.26325i) q^{7} +(-2.31060 - 1.63130i) q^{8} -0.330062i q^{9} +O(q^{10})\) \(q+(-1.38463 - 0.287770i) q^{2} +(1.15541 + 1.15541i) q^{3} +(1.83438 + 0.796907i) q^{4} +(-0.283261 - 2.21805i) q^{5} +(-1.26732 - 1.93230i) q^{6} +(-3.26325 + 3.26325i) q^{7} +(-2.31060 - 1.63130i) q^{8} -0.330062i q^{9} +(-0.246078 + 3.15269i) q^{10} +4.56912i q^{11} +(1.19870 + 3.04021i) q^{12} +(-3.90789 + 3.90789i) q^{13} +(5.45745 - 3.57932i) q^{14} +(2.23548 - 2.89004i) q^{15} +(2.72988 + 2.92365i) q^{16} +(3.68739 + 3.68739i) q^{17} +(-0.0949818 + 0.457012i) q^{18} +1.00000 q^{19} +(1.24797 - 4.29448i) q^{20} -7.54078 q^{21} +(1.31485 - 6.32652i) q^{22} +(-0.671647 - 0.671647i) q^{23} +(-0.784875 - 4.55450i) q^{24} +(-4.83953 + 1.25658i) q^{25} +(6.53553 - 4.28639i) q^{26} +(3.84758 - 3.84758i) q^{27} +(-8.58655 + 3.38553i) q^{28} +1.43401i q^{29} +(-3.92696 + 3.35832i) q^{30} +2.10503i q^{31} +(-2.93852 - 4.83374i) q^{32} +(-5.27920 + 5.27920i) q^{33} +(-4.04454 - 6.16678i) q^{34} +(8.16243 + 6.31372i) q^{35} +(0.263028 - 0.605458i) q^{36} +(3.01280 + 3.01280i) q^{37} +(-1.38463 - 0.287770i) q^{38} -9.03041 q^{39} +(-2.96380 + 5.58712i) q^{40} +3.51686 q^{41} +(10.4412 + 2.17001i) q^{42} +(-1.49689 - 1.49689i) q^{43} +(-3.64116 + 8.38148i) q^{44} +(-0.732095 + 0.0934937i) q^{45} +(0.736700 + 1.12326i) q^{46} +(-5.49969 + 5.49969i) q^{47} +(-0.223890 + 6.53214i) q^{48} -14.2977i q^{49} +(7.06254 - 0.347220i) q^{50} +8.52089i q^{51} +(-10.2828 + 4.05432i) q^{52} +(5.92537 - 5.92537i) q^{53} +(-6.43468 + 4.22024i) q^{54} +(10.1345 - 1.29425i) q^{55} +(12.8634 - 2.21674i) q^{56} +(1.15541 + 1.15541i) q^{57} +(0.412665 - 1.98557i) q^{58} +1.07843 q^{59} +(6.40380 - 3.51996i) q^{60} -11.0480 q^{61} +(0.605762 - 2.91467i) q^{62} +(1.07708 + 1.07708i) q^{63} +(2.67775 + 7.53855i) q^{64} +(9.77486 + 7.56095i) q^{65} +(8.82890 - 5.79052i) q^{66} +(-1.29688 + 1.29688i) q^{67} +(3.82556 + 9.70258i) q^{68} -1.55205i q^{69} +(-9.48501 - 11.0910i) q^{70} -1.88311i q^{71} +(-0.538428 + 0.762641i) q^{72} +(-3.20108 + 3.20108i) q^{73} +(-3.30461 - 5.03859i) q^{74} +(-7.04349 - 4.13977i) q^{75} +(1.83438 + 0.796907i) q^{76} +(-14.9102 - 14.9102i) q^{77} +(12.5037 + 2.59868i) q^{78} +2.07546 q^{79} +(5.71156 - 6.88318i) q^{80} +7.90087 q^{81} +(-4.86954 - 1.01205i) q^{82} +(-2.08842 - 2.08842i) q^{83} +(-13.8326 - 6.00930i) q^{84} +(7.13434 - 9.22333i) q^{85} +(1.64187 + 2.50339i) q^{86} +(-1.65687 + 1.65687i) q^{87} +(7.45358 - 10.5574i) q^{88} -10.9661i q^{89} +(1.04058 + 0.0812209i) q^{90} -25.5049i q^{91} +(-0.696814 - 1.76729i) q^{92} +(-2.43216 + 2.43216i) q^{93} +(9.19765 - 6.03237i) q^{94} +(-0.283261 - 2.21805i) q^{95} +(2.18976 - 8.98014i) q^{96} +(1.72131 + 1.72131i) q^{97} +(-4.11443 + 19.7969i) q^{98} +1.50809 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38463 0.287770i −0.979078 0.203484i
\(3\) 1.15541 + 1.15541i 0.667075 + 0.667075i 0.957038 0.289963i \(-0.0936428\pi\)
−0.289963 + 0.957038i \(0.593643\pi\)
\(4\) 1.83438 + 0.796907i 0.917189 + 0.398453i
\(5\) −0.283261 2.21805i −0.126678 0.991944i
\(6\) −1.26732 1.93230i −0.517380 0.788858i
\(7\) −3.26325 + 3.26325i −1.23339 + 1.23339i −0.270742 + 0.962652i \(0.587269\pi\)
−0.962652 + 0.270742i \(0.912731\pi\)
\(8\) −2.31060 1.63130i −0.816921 0.576750i
\(9\) 0.330062i 0.110021i
\(10\) −0.246078 + 3.15269i −0.0778167 + 0.996968i
\(11\) 4.56912i 1.37764i 0.724932 + 0.688820i \(0.241871\pi\)
−0.724932 + 0.688820i \(0.758129\pi\)
\(12\) 1.19870 + 3.04021i 0.346036 + 0.877632i
\(13\) −3.90789 + 3.90789i −1.08385 + 1.08385i −0.0877064 + 0.996146i \(0.527954\pi\)
−0.996146 + 0.0877064i \(0.972046\pi\)
\(14\) 5.45745 3.57932i 1.45857 0.956613i
\(15\) 2.23548 2.89004i 0.577197 0.746205i
\(16\) 2.72988 + 2.92365i 0.682470 + 0.730914i
\(17\) 3.68739 + 3.68739i 0.894324 + 0.894324i 0.994927 0.100602i \(-0.0320770\pi\)
−0.100602 + 0.994927i \(0.532077\pi\)
\(18\) −0.0949818 + 0.457012i −0.0223874 + 0.107719i
\(19\) 1.00000 0.229416
\(20\) 1.24797 4.29448i 0.279055 0.960275i
\(21\) −7.54078 −1.64553
\(22\) 1.31485 6.32652i 0.280328 1.34882i
\(23\) −0.671647 0.671647i −0.140048 0.140048i 0.633607 0.773655i \(-0.281574\pi\)
−0.773655 + 0.633607i \(0.781574\pi\)
\(24\) −0.784875 4.55450i −0.160212 0.929684i
\(25\) −4.83953 + 1.25658i −0.967905 + 0.251315i
\(26\) 6.53553 4.28639i 1.28172 0.840630i
\(27\) 3.84758 3.84758i 0.740468 0.740468i
\(28\) −8.58655 + 3.38553i −1.62270 + 0.639805i
\(29\) 1.43401i 0.266289i 0.991097 + 0.133145i \(0.0425074\pi\)
−0.991097 + 0.133145i \(0.957493\pi\)
\(30\) −3.92696 + 3.35832i −0.716962 + 0.613143i
\(31\) 2.10503i 0.378074i 0.981970 + 0.189037i \(0.0605366\pi\)
−0.981970 + 0.189037i \(0.939463\pi\)
\(32\) −2.93852 4.83374i −0.519462 0.854493i
\(33\) −5.27920 + 5.27920i −0.918990 + 0.918990i
\(34\) −4.04454 6.16678i −0.693633 1.05759i
\(35\) 8.16243 + 6.31372i 1.37970 + 1.06721i
\(36\) 0.263028 0.605458i 0.0438381 0.100910i
\(37\) 3.01280 + 3.01280i 0.495301 + 0.495301i 0.909972 0.414670i \(-0.136103\pi\)
−0.414670 + 0.909972i \(0.636103\pi\)
\(38\) −1.38463 0.287770i −0.224616 0.0466824i
\(39\) −9.03041 −1.44602
\(40\) −2.96380 + 5.58712i −0.468618 + 0.883401i
\(41\) 3.51686 0.549241 0.274621 0.961553i \(-0.411448\pi\)
0.274621 + 0.961553i \(0.411448\pi\)
\(42\) 10.4412 + 2.17001i 1.61111 + 0.334840i
\(43\) −1.49689 1.49689i −0.228273 0.228273i 0.583698 0.811971i \(-0.301605\pi\)
−0.811971 + 0.583698i \(0.801605\pi\)
\(44\) −3.64116 + 8.38148i −0.548925 + 1.26356i
\(45\) −0.732095 + 0.0934937i −0.109134 + 0.0139372i
\(46\) 0.736700 + 1.12326i 0.108621 + 0.165616i
\(47\) −5.49969 + 5.49969i −0.802212 + 0.802212i −0.983441 0.181229i \(-0.941993\pi\)
0.181229 + 0.983441i \(0.441993\pi\)
\(48\) −0.223890 + 6.53214i −0.0323157 + 0.942834i
\(49\) 14.2977i 2.04252i
\(50\) 7.06254 0.347220i 0.998794 0.0491044i
\(51\) 8.52089i 1.19316i
\(52\) −10.2828 + 4.05432i −1.42596 + 0.562233i
\(53\) 5.92537 5.92537i 0.813913 0.813913i −0.171305 0.985218i \(-0.554798\pi\)
0.985218 + 0.171305i \(0.0547985\pi\)
\(54\) −6.43468 + 4.22024i −0.875649 + 0.574302i
\(55\) 10.1345 1.29425i 1.36654 0.174517i
\(56\) 12.8634 2.21674i 1.71895 0.296225i
\(57\) 1.15541 + 1.15541i 0.153038 + 0.153038i
\(58\) 0.412665 1.98557i 0.0541855 0.260718i
\(59\) 1.07843 0.140400 0.0702000 0.997533i \(-0.477636\pi\)
0.0702000 + 0.997533i \(0.477636\pi\)
\(60\) 6.40380 3.51996i 0.826727 0.454425i
\(61\) −11.0480 −1.41455 −0.707277 0.706936i \(-0.750077\pi\)
−0.707277 + 0.706936i \(0.750077\pi\)
\(62\) 0.605762 2.91467i 0.0769319 0.370164i
\(63\) 1.07708 + 1.07708i 0.135699 + 0.135699i
\(64\) 2.67775 + 7.53855i 0.334719 + 0.942318i
\(65\) 9.77486 + 7.56095i 1.21242 + 0.937820i
\(66\) 8.82890 5.79052i 1.08676 0.712763i
\(67\) −1.29688 + 1.29688i −0.158439 + 0.158439i −0.781875 0.623436i \(-0.785736\pi\)
0.623436 + 0.781875i \(0.285736\pi\)
\(68\) 3.82556 + 9.70258i 0.463918 + 1.17661i
\(69\) 1.55205i 0.186845i
\(70\) −9.48501 11.0910i −1.13368 1.32563i
\(71\) 1.88311i 0.223484i −0.993737 0.111742i \(-0.964357\pi\)
0.993737 0.111742i \(-0.0356430\pi\)
\(72\) −0.538428 + 0.762641i −0.0634544 + 0.0898781i
\(73\) −3.20108 + 3.20108i −0.374659 + 0.374659i −0.869171 0.494512i \(-0.835347\pi\)
0.494512 + 0.869171i \(0.335347\pi\)
\(74\) −3.30461 5.03859i −0.384153 0.585725i
\(75\) −7.04349 4.13977i −0.813312 0.478019i
\(76\) 1.83438 + 0.796907i 0.210417 + 0.0914115i
\(77\) −14.9102 14.9102i −1.69917 1.69917i
\(78\) 12.5037 + 2.59868i 1.41577 + 0.294242i
\(79\) 2.07546 0.233507 0.116753 0.993161i \(-0.462751\pi\)
0.116753 + 0.993161i \(0.462751\pi\)
\(80\) 5.71156 6.88318i 0.638571 0.769563i
\(81\) 7.90087 0.877875
\(82\) −4.86954 1.01205i −0.537750 0.111762i
\(83\) −2.08842 2.08842i −0.229234 0.229234i 0.583139 0.812373i \(-0.301824\pi\)
−0.812373 + 0.583139i \(0.801824\pi\)
\(84\) −13.8326 6.00930i −1.50926 0.655668i
\(85\) 7.13434 9.22333i 0.773828 1.00041i
\(86\) 1.64187 + 2.50339i 0.177048 + 0.269948i
\(87\) −1.65687 + 1.65687i −0.177635 + 0.177635i
\(88\) 7.45358 10.5574i 0.794554 1.12542i
\(89\) 10.9661i 1.16240i −0.813759 0.581202i \(-0.802583\pi\)
0.813759 0.581202i \(-0.197417\pi\)
\(90\) 1.04058 + 0.0812209i 0.109687 + 0.00856144i
\(91\) 25.5049i 2.67363i
\(92\) −0.696814 1.76729i −0.0726479 0.184253i
\(93\) −2.43216 + 2.43216i −0.252204 + 0.252204i
\(94\) 9.19765 6.03237i 0.948666 0.622191i
\(95\) −0.283261 2.21805i −0.0290620 0.227568i
\(96\) 2.18976 8.98014i 0.223491 0.916532i
\(97\) 1.72131 + 1.72131i 0.174773 + 0.174773i 0.789073 0.614300i \(-0.210561\pi\)
−0.614300 + 0.789073i \(0.710561\pi\)
\(98\) −4.11443 + 19.7969i −0.415620 + 1.99979i
\(99\) 1.50809 0.151569
\(100\) −9.87889 1.55161i −0.987889 0.155161i
\(101\) 15.3995 1.53231 0.766154 0.642658i \(-0.222168\pi\)
0.766154 + 0.642658i \(0.222168\pi\)
\(102\) 2.45205 11.7982i 0.242790 1.16820i
\(103\) −0.538076 0.538076i −0.0530182 0.0530182i 0.680101 0.733119i \(-0.261936\pi\)
−0.733119 + 0.680101i \(0.761936\pi\)
\(104\) 15.4045 2.65465i 1.51053 0.260309i
\(105\) 2.13601 + 16.7259i 0.208453 + 1.63228i
\(106\) −9.90957 + 6.49928i −0.962502 + 0.631266i
\(107\) −2.15177 + 2.15177i −0.208019 + 0.208019i −0.803425 0.595406i \(-0.796991\pi\)
0.595406 + 0.803425i \(0.296991\pi\)
\(108\) 10.1241 3.99175i 0.974190 0.384107i
\(109\) 12.9951i 1.24471i −0.782737 0.622353i \(-0.786177\pi\)
0.782737 0.622353i \(-0.213823\pi\)
\(110\) −14.4050 1.12436i −1.37346 0.107203i
\(111\) 6.96203i 0.660807i
\(112\) −18.4489 0.632338i −1.74326 0.0597503i
\(113\) 4.57006 4.57006i 0.429915 0.429915i −0.458685 0.888599i \(-0.651679\pi\)
0.888599 + 0.458685i \(0.151679\pi\)
\(114\) −1.26732 1.93230i −0.118695 0.180976i
\(115\) −1.29950 + 1.68000i −0.121179 + 0.156661i
\(116\) −1.14277 + 2.63052i −0.106104 + 0.244237i
\(117\) 1.28984 + 1.28984i 0.119246 + 0.119246i
\(118\) −1.49323 0.310340i −0.137463 0.0285692i
\(119\) −24.0658 −2.20611
\(120\) −9.87980 + 3.03101i −0.901899 + 0.276692i
\(121\) −9.87682 −0.897892
\(122\) 15.2974 + 3.17929i 1.38496 + 0.287839i
\(123\) 4.06341 + 4.06341i 0.366385 + 0.366385i
\(124\) −1.67751 + 3.86141i −0.150645 + 0.346765i
\(125\) 4.15801 + 10.3784i 0.371903 + 0.928271i
\(126\) −1.18140 1.80130i −0.105247 0.160472i
\(127\) 6.46266 6.46266i 0.573468 0.573468i −0.359628 0.933096i \(-0.617096\pi\)
0.933096 + 0.359628i \(0.117096\pi\)
\(128\) −1.53832 11.2086i −0.135969 0.990713i
\(129\) 3.45904i 0.304551i
\(130\) −11.3587 13.2820i −0.996224 1.16491i
\(131\) 11.2765i 0.985230i 0.870247 + 0.492615i \(0.163959\pi\)
−0.870247 + 0.492615i \(0.836041\pi\)
\(132\) −13.8911 + 5.47701i −1.20906 + 0.476713i
\(133\) −3.26325 + 3.26325i −0.282960 + 0.282960i
\(134\) 2.16889 1.42249i 0.187364 0.122884i
\(135\) −9.62402 7.44427i −0.828303 0.640701i
\(136\) −2.50486 14.5353i −0.214790 1.24639i
\(137\) 4.91194 + 4.91194i 0.419655 + 0.419655i 0.885085 0.465430i \(-0.154100\pi\)
−0.465430 + 0.885085i \(0.654100\pi\)
\(138\) −0.446634 + 2.14901i −0.0380200 + 0.182936i
\(139\) 13.9325 1.18174 0.590870 0.806767i \(-0.298785\pi\)
0.590870 + 0.806767i \(0.298785\pi\)
\(140\) 9.94152 + 18.0864i 0.840212 + 1.52858i
\(141\) −12.7088 −1.07027
\(142\) −0.541902 + 2.60740i −0.0454754 + 0.218808i
\(143\) −17.8556 17.8556i −1.49316 1.49316i
\(144\) 0.964987 0.901029i 0.0804156 0.0750858i
\(145\) 3.18071 0.406200i 0.264144 0.0337330i
\(146\) 5.35348 3.51113i 0.443057 0.290583i
\(147\) 16.5196 16.5196i 1.36252 1.36252i
\(148\) 3.12569 + 7.92753i 0.256930 + 0.651639i
\(149\) 16.9391i 1.38771i 0.720116 + 0.693853i \(0.244088\pi\)
−0.720116 + 0.693853i \(0.755912\pi\)
\(150\) 8.56130 + 7.75894i 0.699027 + 0.633514i
\(151\) 23.4511i 1.90842i 0.299137 + 0.954210i \(0.403301\pi\)
−0.299137 + 0.954210i \(0.596699\pi\)
\(152\) −2.31060 1.63130i −0.187414 0.132316i
\(153\) 1.21707 1.21707i 0.0983941 0.0983941i
\(154\) 16.3543 + 24.9357i 1.31787 + 2.00938i
\(155\) 4.66906 0.596272i 0.375028 0.0478937i
\(156\) −16.5652 7.19640i −1.32628 0.576173i
\(157\) 14.2678 + 14.2678i 1.13869 + 1.13869i 0.988684 + 0.150010i \(0.0479307\pi\)
0.150010 + 0.988684i \(0.452069\pi\)
\(158\) −2.87373 0.597253i −0.228622 0.0475149i
\(159\) 13.6925 1.08588
\(160\) −9.88914 + 7.88701i −0.781805 + 0.623523i
\(161\) 4.38351 0.345469
\(162\) −10.9398 2.27363i −0.859508 0.178633i
\(163\) 9.47832 + 9.47832i 0.742400 + 0.742400i 0.973039 0.230640i \(-0.0740818\pi\)
−0.230640 + 0.973039i \(0.574082\pi\)
\(164\) 6.45125 + 2.80261i 0.503758 + 0.218847i
\(165\) 13.2049 + 10.2141i 1.02800 + 0.795170i
\(166\) 2.29069 + 3.49266i 0.177792 + 0.271083i
\(167\) 13.9319 13.9319i 1.07808 1.07808i 0.0814021 0.996681i \(-0.474060\pi\)
0.996681 0.0814021i \(-0.0259398\pi\)
\(168\) 17.4237 + 12.3012i 1.34427 + 0.949062i
\(169\) 17.5432i 1.34947i
\(170\) −12.5326 + 10.7178i −0.961206 + 0.822019i
\(171\) 0.330062i 0.0252405i
\(172\) −1.55298 3.93874i −0.118414 0.300326i
\(173\) 1.27870 1.27870i 0.0972178 0.0972178i −0.656825 0.754043i \(-0.728101\pi\)
0.754043 + 0.656825i \(0.228101\pi\)
\(174\) 2.77094 1.81735i 0.210064 0.137773i
\(175\) 11.6921 19.8931i 0.883838 1.50378i
\(176\) −13.3585 + 12.4731i −1.00694 + 0.940198i
\(177\) 1.24603 + 1.24603i 0.0936575 + 0.0936575i
\(178\) −3.15571 + 15.1839i −0.236530 + 1.13808i
\(179\) 3.98743 0.298034 0.149017 0.988835i \(-0.452389\pi\)
0.149017 + 0.988835i \(0.452389\pi\)
\(180\) −1.41744 0.411909i −0.105650 0.0307019i
\(181\) 19.3398 1.43752 0.718758 0.695261i \(-0.244711\pi\)
0.718758 + 0.695261i \(0.244711\pi\)
\(182\) −7.33952 + 35.3147i −0.544042 + 2.61770i
\(183\) −12.7650 12.7650i −0.943615 0.943615i
\(184\) 0.456253 + 2.64756i 0.0336354 + 0.195181i
\(185\) 5.82914 7.53596i 0.428567 0.554055i
\(186\) 4.06754 2.66773i 0.298247 0.195608i
\(187\) −16.8481 + 16.8481i −1.23206 + 1.23206i
\(188\) −14.4712 + 5.70576i −1.05542 + 0.416136i
\(189\) 25.1113i 1.82658i
\(190\) −0.246078 + 3.15269i −0.0178524 + 0.228720i
\(191\) 1.41454i 0.102352i −0.998690 0.0511761i \(-0.983703\pi\)
0.998690 0.0511761i \(-0.0162970\pi\)
\(192\) −5.61621 + 11.8040i −0.405315 + 0.851880i
\(193\) −7.89499 + 7.89499i −0.568294 + 0.568294i −0.931650 0.363356i \(-0.881631\pi\)
0.363356 + 0.931650i \(0.381631\pi\)
\(194\) −1.88803 2.87871i −0.135553 0.206680i
\(195\) 2.55797 + 20.0299i 0.183180 + 1.43437i
\(196\) 11.3939 26.2273i 0.813850 1.87338i
\(197\) −17.3505 17.3505i −1.23617 1.23617i −0.961554 0.274617i \(-0.911449\pi\)
−0.274617 0.961554i \(-0.588551\pi\)
\(198\) −2.08814 0.433983i −0.148398 0.0308418i
\(199\) −22.0059 −1.55996 −0.779979 0.625805i \(-0.784770\pi\)
−0.779979 + 0.625805i \(0.784770\pi\)
\(200\) 13.2321 + 4.99125i 0.935648 + 0.352935i
\(201\) −2.99685 −0.211382
\(202\) −21.3225 4.43151i −1.50025 0.311800i
\(203\) −4.67954 4.67954i −0.328439 0.328439i
\(204\) −6.79036 + 15.6305i −0.475420 + 1.09436i
\(205\) −0.996190 7.80059i −0.0695769 0.544817i
\(206\) 0.590192 + 0.899876i 0.0411206 + 0.0626974i
\(207\) −0.221685 + 0.221685i −0.0154082 + 0.0154082i
\(208\) −22.0934 0.757252i −1.53190 0.0525060i
\(209\) 4.56912i 0.316052i
\(210\) 1.85562 23.7737i 0.128050 1.64054i
\(211\) 13.2621i 0.913002i 0.889723 + 0.456501i \(0.150898\pi\)
−0.889723 + 0.456501i \(0.849102\pi\)
\(212\) 15.5913 6.14740i 1.07082 0.422205i
\(213\) 2.17576 2.17576i 0.149081 0.149081i
\(214\) 3.59860 2.36018i 0.245995 0.161338i
\(215\) −2.89617 + 3.74419i −0.197517 + 0.255352i
\(216\) −15.1668 + 2.61368i −1.03197 + 0.177838i
\(217\) −6.86923 6.86923i −0.466314 0.466314i
\(218\) −3.73960 + 17.9934i −0.253278 + 1.21866i
\(219\) −7.39712 −0.499851
\(220\) 19.6220 + 5.70214i 1.32291 + 0.384438i
\(221\) −28.8198 −1.93863
\(222\) 2.00346 9.63981i 0.134464 0.646981i
\(223\) −6.10795 6.10795i −0.409019 0.409019i 0.472378 0.881396i \(-0.343396\pi\)
−0.881396 + 0.472378i \(0.843396\pi\)
\(224\) 25.3629 + 6.18459i 1.69463 + 0.413225i
\(225\) 0.414748 + 1.59734i 0.0276499 + 0.106490i
\(226\) −7.64294 + 5.01269i −0.508401 + 0.333439i
\(227\) 14.8986 14.8986i 0.988853 0.988853i −0.0110855 0.999939i \(-0.503529\pi\)
0.999939 + 0.0110855i \(0.00352868\pi\)
\(228\) 1.19870 + 3.04021i 0.0793860 + 0.201343i
\(229\) 25.6102i 1.69237i 0.532888 + 0.846186i \(0.321107\pi\)
−0.532888 + 0.846186i \(0.678893\pi\)
\(230\) 2.28277 1.95222i 0.150521 0.128725i
\(231\) 34.4547i 2.26695i
\(232\) 2.33930 3.31343i 0.153582 0.217537i
\(233\) 10.2855 10.2855i 0.673827 0.673827i −0.284769 0.958596i \(-0.591917\pi\)
0.958596 + 0.284769i \(0.0919169\pi\)
\(234\) −1.41477 2.15713i −0.0924866 0.141016i
\(235\) 13.7565 + 10.6408i 0.897372 + 0.694126i
\(236\) 1.97825 + 0.859411i 0.128773 + 0.0559429i
\(237\) 2.39800 + 2.39800i 0.155767 + 0.155767i
\(238\) 33.3221 + 6.92541i 2.15995 + 0.448908i
\(239\) −3.19293 −0.206534 −0.103267 0.994654i \(-0.532930\pi\)
−0.103267 + 0.994654i \(0.532930\pi\)
\(240\) 14.5521 1.35370i 0.939332 0.0873812i
\(241\) −11.7591 −0.757470 −0.378735 0.925505i \(-0.623641\pi\)
−0.378735 + 0.925505i \(0.623641\pi\)
\(242\) 13.6757 + 2.84225i 0.879107 + 0.182707i
\(243\) −2.41401 2.41401i −0.154859 0.154859i
\(244\) −20.2662 8.80425i −1.29741 0.563634i
\(245\) −31.7130 + 4.04997i −2.02607 + 0.258743i
\(246\) −4.45698 6.79563i −0.284167 0.433274i
\(247\) −3.90789 + 3.90789i −0.248653 + 0.248653i
\(248\) 3.43392 4.86387i 0.218054 0.308856i
\(249\) 4.82595i 0.305832i
\(250\) −2.77070 15.5667i −0.175234 0.984527i
\(251\) 14.5530i 0.918575i 0.888288 + 0.459287i \(0.151895\pi\)
−0.888288 + 0.459287i \(0.848105\pi\)
\(252\) 1.11743 + 2.83409i 0.0703917 + 0.178531i
\(253\) 3.06883 3.06883i 0.192936 0.192936i
\(254\) −10.8081 + 7.08861i −0.678162 + 0.444779i
\(255\) 18.8998 2.41364i 1.18355 0.151148i
\(256\) −1.09552 + 15.9625i −0.0684697 + 0.997653i
\(257\) −11.5648 11.5648i −0.721392 0.721392i 0.247496 0.968889i \(-0.420392\pi\)
−0.968889 + 0.247496i \(0.920392\pi\)
\(258\) −0.995406 + 4.78947i −0.0619713 + 0.298180i
\(259\) −19.6631 −1.22180
\(260\) 11.9054 + 21.6593i 0.738342 + 1.34325i
\(261\) 0.473312 0.0292973
\(262\) 3.24503 15.6137i 0.200478 0.964618i
\(263\) −0.240407 0.240407i −0.0148241 0.0148241i 0.699656 0.714480i \(-0.253337\pi\)
−0.714480 + 0.699656i \(0.753337\pi\)
\(264\) 20.8100 3.58618i 1.28077 0.220714i
\(265\) −14.8212 11.4644i −0.910461 0.704251i
\(266\) 5.45745 3.57932i 0.334618 0.219462i
\(267\) 12.6703 12.6703i 0.775411 0.775411i
\(268\) −3.41246 + 1.34547i −0.208449 + 0.0821879i
\(269\) 5.22590i 0.318629i 0.987228 + 0.159314i \(0.0509283\pi\)
−0.987228 + 0.159314i \(0.949072\pi\)
\(270\) 11.1834 + 13.0770i 0.680601 + 0.795843i
\(271\) 10.0441i 0.610137i −0.952330 0.305069i \(-0.901321\pi\)
0.952330 0.305069i \(-0.0986794\pi\)
\(272\) −0.714526 + 20.8468i −0.0433245 + 1.26402i
\(273\) 29.4685 29.4685i 1.78352 1.78352i
\(274\) −5.38769 8.21471i −0.325482 0.496269i
\(275\) −5.74145 22.1124i −0.346222 1.33343i
\(276\) 1.23684 2.84705i 0.0744491 0.171372i
\(277\) −1.69900 1.69900i −0.102083 0.102083i 0.654221 0.756304i \(-0.272997\pi\)
−0.756304 + 0.654221i \(0.772997\pi\)
\(278\) −19.2913 4.00935i −1.15702 0.240465i
\(279\) 0.694788 0.0415959
\(280\) −8.56056 27.9038i −0.511591 1.66757i
\(281\) −8.96932 −0.535065 −0.267532 0.963549i \(-0.586208\pi\)
−0.267532 + 0.963549i \(0.586208\pi\)
\(282\) 17.5969 + 3.65720i 1.04788 + 0.217783i
\(283\) 10.6254 + 10.6254i 0.631617 + 0.631617i 0.948474 0.316856i \(-0.102627\pi\)
−0.316856 + 0.948474i \(0.602627\pi\)
\(284\) 1.50066 3.45434i 0.0890480 0.204977i
\(285\) 2.23548 2.89004i 0.132418 0.171191i
\(286\) 19.5850 + 29.8616i 1.15809 + 1.76575i
\(287\) −11.4764 + 11.4764i −0.677431 + 0.677431i
\(288\) −1.59543 + 0.969894i −0.0940119 + 0.0571516i
\(289\) 10.1937i 0.599632i
\(290\) −4.52099 0.352878i −0.265482 0.0207217i
\(291\) 3.97764i 0.233173i
\(292\) −8.42296 + 3.32103i −0.492917 + 0.194349i
\(293\) 21.8787 21.8787i 1.27817 1.27817i 0.336476 0.941692i \(-0.390765\pi\)
0.941692 0.336476i \(-0.109235\pi\)
\(294\) −27.6274 + 18.1197i −1.61126 + 1.05676i
\(295\) −0.305478 2.39202i −0.0177856 0.139269i
\(296\) −2.04661 11.8761i −0.118957 0.690287i
\(297\) 17.5800 + 17.5800i 1.02010 + 1.02010i
\(298\) 4.87457 23.4543i 0.282376 1.35867i
\(299\) 5.24944 0.303583
\(300\) −9.62141 13.2069i −0.555492 0.762501i
\(301\) 9.76946 0.563102
\(302\) 6.74850 32.4709i 0.388333 1.86849i
\(303\) 17.7927 + 17.7927i 1.02216 + 1.02216i
\(304\) 2.72988 + 2.92365i 0.156569 + 0.167683i
\(305\) 3.12948 + 24.5051i 0.179193 + 1.40316i
\(306\) −2.03542 + 1.33495i −0.116357 + 0.0763139i
\(307\) −16.5064 + 16.5064i −0.942071 + 0.942071i −0.998412 0.0563407i \(-0.982057\pi\)
0.0563407 + 0.998412i \(0.482057\pi\)
\(308\) −15.4689 39.2329i −0.881421 2.23550i
\(309\) 1.24340i 0.0707343i
\(310\) −6.63649 0.518000i −0.376927 0.0294204i
\(311\) 19.4406i 1.10238i −0.834381 0.551188i \(-0.814175\pi\)
0.834381 0.551188i \(-0.185825\pi\)
\(312\) 20.8657 + 14.7313i 1.18129 + 0.833994i
\(313\) −8.63499 + 8.63499i −0.488079 + 0.488079i −0.907699 0.419621i \(-0.862163\pi\)
0.419621 + 0.907699i \(0.362163\pi\)
\(314\) −15.6497 23.8614i −0.883165 1.34658i
\(315\) 2.08392 2.69411i 0.117415 0.151796i
\(316\) 3.80717 + 1.65394i 0.214170 + 0.0930416i
\(317\) 13.6017 + 13.6017i 0.763949 + 0.763949i 0.977034 0.213085i \(-0.0683510\pi\)
−0.213085 + 0.977034i \(0.568351\pi\)
\(318\) −18.9589 3.94027i −1.06316 0.220960i
\(319\) −6.55216 −0.366850
\(320\) 15.9624 8.07477i 0.892325 0.451393i
\(321\) −4.97234 −0.277529
\(322\) −6.06952 1.26144i −0.338241 0.0702974i
\(323\) 3.68739 + 3.68739i 0.205172 + 0.205172i
\(324\) 14.4932 + 6.29626i 0.805177 + 0.349792i
\(325\) 14.0018 23.8229i 0.776678 1.32146i
\(326\) −10.3964 15.8515i −0.575801 0.877934i
\(327\) 15.0147 15.0147i 0.830313 0.830313i
\(328\) −8.12606 5.73704i −0.448687 0.316775i
\(329\) 35.8938i 1.97889i
\(330\) −15.3446 17.9428i −0.844691 0.987716i
\(331\) 21.6643i 1.19078i 0.803437 + 0.595390i \(0.203002\pi\)
−0.803437 + 0.595390i \(0.796998\pi\)
\(332\) −2.16667 5.49522i −0.118912 0.301589i
\(333\) 0.994410 0.994410i 0.0544934 0.0544934i
\(334\) −23.2997 + 15.2813i −1.27490 + 0.836155i
\(335\) 3.24390 + 2.50919i 0.177233 + 0.137092i
\(336\) −20.5854 22.0466i −1.12303 1.20274i
\(337\) 0.169255 + 0.169255i 0.00921991 + 0.00921991i 0.711702 0.702482i \(-0.247925\pi\)
−0.702482 + 0.711702i \(0.747925\pi\)
\(338\) −5.04839 + 24.2907i −0.274596 + 1.32124i
\(339\) 10.5606 0.573571
\(340\) 20.4372 11.2337i 1.10836 0.609231i
\(341\) −9.61810 −0.520849
\(342\) −0.0949818 + 0.457012i −0.00513603 + 0.0247124i
\(343\) 23.8141 + 23.8141i 1.28584 + 1.28584i
\(344\) 1.01684 + 5.90058i 0.0548246 + 0.318138i
\(345\) −3.44254 + 0.439637i −0.185340 + 0.0236692i
\(346\) −2.13849 + 1.40255i −0.114966 + 0.0754016i
\(347\) −22.3067 + 22.3067i −1.19749 + 1.19749i −0.222569 + 0.974917i \(0.571444\pi\)
−0.974917 + 0.222569i \(0.928556\pi\)
\(348\) −4.35969 + 1.71895i −0.233704 + 0.0921455i
\(349\) 19.1551i 1.02535i 0.858583 + 0.512674i \(0.171345\pi\)
−0.858583 + 0.512674i \(0.828655\pi\)
\(350\) −21.9138 + 24.1799i −1.17134 + 1.29247i
\(351\) 30.0718i 1.60512i
\(352\) 22.0859 13.4264i 1.17718 0.715632i
\(353\) 0.692765 0.692765i 0.0368721 0.0368721i −0.688430 0.725302i \(-0.741700\pi\)
0.725302 + 0.688430i \(0.241700\pi\)
\(354\) −1.36672 2.08386i −0.0726402 0.110756i
\(355\) −4.17684 + 0.533412i −0.221684 + 0.0283106i
\(356\) 8.73896 20.1160i 0.463164 1.06614i
\(357\) −27.8058 27.8058i −1.47164 1.47164i
\(358\) −5.52109 1.14746i −0.291799 0.0606452i
\(359\) −13.0487 −0.688684 −0.344342 0.938844i \(-0.611898\pi\)
−0.344342 + 0.938844i \(0.611898\pi\)
\(360\) 1.84409 + 0.978237i 0.0971923 + 0.0515576i
\(361\) 1.00000 0.0526316
\(362\) −26.7784 5.56541i −1.40744 0.292511i
\(363\) −11.4118 11.4118i −0.598962 0.598962i
\(364\) 20.3250 46.7855i 1.06532 2.45223i
\(365\) 8.00692 + 6.19343i 0.419101 + 0.324179i
\(366\) 14.0014 + 21.3481i 0.731862 + 1.11588i
\(367\) 12.7436 12.7436i 0.665208 0.665208i −0.291395 0.956603i \(-0.594119\pi\)
0.956603 + 0.291395i \(0.0941193\pi\)
\(368\) 0.130149 3.79718i 0.00678447 0.197942i
\(369\) 1.16078i 0.0604279i
\(370\) −10.2398 + 8.75704i −0.532342 + 0.455257i
\(371\) 38.6720i 2.00775i
\(372\) −6.39971 + 2.52330i −0.331810 + 0.130827i
\(373\) 15.6699 15.6699i 0.811354 0.811354i −0.173483 0.984837i \(-0.555502\pi\)
0.984837 + 0.173483i \(0.0555021\pi\)
\(374\) 28.1767 18.4800i 1.45698 0.955576i
\(375\) −7.18709 + 16.7955i −0.371139 + 0.867315i
\(376\) 21.6792 3.73596i 1.11802 0.192668i
\(377\) −5.60395 5.60395i −0.288618 0.288618i
\(378\) 7.22626 34.7697i 0.371679 1.78836i
\(379\) 4.20942 0.216223 0.108112 0.994139i \(-0.465520\pi\)
0.108112 + 0.994139i \(0.465520\pi\)
\(380\) 1.24797 4.29448i 0.0640197 0.220302i
\(381\) 14.9340 0.765093
\(382\) −0.407061 + 1.95860i −0.0208270 + 0.100211i
\(383\) −23.3914 23.3914i −1.19524 1.19524i −0.975574 0.219671i \(-0.929502\pi\)
−0.219671 0.975574i \(-0.570498\pi\)
\(384\) 11.1732 14.7279i 0.570179 0.751582i
\(385\) −28.8481 + 37.2951i −1.47024 + 1.90073i
\(386\) 13.2036 8.65967i 0.672043 0.440766i
\(387\) −0.494066 + 0.494066i −0.0251148 + 0.0251148i
\(388\) 1.78581 + 4.52926i 0.0906608 + 0.229938i
\(389\) 12.7135i 0.644603i −0.946637 0.322301i \(-0.895544\pi\)
0.946637 0.322301i \(-0.104456\pi\)
\(390\) 2.22218 28.4701i 0.112525 1.44164i
\(391\) 4.95325i 0.250497i
\(392\) −23.3237 + 33.0362i −1.17802 + 1.66858i
\(393\) −13.0289 + 13.0289i −0.657223 + 0.657223i
\(394\) 19.0310 + 29.0169i 0.958767 + 1.46185i
\(395\) −0.587896 4.60347i −0.0295803 0.231626i
\(396\) 2.76641 + 1.20181i 0.139017 + 0.0603931i
\(397\) 25.9638 + 25.9638i 1.30308 + 1.30308i 0.926302 + 0.376783i \(0.122970\pi\)
0.376783 + 0.926302i \(0.377030\pi\)
\(398\) 30.4700 + 6.33264i 1.52732 + 0.317426i
\(399\) −7.54078 −0.377511
\(400\) −16.8851 10.7188i −0.844256 0.535940i
\(401\) 11.2570 0.562146 0.281073 0.959686i \(-0.409310\pi\)
0.281073 + 0.959686i \(0.409310\pi\)
\(402\) 4.14952 + 0.862403i 0.206959 + 0.0430127i
\(403\) −8.22620 8.22620i −0.409776 0.409776i
\(404\) 28.2485 + 12.2720i 1.40541 + 0.610553i
\(405\) −2.23801 17.5246i −0.111208 0.870803i
\(406\) 5.13278 + 7.82604i 0.254736 + 0.388400i
\(407\) −13.7658 + 13.7658i −0.682347 + 0.682347i
\(408\) 13.9001 19.6884i 0.688157 0.974720i
\(409\) 31.3473i 1.55003i 0.631945 + 0.775013i \(0.282257\pi\)
−0.631945 + 0.775013i \(0.717743\pi\)
\(410\) −0.865422 + 11.0876i −0.0427401 + 0.547576i
\(411\) 11.3506i 0.559884i
\(412\) −0.558238 1.41583i −0.0275024 0.0697530i
\(413\) −3.51920 + 3.51920i −0.173169 + 0.173169i
\(414\) 0.370745 0.243157i 0.0182211 0.0119505i
\(415\) −4.04066 + 5.22379i −0.198348 + 0.256426i
\(416\) 30.3731 + 7.40631i 1.48917 + 0.363124i
\(417\) 16.0977 + 16.0977i 0.788310 + 0.788310i
\(418\) 1.31485 6.32652i 0.0643116 0.309440i
\(419\) 14.6694 0.716648 0.358324 0.933597i \(-0.383348\pi\)
0.358324 + 0.933597i \(0.383348\pi\)
\(420\) −9.41070 + 32.3837i −0.459195 + 1.58016i
\(421\) −2.62268 −0.127822 −0.0639108 0.997956i \(-0.520357\pi\)
−0.0639108 + 0.997956i \(0.520357\pi\)
\(422\) 3.81644 18.3631i 0.185781 0.893901i
\(423\) 1.81524 + 1.81524i 0.0882599 + 0.0882599i
\(424\) −23.3572 + 4.02513i −1.13433 + 0.195478i
\(425\) −22.4787 13.2117i −1.09038 0.640864i
\(426\) −3.63874 + 2.38650i −0.176297 + 0.115626i
\(427\) 36.0525 36.0525i 1.74470 1.74470i
\(428\) −5.66191 + 2.23239i −0.273679 + 0.107907i
\(429\) 41.2610i 1.99210i
\(430\) 5.08758 4.35087i 0.245345 0.209818i
\(431\) 16.4900i 0.794295i −0.917755 0.397148i \(-0.870000\pi\)
0.917755 0.397148i \(-0.130000\pi\)
\(432\) 21.7524 + 0.745567i 1.04656 + 0.0358711i
\(433\) −2.04849 + 2.04849i −0.0984443 + 0.0984443i −0.754614 0.656169i \(-0.772176\pi\)
0.656169 + 0.754614i \(0.272176\pi\)
\(434\) 7.53456 + 11.4881i 0.361670 + 0.551445i
\(435\) 4.14435 + 3.20570i 0.198706 + 0.153701i
\(436\) 10.3559 23.8379i 0.495957 1.14163i
\(437\) −0.671647 0.671647i −0.0321292 0.0321292i
\(438\) 10.2422 + 2.12867i 0.489393 + 0.101712i
\(439\) 21.5207 1.02712 0.513562 0.858052i \(-0.328325\pi\)
0.513562 + 0.858052i \(0.328325\pi\)
\(440\) −25.5282 13.5419i −1.21701 0.645587i
\(441\) −4.71911 −0.224719
\(442\) 39.9047 + 8.29347i 1.89807 + 0.394480i
\(443\) −3.24964 3.24964i −0.154395 0.154395i 0.625683 0.780078i \(-0.284820\pi\)
−0.780078 + 0.625683i \(0.784820\pi\)
\(444\) −5.54809 + 12.7710i −0.263301 + 0.606084i
\(445\) −24.3234 + 3.10627i −1.15304 + 0.147251i
\(446\) 6.69954 + 10.2149i 0.317233 + 0.483690i
\(447\) −19.5716 + 19.5716i −0.925705 + 0.925705i
\(448\) −33.3384 15.8620i −1.57509 0.749410i
\(449\) 37.4922i 1.76937i 0.466193 + 0.884683i \(0.345625\pi\)
−0.466193 + 0.884683i \(0.654375\pi\)
\(450\) −0.114604 2.33107i −0.00540249 0.109888i
\(451\) 16.0689i 0.756657i
\(452\) 12.0251 4.74130i 0.565614 0.223012i
\(453\) −27.0956 + 27.0956i −1.27306 + 1.27306i
\(454\) −24.9163 + 16.3416i −1.16938 + 0.766949i
\(455\) −56.5711 + 7.22454i −2.65210 + 0.338691i
\(456\) −0.784875 4.55450i −0.0367551 0.213284i
\(457\) 4.61218 + 4.61218i 0.215749 + 0.215749i 0.806704 0.590956i \(-0.201249\pi\)
−0.590956 + 0.806704i \(0.701249\pi\)
\(458\) 7.36985 35.4606i 0.344370 1.65696i
\(459\) 28.3751 1.32444
\(460\) −3.72257 + 2.04618i −0.173566 + 0.0954035i
\(461\) 15.1656 0.706330 0.353165 0.935561i \(-0.385105\pi\)
0.353165 + 0.935561i \(0.385105\pi\)
\(462\) −9.91502 + 47.7069i −0.461289 + 2.21952i
\(463\) −23.1697 23.1697i −1.07679 1.07679i −0.996795 0.0799921i \(-0.974510\pi\)
−0.0799921 0.996795i \(-0.525490\pi\)
\(464\) −4.19255 + 3.91468i −0.194634 + 0.181734i
\(465\) 6.08361 + 4.70573i 0.282121 + 0.218223i
\(466\) −17.2015 + 11.2817i −0.796842 + 0.522616i
\(467\) −20.1047 + 20.1047i −0.930336 + 0.930336i −0.997727 0.0673906i \(-0.978533\pi\)
0.0673906 + 0.997727i \(0.478533\pi\)
\(468\) 1.33818 + 3.39395i 0.0618572 + 0.156885i
\(469\) 8.46409i 0.390835i
\(470\) −15.9855 18.6922i −0.737354 0.862205i
\(471\) 32.9703i 1.51919i
\(472\) −2.49183 1.75924i −0.114696 0.0809758i
\(473\) 6.83946 6.83946i 0.314479 0.314479i
\(474\) −2.63026 4.01040i −0.120812 0.184204i
\(475\) −4.83953 + 1.25658i −0.222053 + 0.0576557i
\(476\) −44.1458 19.1782i −2.02342 0.879031i
\(477\) −1.95574 1.95574i −0.0895472 0.0895472i
\(478\) 4.42102 + 0.918829i 0.202213 + 0.0420263i
\(479\) −10.8855 −0.497370 −0.248685 0.968584i \(-0.579998\pi\)
−0.248685 + 0.968584i \(0.579998\pi\)
\(480\) −20.5387 2.31327i −0.937460 0.105586i
\(481\) −23.5474 −1.07367
\(482\) 16.2820 + 3.38391i 0.741623 + 0.154133i
\(483\) 5.06474 + 5.06474i 0.230454 + 0.230454i
\(484\) −18.1178 7.87090i −0.823537 0.357768i
\(485\) 3.33038 4.30554i 0.151225 0.195505i
\(486\) 2.64782 + 4.03718i 0.120108 + 0.183130i
\(487\) 21.7783 21.7783i 0.986867 0.986867i −0.0130478 0.999915i \(-0.504153\pi\)
0.999915 + 0.0130478i \(0.00415338\pi\)
\(488\) 25.5276 + 18.0226i 1.15558 + 0.815845i
\(489\) 21.9027i 0.990473i
\(490\) 45.0760 + 3.51834i 2.03633 + 0.158942i
\(491\) 2.46368i 0.111185i 0.998454 + 0.0555923i \(0.0177047\pi\)
−0.998454 + 0.0555923i \(0.982295\pi\)
\(492\) 4.21567 + 10.6920i 0.190057 + 0.482032i
\(493\) −5.28776 + 5.28776i −0.238149 + 0.238149i
\(494\) 6.53553 4.28639i 0.294047 0.192854i
\(495\) −0.427184 3.34503i −0.0192005 0.150348i
\(496\) −6.15437 + 5.74647i −0.276339 + 0.258024i
\(497\) 6.14507 + 6.14507i 0.275644 + 0.275644i
\(498\) −1.38876 + 6.68214i −0.0622320 + 0.299434i
\(499\) −23.3731 −1.04632 −0.523161 0.852234i \(-0.675247\pi\)
−0.523161 + 0.852234i \(0.675247\pi\)
\(500\) −0.643257 + 22.3514i −0.0287673 + 0.999586i
\(501\) 32.1941 1.43833
\(502\) 4.18790 20.1504i 0.186915 0.899357i
\(503\) 10.6038 + 10.6038i 0.472800 + 0.472800i 0.902820 0.430019i \(-0.141493\pi\)
−0.430019 + 0.902820i \(0.641493\pi\)
\(504\) −0.731663 4.24572i −0.0325908 0.189119i
\(505\) −4.36208 34.1569i −0.194110 1.51996i
\(506\) −5.13230 + 3.36607i −0.228159 + 0.149640i
\(507\) 20.2695 20.2695i 0.900201 0.900201i
\(508\) 17.0051 6.70482i 0.754479 0.297478i
\(509\) 17.1016i 0.758015i −0.925394 0.379007i \(-0.876266\pi\)
0.925394 0.379007i \(-0.123734\pi\)
\(510\) −26.8637 2.09680i −1.18955 0.0928480i
\(511\) 20.8919i 0.924203i
\(512\) 6.11039 21.7868i 0.270044 0.962848i
\(513\) 3.84758 3.84758i 0.169875 0.169875i
\(514\) 12.6849 + 19.3409i 0.559508 + 0.853091i
\(515\) −1.04107 + 1.34590i −0.0458748 + 0.0593074i
\(516\) 2.75653 6.34518i 0.121349 0.279331i
\(517\) −25.1287 25.1287i −1.10516 1.10516i
\(518\) 27.2260 + 5.65843i 1.19624 + 0.248617i
\(519\) 2.95484 0.129703
\(520\) −10.2516 33.4160i −0.449564 1.46539i
\(521\) −4.34873 −0.190521 −0.0952606 0.995452i \(-0.530368\pi\)
−0.0952606 + 0.995452i \(0.530368\pi\)
\(522\) −0.655360 0.136205i −0.0286843 0.00596153i
\(523\) −27.4034 27.4034i −1.19827 1.19827i −0.974685 0.223581i \(-0.928225\pi\)
−0.223581 0.974685i \(-0.571775\pi\)
\(524\) −8.98630 + 20.6853i −0.392568 + 0.903642i
\(525\) 36.4938 9.47558i 1.59272 0.413548i
\(526\) 0.263692 + 0.402056i 0.0114975 + 0.0175305i
\(527\) −7.76206 + 7.76206i −0.338120 + 0.338120i
\(528\) −29.8461 1.02298i −1.29889 0.0445194i
\(529\) 22.0978i 0.960773i
\(530\) 17.2228 + 20.1390i 0.748109 + 0.874781i
\(531\) 0.355950i 0.0154469i
\(532\) −8.58655 + 3.38553i −0.372274 + 0.146781i
\(533\) −13.7435 + 13.7435i −0.595297 + 0.595297i
\(534\) −21.1898 + 13.8975i −0.916972 + 0.601405i
\(535\) 5.38224 + 4.16322i 0.232695 + 0.179992i
\(536\) 5.11216 0.880976i 0.220812 0.0380524i
\(537\) 4.60711 + 4.60711i 0.198811 + 0.198811i
\(538\) 1.50386 7.23591i 0.0648358 0.311962i
\(539\) 65.3276 2.81386
\(540\) −11.7217 21.3250i −0.504421 0.917684i
\(541\) 15.7990 0.679254 0.339627 0.940560i \(-0.389699\pi\)
0.339627 + 0.940560i \(0.389699\pi\)
\(542\) −2.89040 + 13.9074i −0.124153 + 0.597372i
\(543\) 22.3454 + 22.3454i 0.958931 + 0.958931i
\(544\) 6.98843 28.6594i 0.299626 1.22876i
\(545\) −28.8239 + 3.68101i −1.23468 + 0.157677i
\(546\) −49.2830 + 32.3227i −2.10912 + 1.38329i
\(547\) 15.7388 15.7388i 0.672943 0.672943i −0.285450 0.958394i \(-0.592143\pi\)
0.958394 + 0.285450i \(0.0921432\pi\)
\(548\) 5.09599 + 12.9247i 0.217690 + 0.552116i
\(549\) 3.64653i 0.155630i
\(550\) 1.58649 + 32.2695i 0.0676482 + 1.37598i
\(551\) 1.43401i 0.0610909i
\(552\) −2.53186 + 3.58618i −0.107763 + 0.152638i
\(553\) −6.77274 + 6.77274i −0.288006 + 0.288006i
\(554\) 1.86356 + 2.84140i 0.0791749 + 0.120719i
\(555\) 15.4422 1.97207i 0.655483 0.0837098i
\(556\) 25.5575 + 11.1029i 1.08388 + 0.470868i
\(557\) −17.9451 17.9451i −0.760359 0.760359i 0.216029 0.976387i \(-0.430690\pi\)
−0.976387 + 0.216029i \(0.930690\pi\)
\(558\) −0.962022 0.199939i −0.0407256 0.00846410i
\(559\) 11.6993 0.494830
\(560\) 3.82330 + 41.0998i 0.161564 + 1.73678i
\(561\) −38.9329 −1.64375
\(562\) 12.4192 + 2.58110i 0.523870 + 0.108877i
\(563\) 20.3784 + 20.3784i 0.858847 + 0.858847i 0.991202 0.132355i \(-0.0422540\pi\)
−0.132355 + 0.991202i \(0.542254\pi\)
\(564\) −23.3127 10.1277i −0.981641 0.426453i
\(565\) −11.4311 8.84211i −0.480912 0.371990i
\(566\) −11.6546 17.7699i −0.489879 0.746927i
\(567\) −25.7826 + 25.7826i −1.08277 + 1.08277i
\(568\) −3.07191 + 4.35112i −0.128895 + 0.182569i
\(569\) 15.5685i 0.652665i −0.945255 0.326333i \(-0.894187\pi\)
0.945255 0.326333i \(-0.105813\pi\)
\(570\) −3.92696 + 3.35832i −0.164482 + 0.140665i
\(571\) 21.2800i 0.890540i −0.895396 0.445270i \(-0.853108\pi\)
0.895396 0.445270i \(-0.146892\pi\)
\(572\) −18.5246 46.9831i −0.774554 1.96446i
\(573\) 1.63437 1.63437i 0.0682767 0.0682767i
\(574\) 19.1931 12.5880i 0.801104 0.525412i
\(575\) 4.09443 + 2.40648i 0.170750 + 0.100357i
\(576\) 2.48819 0.883823i 0.103674 0.0368259i
\(577\) 7.89632 + 7.89632i 0.328728 + 0.328728i 0.852103 0.523375i \(-0.175327\pi\)
−0.523375 + 0.852103i \(0.675327\pi\)
\(578\) 2.93345 14.1145i 0.122015 0.587086i
\(579\) −18.2439 −0.758190
\(580\) 6.15833 + 1.78961i 0.255711 + 0.0743094i
\(581\) 13.6301 0.565471
\(582\) 1.14464 5.50754i 0.0474470 0.228295i
\(583\) 27.0737 + 27.0737i 1.12128 + 1.12128i
\(584\) 12.6183 2.17451i 0.522151 0.0899819i
\(585\) 2.49558 3.22631i 0.103180 0.133391i
\(586\) −36.5899 + 23.9978i −1.51151 + 0.991340i
\(587\) 20.8805 20.8805i 0.861831 0.861831i −0.129720 0.991551i \(-0.541408\pi\)
0.991551 + 0.129720i \(0.0414079\pi\)
\(588\) 43.4678 17.1386i 1.79258 0.706785i
\(589\) 2.10503i 0.0867361i
\(590\) −0.265379 + 3.39997i −0.0109255 + 0.139974i
\(591\) 40.0938i 1.64924i
\(592\) −0.583806 + 17.0330i −0.0239943 + 0.700051i
\(593\) 4.40488 4.40488i 0.180887 0.180887i −0.610855 0.791742i \(-0.709174\pi\)
0.791742 + 0.610855i \(0.209174\pi\)
\(594\) −19.2828 29.4008i −0.791182 1.20633i
\(595\) 6.81691 + 53.3792i 0.279466 + 2.18834i
\(596\) −13.4989 + 31.0727i −0.552936 + 1.27279i
\(597\) −25.4258 25.4258i −1.04061 1.04061i
\(598\) −7.26851 1.51063i −0.297232 0.0617743i
\(599\) −22.4494 −0.917256 −0.458628 0.888628i \(-0.651659\pi\)
−0.458628 + 0.888628i \(0.651659\pi\)
\(600\) 9.52150 + 21.0554i 0.388714 + 0.859582i
\(601\) −2.44752 −0.0998364 −0.0499182 0.998753i \(-0.515896\pi\)
−0.0499182 + 0.998753i \(0.515896\pi\)
\(602\) −13.5270 2.81135i −0.551321 0.114582i
\(603\) 0.428050 + 0.428050i 0.0174316 + 0.0174316i
\(604\) −18.6883 + 43.0181i −0.760416 + 1.75038i
\(605\) 2.79772 + 21.9073i 0.113743 + 0.890659i
\(606\) −19.5160 29.7564i −0.792785 1.20877i
\(607\) 8.33475 8.33475i 0.338297 0.338297i −0.517429 0.855726i \(-0.673111\pi\)
0.855726 + 0.517429i \(0.173111\pi\)
\(608\) −2.93852 4.83374i −0.119173 0.196034i
\(609\) 10.8136i 0.438188i
\(610\) 2.71868 34.8310i 0.110076 1.41027i
\(611\) 42.9843i 1.73896i
\(612\) 3.20245 1.26267i 0.129451 0.0510405i
\(613\) −24.6735 + 24.6735i −0.996555 + 0.996555i −0.999994 0.00343930i \(-0.998905\pi\)
0.00343930 + 0.999994i \(0.498905\pi\)
\(614\) 27.6053 18.1052i 1.11406 0.730665i
\(615\) 7.86186 10.1639i 0.317021 0.409847i
\(616\) 10.1286 + 58.7744i 0.408091 + 2.36809i
\(617\) −2.72052 2.72052i −0.109524 0.109524i 0.650221 0.759745i \(-0.274676\pi\)
−0.759745 + 0.650221i \(0.774676\pi\)
\(618\) −0.357812 + 1.72164i −0.0143933 + 0.0692544i
\(619\) 21.6528 0.870300 0.435150 0.900358i \(-0.356695\pi\)
0.435150 + 0.900358i \(0.356695\pi\)
\(620\) 9.03999 + 2.62702i 0.363055 + 0.105504i
\(621\) −5.16843 −0.207402
\(622\) −5.59441 + 26.9179i −0.224316 + 1.07931i
\(623\) 35.7852 + 35.7852i 1.43370 + 1.43370i
\(624\) −24.6519 26.4018i −0.986867 1.05692i
\(625\) 21.8420 12.1625i 0.873681 0.486499i
\(626\) 14.4411 9.47134i 0.577183 0.378551i
\(627\) −5.27920 + 5.27920i −0.210831 + 0.210831i
\(628\) 14.8024 + 37.5426i 0.590681 + 1.49811i
\(629\) 22.2188i 0.885920i
\(630\) −3.66073 + 3.13064i −0.145847 + 0.124728i
\(631\) 31.3301i 1.24723i −0.781731 0.623616i \(-0.785663\pi\)
0.781731 0.623616i \(-0.214337\pi\)
\(632\) −4.79555 3.38568i −0.190757 0.134675i
\(633\) −15.3232 + 15.3232i −0.609041 + 0.609041i
\(634\) −14.9191 22.7475i −0.592515 0.903417i
\(635\) −16.1652 12.5039i −0.641494 0.496202i
\(636\) 25.1171 + 10.9116i 0.995959 + 0.432673i
\(637\) 55.8736 + 55.8736i 2.21379 + 2.21379i
\(638\) 9.07229 + 1.88551i 0.359175 + 0.0746482i
\(639\) −0.621543 −0.0245879
\(640\) −24.4256 + 6.58704i −0.965507 + 0.260376i
\(641\) −38.8191 −1.53326 −0.766631 0.642088i \(-0.778068\pi\)
−0.766631 + 0.642088i \(0.778068\pi\)
\(642\) 6.88483 + 1.43089i 0.271722 + 0.0564727i
\(643\) −30.5752 30.5752i −1.20577 1.20577i −0.972385 0.233384i \(-0.925020\pi\)
−0.233384 0.972385i \(-0.574980\pi\)
\(644\) 8.04101 + 3.49325i 0.316860 + 0.137653i
\(645\) −7.67233 + 0.979811i −0.302098 + 0.0385800i
\(646\) −4.04454 6.16678i −0.159130 0.242629i
\(647\) −21.3825 + 21.3825i −0.840632 + 0.840632i −0.988941 0.148309i \(-0.952617\pi\)
0.148309 + 0.988941i \(0.452617\pi\)
\(648\) −18.2558 12.8887i −0.717154 0.506314i
\(649\) 4.92749i 0.193421i
\(650\) −26.2427 + 28.9565i −1.02932 + 1.13577i
\(651\) 15.8735i 0.622133i
\(652\) 9.83348 + 24.9402i 0.385109 + 0.976732i
\(653\) 9.46388 9.46388i 0.370350 0.370350i −0.497255 0.867605i \(-0.665658\pi\)
0.867605 + 0.497255i \(0.165658\pi\)
\(654\) −25.1105 + 16.4689i −0.981897 + 0.643986i
\(655\) 25.0118 3.19419i 0.977293 0.124807i
\(656\) 9.60061 + 10.2821i 0.374841 + 0.401448i
\(657\) 1.05656 + 1.05656i 0.0412202 + 0.0412202i
\(658\) −10.3291 + 49.6994i −0.402672 + 1.93749i
\(659\) −14.8386 −0.578029 −0.289014 0.957325i \(-0.593328\pi\)
−0.289014 + 0.957325i \(0.593328\pi\)
\(660\) 16.0831 + 29.2597i 0.626034 + 1.13893i
\(661\) 31.5760 1.22817 0.614083 0.789242i \(-0.289526\pi\)
0.614083 + 0.789242i \(0.289526\pi\)
\(662\) 6.23434 29.9970i 0.242305 1.16587i
\(663\) −33.2987 33.2987i −1.29321 1.29321i
\(664\) 1.41867 + 8.23233i 0.0550552 + 0.319476i
\(665\) 8.16243 + 6.31372i 0.316525 + 0.244836i
\(666\) −1.66305 + 1.09073i −0.0644418 + 0.0422647i
\(667\) 0.963149 0.963149i 0.0372933 0.0372933i
\(668\) 36.6588 14.4539i 1.41837 0.559240i
\(669\) 14.1144i 0.545693i
\(670\) −3.76952 4.40779i −0.145629 0.170288i
\(671\) 50.4797i 1.94875i
\(672\) 22.1588 + 36.4502i 0.854793 + 1.40610i
\(673\) 18.0004 18.0004i 0.693866 0.693866i −0.269215 0.963080i \(-0.586764\pi\)
0.963080 + 0.269215i \(0.0867641\pi\)
\(674\) −0.185648 0.283061i −0.00715091 0.0109031i
\(675\) −13.7857 + 23.4553i −0.530611 + 0.902793i
\(676\) 13.9803 32.1808i 0.537702 1.23772i
\(677\) 20.3423 + 20.3423i 0.781819 + 0.781819i 0.980138 0.198319i \(-0.0635481\pi\)
−0.198319 + 0.980138i \(0.563548\pi\)
\(678\) −14.6224 3.03901i −0.561571 0.116712i
\(679\) −11.2342 −0.431127
\(680\) −31.5306 + 9.67322i −1.20914 + 0.370951i
\(681\) 34.4279 1.31928
\(682\) 13.3175 + 2.76780i 0.509952 + 0.105984i
\(683\) −31.7484 31.7484i −1.21482 1.21482i −0.969423 0.245396i \(-0.921082\pi\)
−0.245396 0.969423i \(-0.578918\pi\)
\(684\) 0.263028 0.605458i 0.0100571 0.0231503i
\(685\) 9.50359 12.2863i 0.363113 0.469436i
\(686\) −26.1206 39.8266i −0.997290 1.52059i
\(687\) −29.5903 + 29.5903i −1.12894 + 1.12894i
\(688\) 0.290060 8.46272i 0.0110584 0.322638i
\(689\) 46.3114i 1.76432i
\(690\) 4.89314 + 0.381926i 0.186279 + 0.0145397i
\(691\) 2.26449i 0.0861453i 0.999072 + 0.0430727i \(0.0137147\pi\)
−0.999072 + 0.0430727i \(0.986285\pi\)
\(692\) 3.36463 1.32661i 0.127904 0.0504303i
\(693\) −4.92128 + 4.92128i −0.186944 + 0.186944i
\(694\) 37.3056 24.4672i 1.41610 0.928763i
\(695\) −3.94654 30.9031i −0.149701 1.17222i
\(696\) 6.53120 1.12552i 0.247565 0.0426627i
\(697\) 12.9680 + 12.9680i 0.491200 + 0.491200i
\(698\) 5.51225 26.5226i 0.208642 1.00390i
\(699\) 23.7680 0.898987
\(700\) 37.3006 27.1740i 1.40983 1.02708i
\(701\) 1.89491 0.0715697 0.0357849 0.999360i \(-0.488607\pi\)
0.0357849 + 0.999360i \(0.488607\pi\)
\(702\) 8.65376 41.6382i 0.326615 1.57153i
\(703\) 3.01280 + 3.01280i 0.113630 + 0.113630i
\(704\) −34.4445 + 12.2349i −1.29818 + 0.461122i
\(705\) 3.59990 + 28.1887i 0.135580 + 1.06165i
\(706\) −1.15858 + 0.759863i −0.0436036 + 0.0285978i
\(707\) −50.2525 + 50.2525i −1.88994 + 1.88994i
\(708\) 1.29272 + 3.27866i 0.0485834 + 0.123220i
\(709\) 6.93479i 0.260442i 0.991485 + 0.130221i \(0.0415686\pi\)
−0.991485 + 0.130221i \(0.958431\pi\)
\(710\) 5.93686 + 0.463392i 0.222806 + 0.0173908i
\(711\) 0.685029i 0.0256906i
\(712\) −17.8889 + 25.3383i −0.670417 + 0.949592i
\(713\) 1.41383 1.41383i 0.0529485 0.0529485i
\(714\) 30.4990 + 46.5024i 1.14140 + 1.74031i
\(715\) −34.5469 + 44.6624i −1.29198 + 1.67028i
\(716\) 7.31444 + 3.17761i 0.273354 + 0.118753i
\(717\) −3.68914 3.68914i −0.137773 0.137773i
\(718\) 18.0676 + 3.75502i 0.674276 + 0.140136i
\(719\) 37.3420 1.39262 0.696311 0.717740i \(-0.254823\pi\)
0.696311 + 0.717740i \(0.254823\pi\)
\(720\) −2.27187 1.88517i −0.0846678 0.0702560i
\(721\) 3.51176 0.130785
\(722\) −1.38463 0.287770i −0.0515304 0.0107097i
\(723\) −13.5866 13.5866i −0.505290 0.505290i
\(724\) 35.4765 + 15.4120i 1.31847 + 0.572783i
\(725\) −1.80194 6.93993i −0.0669226 0.257743i
\(726\) 12.5171 + 19.0850i 0.464552 + 0.708310i
\(727\) −17.4875 + 17.4875i −0.648575 + 0.648575i −0.952649 0.304074i \(-0.901653\pi\)
0.304074 + 0.952649i \(0.401653\pi\)
\(728\) −41.6060 + 58.9315i −1.54202 + 2.18415i
\(729\) 29.2810i 1.08448i
\(730\) −9.30431 10.8797i −0.344368 0.402677i
\(731\) 11.0392i 0.408301i
\(732\) −13.2433 33.5883i −0.489486 1.24146i
\(733\) −0.838043 + 0.838043i −0.0309538 + 0.0309538i −0.722414 0.691460i \(-0.756968\pi\)
0.691460 + 0.722414i \(0.256968\pi\)
\(734\) −21.3123 + 13.9778i −0.786650 + 0.515932i
\(735\) −41.3208 31.9621i −1.52414 1.17894i
\(736\) −1.27292 + 5.22022i −0.0469205 + 0.192420i
\(737\) −5.92559 5.92559i −0.218272 0.218272i
\(738\) −0.334038 + 1.60725i −0.0122961 + 0.0591636i
\(739\) 2.99968 0.110345 0.0551725 0.998477i \(-0.482429\pi\)
0.0551725 + 0.998477i \(0.482429\pi\)
\(740\) 16.6983 9.17851i 0.613842 0.337409i
\(741\) −9.03041 −0.331740
\(742\) 11.1286 53.5462i 0.408545 1.96574i
\(743\) 29.6466 + 29.6466i 1.08763 + 1.08763i 0.995772 + 0.0918551i \(0.0292796\pi\)
0.0918551 + 0.995772i \(0.470720\pi\)
\(744\) 9.58734 1.65218i 0.351489 0.0605719i
\(745\) 37.5719 4.79820i 1.37653 0.175792i
\(746\) −26.2062 + 17.1876i −0.959477 + 0.629282i
\(747\) −0.689307 + 0.689307i −0.0252204 + 0.0252204i
\(748\) −44.3322 + 17.4794i −1.62095 + 0.639111i
\(749\) 14.0435i 0.513139i
\(750\) 14.7847 21.1872i 0.539859 0.773648i
\(751\) 17.4677i 0.637406i −0.947855 0.318703i \(-0.896753\pi\)
0.947855 0.318703i \(-0.103247\pi\)
\(752\) −31.0927 1.06570i −1.13383 0.0388622i
\(753\) −16.8146 + 16.8146i −0.612759 + 0.612759i
\(754\) 6.14673 + 9.37202i 0.223851 + 0.341309i
\(755\) 52.0157 6.64278i 1.89305 0.241755i
\(756\) −20.0113 + 46.0635i −0.727805 + 1.67532i
\(757\) 8.92826 + 8.92826i 0.324503 + 0.324503i 0.850492 0.525988i \(-0.176305\pi\)
−0.525988 + 0.850492i \(0.676305\pi\)
\(758\) −5.82847 1.21134i −0.211699 0.0439979i
\(759\) 7.09151 0.257406
\(760\) −2.96380 + 5.58712i −0.107508 + 0.202666i
\(761\) 21.6485 0.784756 0.392378 0.919804i \(-0.371653\pi\)
0.392378 + 0.919804i \(0.371653\pi\)
\(762\) −20.6780 4.29756i −0.749086 0.155684i
\(763\) 42.4064 + 42.4064i 1.53521 + 1.53521i
\(764\) 1.12725 2.59479i 0.0407826 0.0938763i
\(765\) −3.04427 2.35477i −0.110066 0.0851370i
\(766\) 25.6570 + 39.1197i 0.927025 + 1.41345i
\(767\) −4.21440 + 4.21440i −0.152173 + 0.152173i
\(768\) −19.7089 + 17.1774i −0.711184 + 0.619835i
\(769\) 28.9274i 1.04315i −0.853206 0.521574i \(-0.825345\pi\)
0.853206 0.521574i \(-0.174655\pi\)
\(770\) 50.6762 43.3381i 1.82624 1.56180i
\(771\) 26.7241i 0.962446i </