Properties

Label 380.2.k.c.267.26
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.26
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.26

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41420 + 0.00522099i) q^{2} +(0.212700 + 0.212700i) q^{3} +(1.99995 + 0.0147671i) q^{4} +(2.19176 + 0.442915i) q^{5} +(0.299691 + 0.301912i) q^{6} +(-2.65088 + 2.65088i) q^{7} +(2.82825 + 0.0313254i) q^{8} -2.90952i q^{9} +O(q^{10})\) \(q+(1.41420 + 0.00522099i) q^{2} +(0.212700 + 0.212700i) q^{3} +(1.99995 + 0.0147671i) q^{4} +(2.19176 + 0.442915i) q^{5} +(0.299691 + 0.301912i) q^{6} +(-2.65088 + 2.65088i) q^{7} +(2.82825 + 0.0313254i) q^{8} -2.90952i q^{9} +(3.09729 + 0.637816i) q^{10} +2.04453i q^{11} +(0.422248 + 0.428530i) q^{12} +(-0.226183 + 0.226183i) q^{13} +(-3.76272 + 3.73504i) q^{14} +(0.371981 + 0.560397i) q^{15} +(3.99956 + 0.0590668i) q^{16} +(-3.06235 - 3.06235i) q^{17} +(0.0151906 - 4.11465i) q^{18} +1.00000 q^{19} +(4.37687 + 0.918173i) q^{20} -1.12768 q^{21} +(-0.0106745 + 2.89139i) q^{22} +(-5.40599 - 5.40599i) q^{23} +(0.594908 + 0.608234i) q^{24} +(4.60765 + 1.94153i) q^{25} +(-0.321050 + 0.318688i) q^{26} +(1.25696 - 1.25696i) q^{27} +(-5.34075 + 5.26246i) q^{28} +6.50979i q^{29} +(0.523131 + 0.794458i) q^{30} -5.78891i q^{31} +(5.65589 + 0.104414i) q^{32} +(-0.434873 + 0.434873i) q^{33} +(-4.31480 - 4.34677i) q^{34} +(-6.98421 + 4.63598i) q^{35} +(0.0429651 - 5.81888i) q^{36} +(-6.86987 - 6.86987i) q^{37} +(1.41420 + 0.00522099i) q^{38} -0.0962184 q^{39} +(6.18499 + 1.32133i) q^{40} +6.57779 q^{41} +(-1.59478 - 0.00588763i) q^{42} +(3.72596 + 3.72596i) q^{43} +(-0.0301918 + 4.08895i) q^{44} +(1.28867 - 6.37697i) q^{45} +(-7.61695 - 7.67340i) q^{46} +(-1.24109 + 1.24109i) q^{47} +(0.838145 + 0.863272i) q^{48} -7.05428i q^{49} +(6.50602 + 2.76978i) q^{50} -1.30273i q^{51} +(-0.455694 + 0.449014i) q^{52} +(-6.74839 + 6.74839i) q^{53} +(1.78416 - 1.77103i) q^{54} +(-0.905555 + 4.48113i) q^{55} +(-7.58039 + 7.41431i) q^{56} +(0.212700 + 0.212700i) q^{57} +(-0.0339876 + 9.20617i) q^{58} -4.42510 q^{59} +(0.735666 + 1.12626i) q^{60} +0.777701 q^{61} +(0.0302239 - 8.18670i) q^{62} +(7.71277 + 7.71277i) q^{63} +(7.99804 + 0.177192i) q^{64} +(-0.595919 + 0.395560i) q^{65} +(-0.617269 + 0.612728i) q^{66} +(5.08912 - 5.08912i) q^{67} +(-6.07931 - 6.16975i) q^{68} -2.29971i q^{69} +(-9.90129 + 6.51975i) q^{70} -1.53345i q^{71} +(0.0911417 - 8.22885i) q^{72} +(-7.28339 + 7.28339i) q^{73} +(-9.67952 - 9.75126i) q^{74} +(0.567085 + 1.39301i) q^{75} +(1.99995 + 0.0147671i) q^{76} +(-5.41980 - 5.41980i) q^{77} +(-0.136072 - 0.000502356i) q^{78} -16.5071 q^{79} +(8.73994 + 1.90093i) q^{80} -8.19384 q^{81} +(9.30234 + 0.0343426i) q^{82} +(-4.29909 - 4.29909i) q^{83} +(-2.25531 - 0.0166526i) q^{84} +(-5.35558 - 8.06830i) q^{85} +(5.24981 + 5.28872i) q^{86} +(-1.38464 + 1.38464i) q^{87} +(-0.0640457 + 5.78246i) q^{88} -8.74189i q^{89} +(1.85574 - 9.01161i) q^{90} -1.19917i q^{91} +(-10.7319 - 10.8915i) q^{92} +(1.23130 - 1.23130i) q^{93} +(-1.76164 + 1.74868i) q^{94} +(2.19176 + 0.442915i) q^{95} +(1.18080 + 1.22522i) q^{96} +(-2.60382 - 2.60382i) q^{97} +(0.0368304 - 9.97619i) q^{98} +5.94860 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41420 + 0.00522099i 0.999993 + 0.00369180i
\(3\) 0.212700 + 0.212700i 0.122803 + 0.122803i 0.765837 0.643035i \(-0.222325\pi\)
−0.643035 + 0.765837i \(0.722325\pi\)
\(4\) 1.99995 + 0.0147671i 0.999973 + 0.00738355i
\(5\) 2.19176 + 0.442915i 0.980186 + 0.198078i
\(6\) 0.299691 + 0.301912i 0.122348 + 0.123255i
\(7\) −2.65088 + 2.65088i −1.00194 + 1.00194i −0.00193869 + 0.999998i \(0.500617\pi\)
−0.999998 + 0.00193869i \(0.999383\pi\)
\(8\) 2.82825 + 0.0313254i 0.999939 + 0.0110752i
\(9\) 2.90952i 0.969839i
\(10\) 3.09729 + 0.637816i 0.979448 + 0.201695i
\(11\) 2.04453i 0.616450i 0.951314 + 0.308225i \(0.0997349\pi\)
−0.951314 + 0.308225i \(0.900265\pi\)
\(12\) 0.422248 + 0.428530i 0.121893 + 0.123706i
\(13\) −0.226183 + 0.226183i −0.0627319 + 0.0627319i −0.737777 0.675045i \(-0.764124\pi\)
0.675045 + 0.737777i \(0.264124\pi\)
\(14\) −3.76272 + 3.73504i −1.00563 + 0.998231i
\(15\) 0.371981 + 0.560397i 0.0960450 + 0.144694i
\(16\) 3.99956 + 0.0590668i 0.999891 + 0.0147667i
\(17\) −3.06235 3.06235i −0.742729 0.742729i 0.230374 0.973102i \(-0.426005\pi\)
−0.973102 + 0.230374i \(0.926005\pi\)
\(18\) 0.0151906 4.11465i 0.00358045 0.969832i
\(19\) 1.00000 0.229416
\(20\) 4.37687 + 0.918173i 0.978697 + 0.205310i
\(21\) −1.12768 −0.246081
\(22\) −0.0106745 + 2.89139i −0.00227581 + 0.616445i
\(23\) −5.40599 5.40599i −1.12723 1.12723i −0.990626 0.136600i \(-0.956382\pi\)
−0.136600 0.990626i \(-0.543618\pi\)
\(24\) 0.594908 + 0.608234i 0.121435 + 0.124155i
\(25\) 4.60765 + 1.94153i 0.921530 + 0.388306i
\(26\) −0.321050 + 0.318688i −0.0629630 + 0.0624999i
\(27\) 1.25696 1.25696i 0.241901 0.241901i
\(28\) −5.34075 + 5.26246i −1.00931 + 0.994512i
\(29\) 6.50979i 1.20884i 0.796667 + 0.604419i \(0.206595\pi\)
−0.796667 + 0.604419i \(0.793405\pi\)
\(30\) 0.523131 + 0.794458i 0.0955102 + 0.145048i
\(31\) 5.78891i 1.03972i −0.854252 0.519860i \(-0.825984\pi\)
0.854252 0.519860i \(-0.174016\pi\)
\(32\) 5.65589 + 0.104414i 0.999830 + 0.0184580i
\(33\) −0.434873 + 0.434873i −0.0757016 + 0.0757016i
\(34\) −4.31480 4.34677i −0.739982 0.745466i
\(35\) −6.98421 + 4.63598i −1.18055 + 0.783623i
\(36\) 0.0429651 5.81888i 0.00716085 0.969813i
\(37\) −6.86987 6.86987i −1.12940 1.12940i −0.990275 0.139124i \(-0.955571\pi\)
−0.139124 0.990275i \(-0.544429\pi\)
\(38\) 1.41420 + 0.00522099i 0.229414 + 0.000846957i
\(39\) −0.0962184 −0.0154073
\(40\) 6.18499 + 1.32133i 0.977932 + 0.208921i
\(41\) 6.57779 1.02728 0.513639 0.858006i \(-0.328297\pi\)
0.513639 + 0.858006i \(0.328297\pi\)
\(42\) −1.59478 0.00588763i −0.246079 0.000908481i
\(43\) 3.72596 + 3.72596i 0.568203 + 0.568203i 0.931625 0.363422i \(-0.118392\pi\)
−0.363422 + 0.931625i \(0.618392\pi\)
\(44\) −0.0301918 + 4.08895i −0.00455158 + 0.616433i
\(45\) 1.28867 6.37697i 0.192104 0.950623i
\(46\) −7.61695 7.67340i −1.12306 1.13138i
\(47\) −1.24109 + 1.24109i −0.181032 + 0.181032i −0.791805 0.610773i \(-0.790859\pi\)
0.610773 + 0.791805i \(0.290859\pi\)
\(48\) 0.838145 + 0.863272i 0.120976 + 0.124603i
\(49\) 7.05428i 1.00775i
\(50\) 6.50602 + 2.76978i 0.920091 + 0.391706i
\(51\) 1.30273i 0.182418i
\(52\) −0.455694 + 0.449014i −0.0631933 + 0.0622670i
\(53\) −6.74839 + 6.74839i −0.926962 + 0.926962i −0.997509 0.0705463i \(-0.977526\pi\)
0.0705463 + 0.997509i \(0.477526\pi\)
\(54\) 1.78416 1.77103i 0.242793 0.241007i
\(55\) −0.905555 + 4.48113i −0.122105 + 0.604235i
\(56\) −7.58039 + 7.41431i −1.01297 + 0.990779i
\(57\) 0.212700 + 0.212700i 0.0281729 + 0.0281729i
\(58\) −0.0339876 + 9.20617i −0.00446279 + 1.20883i
\(59\) −4.42510 −0.576098 −0.288049 0.957616i \(-0.593007\pi\)
−0.288049 + 0.957616i \(0.593007\pi\)
\(60\) 0.735666 + 1.12626i 0.0949740 + 0.145399i
\(61\) 0.777701 0.0995745 0.0497872 0.998760i \(-0.484146\pi\)
0.0497872 + 0.998760i \(0.484146\pi\)
\(62\) 0.0302239 8.18670i 0.00383844 1.03971i
\(63\) 7.71277 + 7.71277i 0.971717 + 0.971717i
\(64\) 7.99804 + 0.177192i 0.999755 + 0.0221490i
\(65\) −0.595919 + 0.395560i −0.0739147 + 0.0490631i
\(66\) −0.617269 + 0.612728i −0.0759806 + 0.0754216i
\(67\) 5.08912 5.08912i 0.621734 0.621734i −0.324240 0.945975i \(-0.605109\pi\)
0.945975 + 0.324240i \(0.105109\pi\)
\(68\) −6.07931 6.16975i −0.737224 0.748192i
\(69\) 2.29971i 0.276853i
\(70\) −9.90129 + 6.51975i −1.18343 + 0.779260i
\(71\) 1.53345i 0.181986i −0.995852 0.0909932i \(-0.970996\pi\)
0.995852 0.0909932i \(-0.0290042\pi\)
\(72\) 0.0911417 8.22885i 0.0107412 0.969780i
\(73\) −7.28339 + 7.28339i −0.852457 + 0.852457i −0.990435 0.137979i \(-0.955939\pi\)
0.137979 + 0.990435i \(0.455939\pi\)
\(74\) −9.67952 9.75126i −1.12522 1.13356i
\(75\) 0.567085 + 1.39301i 0.0654813 + 0.160851i
\(76\) 1.99995 + 0.0147671i 0.229409 + 0.00169390i
\(77\) −5.41980 5.41980i −0.617644 0.617644i
\(78\) −0.136072 0.000502356i −0.0154072 5.68806e-5i
\(79\) −16.5071 −1.85720 −0.928599 0.371086i \(-0.878986\pi\)
−0.928599 + 0.371086i \(0.878986\pi\)
\(80\) 8.73994 + 1.90093i 0.977154 + 0.212530i
\(81\) −8.19384 −0.910427
\(82\) 9.30234 + 0.0343426i 1.02727 + 0.00379250i
\(83\) −4.29909 4.29909i −0.471887 0.471887i 0.430638 0.902525i \(-0.358289\pi\)
−0.902525 + 0.430638i \(0.858289\pi\)
\(84\) −2.25531 0.0166526i −0.246074 0.00181695i
\(85\) −5.35558 8.06830i −0.580894 0.875131i
\(86\) 5.24981 + 5.28872i 0.566102 + 0.570297i
\(87\) −1.38464 + 1.38464i −0.148449 + 0.148449i
\(88\) −0.0640457 + 5.78246i −0.00682730 + 0.616412i
\(89\) 8.74189i 0.926639i −0.886191 0.463319i \(-0.846658\pi\)
0.886191 0.463319i \(-0.153342\pi\)
\(90\) 1.85574 9.01161i 0.195612 0.949907i
\(91\) 1.19917i 0.125707i
\(92\) −10.7319 10.8915i −1.11887 1.13552i
\(93\) 1.23130 1.23130i 0.127680 0.127680i
\(94\) −1.76164 + 1.74868i −0.181699 + 0.180363i
\(95\) 2.19176 + 0.442915i 0.224870 + 0.0454422i
\(96\) 1.18080 + 1.22522i 0.120515 + 0.125048i
\(97\) −2.60382 2.60382i −0.264377 0.264377i 0.562452 0.826830i \(-0.309858\pi\)
−0.826830 + 0.562452i \(0.809858\pi\)
\(98\) 0.0368304 9.97619i 0.00372043 1.00775i
\(99\) 5.94860 0.597857
\(100\) 9.18638 + 3.95100i 0.918638 + 0.395100i
\(101\) 13.0511 1.29864 0.649318 0.760517i \(-0.275054\pi\)
0.649318 + 0.760517i \(0.275054\pi\)
\(102\) 0.00680152 1.84232i 0.000673451 0.182417i
\(103\) 12.4417 + 12.4417i 1.22591 + 1.22591i 0.965496 + 0.260419i \(0.0838608\pi\)
0.260419 + 0.965496i \(0.416139\pi\)
\(104\) −0.646788 + 0.632618i −0.0634228 + 0.0620333i
\(105\) −2.47162 0.499469i −0.241205 0.0487432i
\(106\) −9.57883 + 9.50836i −0.930378 + 0.923534i
\(107\) −0.931552 + 0.931552i −0.0900565 + 0.0900565i −0.750700 0.660643i \(-0.770284\pi\)
0.660643 + 0.750700i \(0.270284\pi\)
\(108\) 2.53241 2.49528i 0.243681 0.240109i
\(109\) 20.2411i 1.93874i 0.245597 + 0.969372i \(0.421016\pi\)
−0.245597 + 0.969372i \(0.578984\pi\)
\(110\) −1.30404 + 6.33250i −0.124335 + 0.603781i
\(111\) 2.92245i 0.277386i
\(112\) −10.7589 + 10.4458i −1.01662 + 0.987032i
\(113\) 3.01028 3.01028i 0.283183 0.283183i −0.551194 0.834377i \(-0.685828\pi\)
0.834377 + 0.551194i \(0.185828\pi\)
\(114\) 0.299691 + 0.301912i 0.0280687 + 0.0282767i
\(115\) −9.45425 14.2430i −0.881614 1.32817i
\(116\) −0.0961307 + 13.0192i −0.00892551 + 1.20881i
\(117\) 0.658083 + 0.658083i 0.0608398 + 0.0608398i
\(118\) −6.25799 0.0231034i −0.576094 0.00212684i
\(119\) 16.2358 1.48833
\(120\) 1.03450 + 1.59660i 0.0944366 + 0.145749i
\(121\) 6.81989 0.619990
\(122\) 1.09983 + 0.00406037i 0.0995738 + 0.000367609i
\(123\) 1.39910 + 1.39910i 0.126152 + 0.126152i
\(124\) 0.0854854 11.5775i 0.00767682 1.03969i
\(125\) 9.23895 + 6.29618i 0.826357 + 0.563147i
\(126\) 10.8672 + 10.9477i 0.968123 + 0.975298i
\(127\) −6.14286 + 6.14286i −0.545091 + 0.545091i −0.925017 0.379926i \(-0.875949\pi\)
0.379926 + 0.925017i \(0.375949\pi\)
\(128\) 11.3099 + 0.292344i 0.999666 + 0.0258398i
\(129\) 1.58503i 0.139554i
\(130\) −0.844817 + 0.556291i −0.0740953 + 0.0487899i
\(131\) 8.30018i 0.725190i −0.931947 0.362595i \(-0.881891\pi\)
0.931947 0.362595i \(-0.118109\pi\)
\(132\) −0.876144 + 0.863300i −0.0762585 + 0.0751406i
\(133\) −2.65088 + 2.65088i −0.229860 + 0.229860i
\(134\) 7.22362 7.17048i 0.624026 0.619435i
\(135\) 3.31168 2.19823i 0.285024 0.189193i
\(136\) −8.56517 8.75703i −0.734457 0.750909i
\(137\) 3.16161 + 3.16161i 0.270115 + 0.270115i 0.829146 0.559032i \(-0.188827\pi\)
−0.559032 + 0.829146i \(0.688827\pi\)
\(138\) 0.0120068 3.25226i 0.00102208 0.276851i
\(139\) 16.9908 1.44114 0.720572 0.693380i \(-0.243879\pi\)
0.720572 + 0.693380i \(0.243879\pi\)
\(140\) −14.0365 + 9.16857i −1.18630 + 0.774885i
\(141\) −0.527962 −0.0444625
\(142\) 0.00800611 2.16860i 0.000671857 0.181985i
\(143\) −0.462438 0.462438i −0.0386710 0.0386710i
\(144\) 0.171856 11.6368i 0.0143213 0.969733i
\(145\) −2.88329 + 14.2679i −0.239444 + 1.18489i
\(146\) −10.3382 + 10.2622i −0.855598 + 0.849304i
\(147\) 1.50045 1.50045i 0.123755 0.123755i
\(148\) −13.6379 13.8408i −1.12103 1.13771i
\(149\) 9.77519i 0.800815i −0.916337 0.400407i \(-0.868869\pi\)
0.916337 0.400407i \(-0.131131\pi\)
\(150\) 0.794701 + 1.97297i 0.0648870 + 0.161092i
\(151\) 4.21919i 0.343353i −0.985153 0.171676i \(-0.945082\pi\)
0.985153 0.171676i \(-0.0549184\pi\)
\(152\) 2.82825 + 0.0313254i 0.229402 + 0.00254082i
\(153\) −8.90996 + 8.90996i −0.720327 + 0.720327i
\(154\) −7.63641 7.69300i −0.615359 0.619920i
\(155\) 2.56400 12.6879i 0.205945 1.01912i
\(156\) −0.192432 0.00142087i −0.0154069 0.000113760i
\(157\) 8.55712 + 8.55712i 0.682933 + 0.682933i 0.960660 0.277727i \(-0.0895812\pi\)
−0.277727 + 0.960660i \(0.589581\pi\)
\(158\) −23.3444 0.0861836i −1.85718 0.00685640i
\(159\) −2.87077 −0.227667
\(160\) 12.3501 + 2.73393i 0.976363 + 0.216136i
\(161\) 28.6612 2.25882
\(162\) −11.5878 0.0427800i −0.910421 0.00336111i
\(163\) 11.5235 + 11.5235i 0.902586 + 0.902586i 0.995659 0.0930729i \(-0.0296690\pi\)
−0.0930729 + 0.995659i \(0.529669\pi\)
\(164\) 13.1552 + 0.0971348i 1.02725 + 0.00758496i
\(165\) −1.14575 + 0.760526i −0.0891965 + 0.0592069i
\(166\) −6.05735 6.10224i −0.470141 0.473625i
\(167\) 3.64071 3.64071i 0.281727 0.281727i −0.552071 0.833797i \(-0.686162\pi\)
0.833797 + 0.552071i \(0.186162\pi\)
\(168\) −3.18938 0.0353252i −0.246066 0.00272539i
\(169\) 12.8977i 0.992129i
\(170\) −7.53176 11.4382i −0.577660 0.877269i
\(171\) 2.90952i 0.222496i
\(172\) 7.39669 + 7.50673i 0.563992 + 0.572383i
\(173\) 1.45513 1.45513i 0.110632 0.110632i −0.649624 0.760256i \(-0.725074\pi\)
0.760256 + 0.649624i \(0.225074\pi\)
\(174\) −1.96539 + 1.95093i −0.148996 + 0.147899i
\(175\) −17.3611 + 7.06755i −1.31237 + 0.534257i
\(176\) −0.120764 + 8.17724i −0.00910292 + 0.616382i
\(177\) −0.941220 0.941220i −0.0707464 0.0707464i
\(178\) 0.0456413 12.3628i 0.00342096 0.926632i
\(179\) 2.19695 0.164208 0.0821038 0.996624i \(-0.473836\pi\)
0.0821038 + 0.996624i \(0.473836\pi\)
\(180\) 2.67144 12.7346i 0.199117 0.949179i
\(181\) −4.48272 −0.333198 −0.166599 0.986025i \(-0.553279\pi\)
−0.166599 + 0.986025i \(0.553279\pi\)
\(182\) 0.00626084 1.69587i 0.000464084 0.125706i
\(183\) 0.165417 + 0.165417i 0.0122280 + 0.0122280i
\(184\) −15.1202 15.4589i −1.11467 1.13964i
\(185\) −12.0143 18.0999i −0.883312 1.33073i
\(186\) 1.74774 1.73489i 0.128151 0.127208i
\(187\) 6.26107 6.26107i 0.457855 0.457855i
\(188\) −2.50045 + 2.46379i −0.182364 + 0.179691i
\(189\) 6.66407i 0.484740i
\(190\) 3.09729 + 0.637816i 0.224701 + 0.0462720i
\(191\) 6.36037i 0.460220i 0.973165 + 0.230110i \(0.0739087\pi\)
−0.973165 + 0.230110i \(0.926091\pi\)
\(192\) 1.66350 + 1.73887i 0.120053 + 0.125492i
\(193\) −13.5977 + 13.5977i −0.978787 + 0.978787i −0.999780 0.0209930i \(-0.993317\pi\)
0.0209930 + 0.999780i \(0.493317\pi\)
\(194\) −3.66873 3.69592i −0.263400 0.265352i
\(195\) −0.210888 0.0426166i −0.0151020 0.00305184i
\(196\) 0.104171 14.1082i 0.00744080 1.00773i
\(197\) 7.28242 + 7.28242i 0.518851 + 0.518851i 0.917224 0.398373i \(-0.130425\pi\)
−0.398373 + 0.917224i \(0.630425\pi\)
\(198\) 8.41253 + 0.0310576i 0.597853 + 0.00220717i
\(199\) 21.1117 1.49657 0.748284 0.663378i \(-0.230878\pi\)
0.748284 + 0.663378i \(0.230878\pi\)
\(200\) 12.9708 + 5.63548i 0.917173 + 0.398489i
\(201\) 2.16491 0.152701
\(202\) 18.4570 + 0.0681399i 1.29863 + 0.00479430i
\(203\) −17.2566 17.2566i −1.21118 1.21118i
\(204\) 0.0192375 2.60538i 0.00134689 0.182413i
\(205\) 14.4170 + 2.91340i 1.00692 + 0.203481i
\(206\) 17.5301 + 17.6600i 1.22138 + 1.23043i
\(207\) −15.7288 + 15.7288i −1.09323 + 1.09323i
\(208\) −0.917993 + 0.891273i −0.0636514 + 0.0617987i
\(209\) 2.04453i 0.141423i
\(210\) −3.49276 0.719255i −0.241024 0.0496333i
\(211\) 13.4524i 0.926098i −0.886333 0.463049i \(-0.846755\pi\)
0.886333 0.463049i \(-0.153245\pi\)
\(212\) −13.5961 + 13.3968i −0.933781 + 0.920093i
\(213\) 0.326164 0.326164i 0.0223484 0.0223484i
\(214\) −1.32227 + 1.31254i −0.0903883 + 0.0897234i
\(215\) 6.51613 + 9.81670i 0.444397 + 0.669494i
\(216\) 3.59437 3.51562i 0.244566 0.239207i
\(217\) 15.3457 + 15.3457i 1.04173 + 1.04173i
\(218\) −0.105679 + 28.6250i −0.00715745 + 1.93873i
\(219\) −3.09836 −0.209368
\(220\) −1.87723 + 8.94864i −0.126563 + 0.603317i
\(221\) 1.38530 0.0931855
\(222\) 0.0152581 4.13293i 0.00102405 0.277384i
\(223\) −1.88885 1.88885i −0.126486 0.126486i 0.641030 0.767516i \(-0.278508\pi\)
−0.767516 + 0.641030i \(0.778508\pi\)
\(224\) −15.2699 + 14.7163i −1.02026 + 0.983272i
\(225\) 5.64892 13.4060i 0.376595 0.893736i
\(226\) 4.27286 4.24143i 0.284226 0.282136i
\(227\) −1.46448 + 1.46448i −0.0972007 + 0.0972007i −0.754035 0.656834i \(-0.771895\pi\)
0.656834 + 0.754035i \(0.271895\pi\)
\(228\) 0.422248 + 0.428530i 0.0279641 + 0.0283801i
\(229\) 3.08873i 0.204109i 0.994779 + 0.102055i \(0.0325417\pi\)
−0.994779 + 0.102055i \(0.967458\pi\)
\(230\) −13.2959 20.1919i −0.876704 1.33142i
\(231\) 2.30559i 0.151697i
\(232\) −0.203922 + 18.4113i −0.0133881 + 1.20876i
\(233\) 0.275351 0.275351i 0.0180388 0.0180388i −0.698030 0.716069i \(-0.745940\pi\)
0.716069 + 0.698030i \(0.245940\pi\)
\(234\) 0.927228 + 0.934100i 0.0606148 + 0.0610640i
\(235\) −3.26988 + 2.17048i −0.213304 + 0.141587i
\(236\) −8.84995 0.0653458i −0.576083 0.00425365i
\(237\) −3.51107 3.51107i −0.228069 0.228069i
\(238\) 22.9607 + 0.0847670i 1.48832 + 0.00549463i
\(239\) 2.55298 0.165139 0.0825693 0.996585i \(-0.473687\pi\)
0.0825693 + 0.996585i \(0.473687\pi\)
\(240\) 1.45466 + 2.26332i 0.0938979 + 0.146096i
\(241\) −10.8689 −0.700128 −0.350064 0.936726i \(-0.613840\pi\)
−0.350064 + 0.936726i \(0.613840\pi\)
\(242\) 9.64471 + 0.0356066i 0.619986 + 0.00228888i
\(243\) −5.51370 5.51370i −0.353704 0.353704i
\(244\) 1.55536 + 0.0114844i 0.0995718 + 0.000735213i
\(245\) 3.12445 15.4613i 0.199614 0.987787i
\(246\) 1.97131 + 1.98592i 0.125686 + 0.126617i
\(247\) −0.226183 + 0.226183i −0.0143917 + 0.0143917i
\(248\) 0.181340 16.3725i 0.0115151 1.03966i
\(249\) 1.82884i 0.115898i
\(250\) 13.0329 + 8.95231i 0.824272 + 0.566194i
\(251\) 21.9355i 1.38456i −0.721630 0.692279i \(-0.756607\pi\)
0.721630 0.692279i \(-0.243393\pi\)
\(252\) 15.3112 + 15.5390i 0.964516 + 0.978866i
\(253\) 11.0527 11.0527i 0.694878 0.694878i
\(254\) −8.71933 + 8.65519i −0.547099 + 0.543075i
\(255\) 0.576997 2.85527i 0.0361330 0.178804i
\(256\) 15.9930 + 0.472483i 0.999564 + 0.0295302i
\(257\) −8.89886 8.89886i −0.555096 0.555096i 0.372811 0.927907i \(-0.378394\pi\)
−0.927907 + 0.372811i \(0.878394\pi\)
\(258\) −0.00827541 + 2.24155i −0.000515204 + 0.139553i
\(259\) 36.4223 2.26317
\(260\) −1.19765 + 0.782298i −0.0742750 + 0.0485160i
\(261\) 18.9404 1.17238
\(262\) 0.0433352 11.7381i 0.00267725 0.725185i
\(263\) 16.0413 + 16.0413i 0.989151 + 0.989151i 0.999942 0.0107906i \(-0.00343481\pi\)
−0.0107906 + 0.999942i \(0.503435\pi\)
\(264\) −1.24355 + 1.21631i −0.0765354 + 0.0748586i
\(265\) −17.7798 + 11.8019i −1.09221 + 0.724985i
\(266\) −3.76272 + 3.73504i −0.230707 + 0.229010i
\(267\) 1.85940 1.85940i 0.113794 0.113794i
\(268\) 10.2531 10.1028i 0.626308 0.617127i
\(269\) 6.96525i 0.424679i −0.977196 0.212339i \(-0.931892\pi\)
0.977196 0.212339i \(-0.0681083\pi\)
\(270\) 4.69486 3.09145i 0.285720 0.188140i
\(271\) 7.23572i 0.439539i 0.975552 + 0.219769i \(0.0705305\pi\)
−0.975552 + 0.219769i \(0.929470\pi\)
\(272\) −12.0672 12.4289i −0.731680 0.753615i
\(273\) 0.255063 0.255063i 0.0154371 0.0154371i
\(274\) 4.45466 + 4.48767i 0.269116 + 0.271110i
\(275\) −3.96952 + 9.42049i −0.239371 + 0.568077i
\(276\) 0.0339601 4.59930i 0.00204416 0.276845i
\(277\) −15.1164 15.1164i −0.908254 0.908254i 0.0878773 0.996131i \(-0.471992\pi\)
−0.996131 + 0.0878773i \(0.971992\pi\)
\(278\) 24.0285 + 0.0887090i 1.44113 + 0.00532041i
\(279\) −16.8429 −1.00836
\(280\) −19.8983 + 12.8929i −1.18915 + 0.770500i
\(281\) 10.0095 0.597118 0.298559 0.954391i \(-0.403494\pi\)
0.298559 + 0.954391i \(0.403494\pi\)
\(282\) −0.746646 0.00275649i −0.0444622 0.000164146i
\(283\) −8.48356 8.48356i −0.504295 0.504295i 0.408474 0.912770i \(-0.366061\pi\)
−0.912770 + 0.408474i \(0.866061\pi\)
\(284\) 0.0226445 3.06681i 0.00134371 0.181982i
\(285\) 0.371981 + 0.560397i 0.0220342 + 0.0331951i
\(286\) −0.651568 0.656397i −0.0385280 0.0388135i
\(287\) −17.4369 + 17.4369i −1.02927 + 1.02927i
\(288\) 0.303795 16.4559i 0.0179013 0.969674i
\(289\) 1.75596i 0.103292i
\(290\) −4.15205 + 20.1627i −0.243817 + 1.18399i
\(291\) 1.10767i 0.0649325i
\(292\) −14.6739 + 14.4588i −0.858727 + 0.846139i
\(293\) 10.3132 10.3132i 0.602501 0.602501i −0.338475 0.940976i \(-0.609911\pi\)
0.940976 + 0.338475i \(0.109911\pi\)
\(294\) 2.12977 2.11411i 0.124211 0.123297i
\(295\) −9.69876 1.95994i −0.564684 0.114112i
\(296\) −19.2145 19.6449i −1.11682 1.14184i
\(297\) 2.56989 + 2.56989i 0.149120 + 0.149120i
\(298\) 0.0510362 13.8241i 0.00295645 0.800809i
\(299\) 2.44549 0.141426
\(300\) 1.11357 + 2.79433i 0.0642919 + 0.161330i
\(301\) −19.7541 −1.13861
\(302\) 0.0220284 5.96680i 0.00126759 0.343351i
\(303\) 2.77598 + 2.77598i 0.159476 + 0.159476i
\(304\) 3.99956 + 0.0590668i 0.229391 + 0.00338771i
\(305\) 1.70454 + 0.344456i 0.0976015 + 0.0197235i
\(306\) −12.6470 + 12.5540i −0.722982 + 0.717663i
\(307\) 3.77726 3.77726i 0.215579 0.215579i −0.591053 0.806633i \(-0.701288\pi\)
0.806633 + 0.591053i \(0.201288\pi\)
\(308\) −10.7593 10.9193i −0.613066 0.622187i
\(309\) 5.29270i 0.301091i
\(310\) 3.69226 17.9299i 0.209706 1.01835i
\(311\) 21.5006i 1.21919i 0.792715 + 0.609593i \(0.208667\pi\)
−0.792715 + 0.609593i \(0.791333\pi\)
\(312\) −0.272130 0.00301408i −0.0154063 0.000170639i
\(313\) −12.1932 + 12.1932i −0.689200 + 0.689200i −0.962055 0.272855i \(-0.912032\pi\)
0.272855 + 0.962055i \(0.412032\pi\)
\(314\) 12.0568 + 12.1462i 0.680407 + 0.685449i
\(315\) 13.4885 + 20.3207i 0.759988 + 1.14494i
\(316\) −33.0134 0.243762i −1.85715 0.0137127i
\(317\) 0.231233 + 0.231233i 0.0129873 + 0.0129873i 0.713571 0.700583i \(-0.247077\pi\)
−0.700583 + 0.713571i \(0.747077\pi\)
\(318\) −4.05985 0.0149883i −0.227665 0.000840500i
\(319\) −13.3095 −0.745188
\(320\) 17.4513 + 3.93082i 0.975559 + 0.219739i
\(321\) −0.396283 −0.0221183
\(322\) 40.5328 + 0.149640i 2.25880 + 0.00833911i
\(323\) −3.06235 3.06235i −0.170394 0.170394i
\(324\) −16.3872 0.120999i −0.910402 0.00672218i
\(325\) −1.48131 + 0.603031i −0.0821685 + 0.0334501i
\(326\) 16.2363 + 16.3567i 0.899248 + 0.905912i
\(327\) −4.30529 + 4.30529i −0.238083 + 0.238083i
\(328\) 18.6037 + 0.206052i 1.02722 + 0.0113773i
\(329\) 6.57997i 0.362766i
\(330\) −1.62429 + 1.06956i −0.0894145 + 0.0588772i
\(331\) 22.4492i 1.23392i 0.786994 + 0.616960i \(0.211636\pi\)
−0.786994 + 0.616960i \(0.788364\pi\)
\(332\) −8.53446 8.66143i −0.468389 0.475358i
\(333\) −19.9880 + 19.9880i −1.09534 + 1.09534i
\(334\) 5.16772 5.12970i 0.282765 0.280685i
\(335\) 13.4082 8.90009i 0.732567 0.486264i
\(336\) −4.51025 0.0666087i −0.246054 0.00363380i
\(337\) −4.72972 4.72972i −0.257644 0.257644i 0.566451 0.824095i \(-0.308316\pi\)
−0.824095 + 0.566451i \(0.808316\pi\)
\(338\) −0.0673387 + 18.2400i −0.00366274 + 0.992123i
\(339\) 1.28057 0.0695512
\(340\) −10.5917 16.2153i −0.574417 0.879396i
\(341\) 11.8356 0.640935
\(342\) 0.0151906 4.11465i 0.000821412 0.222495i
\(343\) 0.143898 + 0.143898i 0.00776975 + 0.00776975i
\(344\) 10.4212 + 10.6547i 0.561875 + 0.574461i
\(345\) 1.01858 5.04042i 0.0548384 0.271367i
\(346\) 2.06545 2.05026i 0.111039 0.110223i
\(347\) 25.6539 25.6539i 1.37717 1.37717i 0.527809 0.849363i \(-0.323014\pi\)
0.849363 0.527809i \(-0.176986\pi\)
\(348\) −2.78964 + 2.74875i −0.149541 + 0.147348i
\(349\) 10.9773i 0.587600i −0.955867 0.293800i \(-0.905080\pi\)
0.955867 0.293800i \(-0.0949199\pi\)
\(350\) −24.5890 + 9.90432i −1.31434 + 0.529408i
\(351\) 0.568604i 0.0303499i
\(352\) −0.213478 + 11.5636i −0.0113784 + 0.616345i
\(353\) 20.5889 20.5889i 1.09584 1.09584i 0.100947 0.994892i \(-0.467813\pi\)
0.994892 0.100947i \(-0.0321874\pi\)
\(354\) −1.32616 1.33599i −0.0704847 0.0710071i
\(355\) 0.679187 3.36095i 0.0360475 0.178381i
\(356\) 0.129092 17.4833i 0.00684188 0.926613i
\(357\) 3.45336 + 3.45336i 0.182771 + 0.182771i
\(358\) 3.10693 + 0.0114702i 0.164207 + 0.000606221i
\(359\) −21.8842 −1.15500 −0.577502 0.816390i \(-0.695972\pi\)
−0.577502 + 0.816390i \(0.695972\pi\)
\(360\) 3.84445 17.9953i 0.202620 0.948437i
\(361\) 1.00000 0.0526316
\(362\) −6.33948 0.0234042i −0.333196 0.00123010i
\(363\) 1.45059 + 1.45059i 0.0761364 + 0.0761364i
\(364\) 0.0177082 2.39827i 0.000928162 0.125703i
\(365\) −19.1894 + 12.7375i −1.00442 + 0.666714i
\(366\) 0.233070 + 0.234798i 0.0121828 + 0.0122731i
\(367\) −26.0801 + 26.0801i −1.36137 + 1.36137i −0.489195 + 0.872175i \(0.662709\pi\)
−0.872175 + 0.489195i \(0.837291\pi\)
\(368\) −21.3023 21.9409i −1.11046 1.14375i
\(369\) 19.1382i 0.996294i
\(370\) −16.8962 25.6597i −0.878394 1.33398i
\(371\) 35.7783i 1.85752i
\(372\) 2.48072 2.44436i 0.128620 0.126734i
\(373\) −4.43315 + 4.43315i −0.229540 + 0.229540i −0.812500 0.582961i \(-0.801894\pi\)
0.582961 + 0.812500i \(0.301894\pi\)
\(374\) 8.88712 8.82174i 0.459542 0.456161i
\(375\) 0.625929 + 3.30433i 0.0323228 + 0.170635i
\(376\) −3.54901 + 3.47125i −0.183026 + 0.179016i
\(377\) −1.47240 1.47240i −0.0758327 0.0758327i
\(378\) −0.0347931 + 9.42436i −0.00178956 + 0.484737i
\(379\) −25.3291 −1.30107 −0.650534 0.759477i \(-0.725455\pi\)
−0.650534 + 0.759477i \(0.725455\pi\)
\(380\) 4.37687 + 0.918173i 0.224529 + 0.0471013i
\(381\) −2.61318 −0.133877
\(382\) −0.0332075 + 8.99486i −0.00169904 + 0.460217i
\(383\) −22.1823 22.1823i −1.13346 1.13346i −0.989597 0.143867i \(-0.954046\pi\)
−0.143867 0.989597i \(-0.545954\pi\)
\(384\) 2.34345 + 2.46781i 0.119588 + 0.125935i
\(385\) −9.47841 14.2794i −0.483064 0.727747i
\(386\) −19.3010 + 19.1590i −0.982393 + 0.975166i
\(387\) 10.8407 10.8407i 0.551066 0.551066i
\(388\) −5.16904 5.24594i −0.262418 0.266322i
\(389\) 26.6415i 1.35078i 0.737462 + 0.675388i \(0.236024\pi\)
−0.737462 + 0.675388i \(0.763976\pi\)
\(390\) −0.298016 0.0613696i −0.0150906 0.00310757i
\(391\) 33.1100i 1.67445i
\(392\) 0.220978 19.9513i 0.0111611 1.00769i
\(393\) 1.76545 1.76545i 0.0890552 0.0890552i
\(394\) 10.2608 + 10.3368i 0.516932 + 0.520763i
\(395\) −36.1797 7.31126i −1.82040 0.367870i
\(396\) 11.8969 + 0.0878435i 0.597841 + 0.00441430i
\(397\) −20.3538 20.3538i −1.02153 1.02153i −0.999763 0.0217671i \(-0.993071\pi\)
−0.0217671 0.999763i \(-0.506929\pi\)
\(398\) 29.8562 + 0.110224i 1.49656 + 0.00552503i
\(399\) −1.12768 −0.0564548
\(400\) 18.3139 + 8.03744i 0.915696 + 0.401872i
\(401\) −22.5998 −1.12858 −0.564289 0.825577i \(-0.690850\pi\)
−0.564289 + 0.825577i \(0.690850\pi\)
\(402\) 3.06163 + 0.0113030i 0.152700 + 0.000563742i
\(403\) 1.30935 + 1.30935i 0.0652236 + 0.0652236i
\(404\) 26.1016 + 0.192727i 1.29860 + 0.00958854i
\(405\) −17.9590 3.62918i −0.892388 0.180335i
\(406\) −24.3143 24.4945i −1.20670 1.21564i
\(407\) 14.0457 14.0457i 0.696217 0.696217i
\(408\) 0.0408084 3.68444i 0.00202032 0.182407i
\(409\) 3.50326i 0.173225i −0.996242 0.0866126i \(-0.972396\pi\)
0.996242 0.0866126i \(-0.0276042\pi\)
\(410\) 20.3733 + 4.19542i 1.00617 + 0.207197i
\(411\) 1.34495i 0.0663416i
\(412\) 24.6990 + 25.0664i 1.21683 + 1.23493i
\(413\) 11.7304 11.7304i 0.577214 0.577214i
\(414\) −22.3259 + 22.1616i −1.09726 + 1.08918i
\(415\) −7.51846 11.3267i −0.369066 0.556007i
\(416\) −1.30288 + 1.25565i −0.0638791 + 0.0615633i
\(417\) 3.61396 + 3.61396i 0.176976 + 0.176976i
\(418\) −0.0106745 + 2.89139i −0.000522106 + 0.141422i
\(419\) −12.6029 −0.615691 −0.307846 0.951436i \(-0.599608\pi\)
−0.307846 + 0.951436i \(0.599608\pi\)
\(420\) −4.93573 1.03541i −0.240839 0.0505228i
\(421\) −38.3993 −1.87147 −0.935735 0.352704i \(-0.885262\pi\)
−0.935735 + 0.352704i \(0.885262\pi\)
\(422\) 0.0702346 19.0244i 0.00341897 0.926092i
\(423\) 3.61098 + 3.61098i 0.175572 + 0.175572i
\(424\) −19.2975 + 18.8748i −0.937172 + 0.916639i
\(425\) −8.16459 20.0559i −0.396041 0.972853i
\(426\) 0.462966 0.459560i 0.0224308 0.0222658i
\(427\) −2.06159 + 2.06159i −0.0997673 + 0.0997673i
\(428\) −1.87681 + 1.84930i −0.0907190 + 0.0893891i
\(429\) 0.196722i 0.00949781i
\(430\) 9.16389 + 13.9168i 0.441922 + 0.671130i
\(431\) 22.0058i 1.05998i −0.848003 0.529992i \(-0.822195\pi\)
0.848003 0.529992i \(-0.177805\pi\)
\(432\) 5.10152 4.95303i 0.245447 0.238303i
\(433\) 24.6830 24.6830i 1.18619 1.18619i 0.208077 0.978112i \(-0.433279\pi\)
0.978112 0.208077i \(-0.0667205\pi\)
\(434\) 21.6218 + 21.7821i 1.03788 + 1.04557i
\(435\) −3.64807 + 2.42152i −0.174912 + 0.116103i
\(436\) −0.298902 + 40.4811i −0.0143148 + 1.93869i
\(437\) −5.40599 5.40599i −0.258604 0.258604i
\(438\) −4.38171 0.0161765i −0.209366 0.000772944i
\(439\) 14.9623 0.714113 0.357056 0.934083i \(-0.383780\pi\)
0.357056 + 0.934083i \(0.383780\pi\)
\(440\) −2.70151 + 12.6454i −0.128790 + 0.602846i
\(441\) −20.5246 −0.977360
\(442\) 1.95910 + 0.00723265i 0.0931849 + 0.000344022i
\(443\) −4.16446 4.16446i −0.197859 0.197859i 0.601222 0.799082i \(-0.294681\pi\)
−0.799082 + 0.601222i \(0.794681\pi\)
\(444\) 0.0431560 5.84473i 0.00204809 0.277379i
\(445\) 3.87192 19.1602i 0.183547 0.908279i
\(446\) −2.66135 2.68107i −0.126019 0.126953i
\(447\) 2.07919 2.07919i 0.0983422 0.0983422i
\(448\) −21.6715 + 20.7321i −1.02388 + 0.979499i
\(449\) 4.32706i 0.204207i 0.994774 + 0.102103i \(0.0325572\pi\)
−0.994774 + 0.102103i \(0.967443\pi\)
\(450\) 8.05872 18.9294i 0.379892 0.892340i
\(451\) 13.4485i 0.633265i
\(452\) 6.06484 5.97593i 0.285266 0.281084i
\(453\) 0.897424 0.897424i 0.0421646 0.0421646i
\(454\) −2.07871 + 2.06342i −0.0975589 + 0.0968412i
\(455\) 0.531129 2.62829i 0.0248997 0.123216i
\(456\) 0.594908 + 0.608234i 0.0278591 + 0.0284831i
\(457\) 11.1732 + 11.1732i 0.522659 + 0.522659i 0.918374 0.395714i \(-0.129503\pi\)
−0.395714 + 0.918374i \(0.629503\pi\)
\(458\) −0.0161263 + 4.36810i −0.000753530 + 0.204108i
\(459\) −7.69848 −0.359334
\(460\) −18.6977 28.6249i −0.871783 1.33464i
\(461\) −28.2155 −1.31413 −0.657064 0.753835i \(-0.728202\pi\)
−0.657064 + 0.753835i \(0.728202\pi\)
\(462\) 0.0120375 3.26057i 0.000560033 0.151695i
\(463\) 23.1500 + 23.1500i 1.07587 + 1.07587i 0.996875 + 0.0789948i \(0.0251710\pi\)
0.0789948 + 0.996875i \(0.474829\pi\)
\(464\) −0.384512 + 26.0363i −0.0178505 + 1.20871i
\(465\) 3.24409 2.15336i 0.150441 0.0998599i
\(466\) 0.390840 0.387964i 0.0181053 0.0179721i
\(467\) 12.5001 12.5001i 0.578435 0.578435i −0.356037 0.934472i \(-0.615872\pi\)
0.934472 + 0.356037i \(0.115872\pi\)
\(468\) 1.30641 + 1.32585i 0.0603889 + 0.0612874i
\(469\) 26.9812i 1.24588i
\(470\) −4.63561 + 3.05244i −0.213825 + 0.140798i
\(471\) 3.64021i 0.167732i
\(472\) −12.5153 0.138618i −0.576063 0.00638040i
\(473\) −7.61784 + 7.61784i −0.350269 + 0.350269i
\(474\) −4.94704 4.98370i −0.227225 0.228909i
\(475\) 4.60765 + 1.94153i 0.211414 + 0.0890836i
\(476\) 32.4707 + 0.239756i 1.48829 + 0.0109892i
\(477\) 19.6345 + 19.6345i 0.899004 + 0.899004i
\(478\) 3.61044 + 0.0133291i 0.165137 + 0.000609658i
\(479\) −18.1663 −0.830040 −0.415020 0.909812i \(-0.636225\pi\)
−0.415020 + 0.909812i \(0.636225\pi\)
\(480\) 2.04537 + 3.20839i 0.0933579 + 0.146442i
\(481\) 3.10769 0.141699
\(482\) −15.3709 0.0567465i −0.700123 0.00258473i
\(483\) 6.09625 + 6.09625i 0.277389 + 0.277389i
\(484\) 13.6394 + 0.100710i 0.619973 + 0.00457772i
\(485\) −4.55368 6.86022i −0.206772 0.311506i
\(486\) −7.76871 7.82629i −0.352396 0.355008i
\(487\) −23.4493 + 23.4493i −1.06259 + 1.06259i −0.0646845 + 0.997906i \(0.520604\pi\)
−0.997906 + 0.0646845i \(0.979396\pi\)
\(488\) 2.19954 + 0.0243618i 0.0995684 + 0.00110281i
\(489\) 4.90209i 0.221680i
\(490\) 4.49933 21.8491i 0.203259 0.987044i
\(491\) 1.07295i 0.0484217i 0.999707 + 0.0242108i \(0.00770731\pi\)
−0.999707 + 0.0242108i \(0.992293\pi\)
\(492\) 2.77746 + 2.81878i 0.125218 + 0.127080i
\(493\) 19.9353 19.9353i 0.897839 0.897839i
\(494\) −0.321050 + 0.318688i −0.0144447 + 0.0143384i
\(495\) 13.0379 + 2.63473i 0.586011 + 0.118422i
\(496\) 0.341932 23.1531i 0.0153532 1.03961i
\(497\) 4.06497 + 4.06497i 0.182339 + 0.182339i
\(498\) 0.00954834 2.58635i 0.000427871 0.115897i
\(499\) −17.3943 −0.778674 −0.389337 0.921095i \(-0.627296\pi\)
−0.389337 + 0.921095i \(0.627296\pi\)
\(500\) 18.3844 + 12.7284i 0.822176 + 0.569233i
\(501\) 1.54876 0.0691936
\(502\) 0.114525 31.0213i 0.00511151 1.38455i
\(503\) 20.5398 + 20.5398i 0.915826 + 0.915826i 0.996723 0.0808962i \(-0.0257782\pi\)
−0.0808962 + 0.996723i \(0.525778\pi\)
\(504\) 21.5721 + 22.0553i 0.960896 + 0.982420i
\(505\) 28.6050 + 5.78055i 1.27291 + 0.257231i
\(506\) 15.6885 15.5731i 0.697439 0.692308i
\(507\) −2.74334 + 2.74334i −0.121836 + 0.121836i
\(508\) −12.3761 + 12.1947i −0.549101 + 0.541051i
\(509\) 31.2945i 1.38710i −0.720406 0.693552i \(-0.756045\pi\)
0.720406 0.693552i \(-0.243955\pi\)
\(510\) 0.830899 4.03492i 0.0367928 0.178669i
\(511\) 38.6147i 1.70822i
\(512\) 22.6149 + 0.751686i 0.999448 + 0.0332201i
\(513\) 1.25696 1.25696i 0.0554960 0.0554960i
\(514\) −12.5383 12.6313i −0.553043 0.557141i
\(515\) 21.7586 + 32.7798i 0.958799 + 1.44445i
\(516\) −0.0234062 + 3.16996i −0.00103040 + 0.139550i
\(517\) −2.53746 2.53746i −0.111597 0.111597i
\(518\) 51.5086 + 0.190161i 2.26316 + 0.00835518i
\(519\) 0.619015 0.0271717
\(520\) −1.69780 + 1.10008i −0.0744536 + 0.0482415i
\(521\) 17.9538 0.786572 0.393286 0.919416i \(-0.371338\pi\)
0.393286 + 0.919416i \(0.371338\pi\)
\(522\) 26.7855 + 0.0988874i 1.17237 + 0.00432818i
\(523\) −5.14238 5.14238i −0.224861 0.224861i 0.585681 0.810542i \(-0.300827\pi\)
−0.810542 + 0.585681i \(0.800827\pi\)
\(524\) 0.122569 16.5999i 0.00535447 0.725170i
\(525\) −5.19598 2.18944i −0.226771 0.0955548i
\(526\) 22.6020 + 22.7695i 0.985493 + 0.992796i
\(527\) −17.7277 + 17.7277i −0.772230 + 0.772230i
\(528\) −1.76499 + 1.71362i −0.0768112 + 0.0745755i
\(529\) 35.4494i 1.54128i
\(530\) −25.2059 + 16.5975i −1.09488 + 0.720948i
\(531\) 12.8749i 0.558723i
\(532\) −5.34075 + 5.26246i −0.231551 + 0.228157i
\(533\) −1.48778 + 1.48778i −0.0644431 + 0.0644431i
\(534\) 2.63928 2.61987i 0.114213 0.113373i
\(535\) −2.45434 + 1.62914i −0.106110 + 0.0704339i
\(536\) 14.5527 14.2339i 0.628582 0.614810i
\(537\) 0.467292 + 0.467292i 0.0201651 + 0.0201651i
\(538\) 0.0363655 9.85029i 0.00156783 0.424676i
\(539\) 14.4227 0.621230
\(540\) 6.65563 4.34743i 0.286413 0.187084i
\(541\) 19.3237 0.830792 0.415396 0.909641i \(-0.363643\pi\)
0.415396 + 0.909641i \(0.363643\pi\)
\(542\) −0.0377776 + 10.2328i −0.00162269 + 0.439536i
\(543\) −0.953477 0.953477i −0.0409176 0.0409176i
\(544\) −17.0006 17.6401i −0.728893 0.756311i
\(545\) −8.96509 + 44.3637i −0.384022 + 1.90033i
\(546\) 0.362043 0.359380i 0.0154940 0.0153800i
\(547\) −18.3764 + 18.3764i −0.785719 + 0.785719i −0.980789 0.195071i \(-0.937506\pi\)
0.195071 + 0.980789i \(0.437506\pi\)
\(548\) 6.27636 + 6.36974i 0.268113 + 0.272102i
\(549\) 2.26274i 0.0965712i
\(550\) −5.66290 + 13.3018i −0.241467 + 0.567189i
\(551\) 6.50979i 0.277326i
\(552\) 0.0720394 6.50417i 0.00306620 0.276836i
\(553\) 43.7583 43.7583i 1.86079 1.86079i
\(554\) −21.2987 21.4565i −0.904895 0.911601i
\(555\) 1.29440 6.40531i 0.0549441 0.271890i
\(556\) 33.9808 + 0.250905i 1.44110 + 0.0106408i
\(557\) 22.1345 + 22.1345i 0.937870 + 0.937870i 0.998180 0.0603095i \(-0.0192088\pi\)
−0.0603095 + 0.998180i \(0.519209\pi\)
\(558\) −23.8194 0.0879369i −1.00835 0.00372266i
\(559\) −1.68550 −0.0712889
\(560\) −28.2076 + 18.1294i −1.19199 + 0.766105i
\(561\) 2.66346 0.112452
\(562\) 14.1555 + 0.0522597i 0.597114 + 0.00220444i
\(563\) 4.11064 + 4.11064i 0.173243 + 0.173243i 0.788403 0.615160i \(-0.210908\pi\)
−0.615160 + 0.788403i \(0.710908\pi\)
\(564\) −1.05590 0.00779647i −0.0444612 0.000328291i
\(565\) 7.93111 5.26451i 0.333664 0.221480i
\(566\) −11.9532 12.0418i −0.502430 0.506154i
\(567\) 21.7209 21.7209i 0.912190 0.912190i
\(568\) 0.0480358 4.33697i 0.00201554 0.181975i
\(569\) 21.3698i 0.895869i 0.894066 + 0.447934i \(0.147840\pi\)
−0.894066 + 0.447934i \(0.852160\pi\)
\(570\) 0.523131 + 0.794458i 0.0219115 + 0.0332762i
\(571\) 17.7556i 0.743049i 0.928423 + 0.371524i \(0.121165\pi\)
−0.928423 + 0.371524i \(0.878835\pi\)
\(572\) −0.918023 0.931680i −0.0383845 0.0389555i
\(573\) −1.35285 + 1.35285i −0.0565163 + 0.0565163i
\(574\) −24.7504 + 24.5683i −1.03306 + 1.02546i
\(575\) −14.4130 35.4048i −0.601064 1.47648i
\(576\) 0.515544 23.2704i 0.0214810 0.969601i
\(577\) 15.8282 + 15.8282i 0.658936 + 0.658936i 0.955128 0.296193i \(-0.0957170\pi\)
−0.296193 + 0.955128i \(0.595717\pi\)
\(578\) −0.00916785 + 2.48329i −0.000381332 + 0.103291i
\(579\) −5.78449 −0.240395
\(580\) −5.97711 + 28.4925i −0.248186 + 1.18309i
\(581\) 22.7927 0.945601
\(582\) 0.00578311 1.56646i 0.000239718 0.0649320i
\(583\) −13.7973 13.7973i −0.571425 0.571425i
\(584\) −20.8274 + 20.3711i −0.861845 + 0.842963i
\(585\) 1.15089 + 1.73384i 0.0475833 + 0.0716854i
\(586\) 14.6387 14.5311i 0.604721 0.600272i
\(587\) 5.07211 5.07211i 0.209348 0.209348i −0.594642 0.803991i \(-0.702706\pi\)
0.803991 + 0.594642i \(0.202706\pi\)
\(588\) 3.02297 2.97866i 0.124665 0.122838i
\(589\) 5.78891i 0.238528i
\(590\) −13.7058 2.82240i −0.564259 0.116196i
\(591\) 3.09795i 0.127433i
\(592\) −27.0707 27.8822i −1.11260 1.14595i
\(593\) 14.6665 14.6665i 0.602280 0.602280i −0.338637 0.940917i \(-0.609966\pi\)
0.940917 + 0.338637i \(0.109966\pi\)
\(594\) 3.62093 + 3.64776i 0.148569 + 0.149670i
\(595\) 35.5851 + 7.19109i 1.45884 + 0.294806i
\(596\) 0.144351 19.5498i 0.00591285 0.800793i
\(597\) 4.49047 + 4.49047i 0.183783 + 0.183783i
\(598\) 3.45842 + 0.0127679i 0.141425 + 0.000522117i
\(599\) −10.7934 −0.441005 −0.220502 0.975386i \(-0.570770\pi\)
−0.220502 + 0.975386i \(0.570770\pi\)
\(600\) 1.56022 + 3.95756i 0.0636959 + 0.161567i
\(601\) −8.15596 −0.332688 −0.166344 0.986068i \(-0.553196\pi\)
−0.166344 + 0.986068i \(0.553196\pi\)
\(602\) −27.9363 0.103136i −1.13860 0.00420351i
\(603\) −14.8069 14.8069i −0.602982 0.602982i
\(604\) 0.0623052 8.43815i 0.00253516 0.343344i
\(605\) 14.9476 + 3.02063i 0.607706 + 0.122806i
\(606\) 3.91131 + 3.94030i 0.158886 + 0.160064i
\(607\) 33.9049 33.9049i 1.37616 1.37616i 0.525148 0.851011i \(-0.324010\pi\)
0.851011 0.525148i \(-0.175990\pi\)
\(608\) 5.65589 + 0.104414i 0.229377 + 0.00423455i
\(609\) 7.34099i 0.297472i
\(610\) 2.40877 + 0.496030i 0.0975280 + 0.0200837i
\(611\) 0.561429i 0.0227130i
\(612\) −17.9510 + 17.6879i −0.725626 + 0.714989i
\(613\) −8.50562 + 8.50562i −0.343539 + 0.343539i −0.857696 0.514157i \(-0.828105\pi\)
0.514157 + 0.857696i \(0.328105\pi\)
\(614\) 5.36153 5.32209i 0.216374 0.214782i
\(615\) 2.44681 + 3.68617i 0.0986649 + 0.148641i
\(616\) −15.1588 15.4983i −0.610765 0.624446i
\(617\) −22.6320 22.6320i −0.911129 0.911129i 0.0852322 0.996361i \(-0.472837\pi\)
−0.996361 + 0.0852322i \(0.972837\pi\)
\(618\) −0.0276331 + 7.48496i −0.00111157 + 0.301089i
\(619\) 14.5559 0.585051 0.292525 0.956258i \(-0.405504\pi\)
0.292525 + 0.956258i \(0.405504\pi\)
\(620\) 5.31522 25.3373i 0.213464 1.01757i
\(621\) −13.5902 −0.545355
\(622\) −0.112254 + 30.4062i −0.00450099 + 1.21918i
\(623\) 23.1737 + 23.1737i 0.928433 + 0.928433i
\(624\) −0.384832 0.00568331i −0.0154056 0.000227515i
\(625\) 17.4609 + 17.8918i 0.698436 + 0.715672i
\(626\) −17.3073 + 17.1800i −0.691740 + 0.686651i
\(627\) −0.434873 + 0.434873i −0.0173671 + 0.0173671i
\(628\) 16.9874 + 17.2401i 0.677872 + 0.687956i
\(629\) 42.0758i 1.67767i
\(630\) 18.9693 + 28.8080i 0.755756 + 1.14774i
\(631\) 29.4769i 1.17346i −0.809784 0.586728i \(-0.800416\pi\)
0.809784 0.586728i \(-0.199584\pi\)
\(632\) −46.6864 0.517092i −1.85708 0.0205688i
\(633\) 2.86132 2.86132i 0.113727 0.113727i
\(634\) 0.325803 + 0.328218i 0.0129393 + 0.0130352i
\(635\) −16.1845 + 10.7429i −0.642261 + 0.426320i
\(636\) −5.74138 0.0423929i −0.227661 0.00168099i
\(637\) 1.59556 + 1.59556i 0.0632183 + 0.0632183i
\(638\) −18.8223 0.0694887i −0.745183 0.00275108i
\(639\) −4.46159 −0.176498
\(640\) 24.6592 + 5.65009i 0.974741 + 0.223339i
\(641\) 12.2729 0.484749 0.242374 0.970183i \(-0.422074\pi\)
0.242374 + 0.970183i \(0.422074\pi\)
\(642\) −0.560425 0.00206899i −0.0221182 8.16565e-5i
\(643\) 8.55592 + 8.55592i 0.337413 + 0.337413i 0.855393 0.517980i \(-0.173316\pi\)
−0.517980 + 0.855393i \(0.673316\pi\)
\(644\) 57.3209 + 0.423243i 2.25876 + 0.0166781i
\(645\) −0.702032 + 3.47400i −0.0276425 + 0.136789i
\(646\) −4.31480 4.34677i −0.169763 0.171022i
\(647\) 27.5524 27.5524i 1.08320 1.08320i 0.0869883 0.996209i \(-0.472276\pi\)
0.996209 0.0869883i \(-0.0277243\pi\)
\(648\) −23.1743 0.256675i −0.910371 0.0100832i
\(649\) 9.04725i 0.355136i
\(650\) −2.09803 + 0.845075i −0.0822914 + 0.0331466i
\(651\) 6.52807i 0.255855i
\(652\) 22.8761 + 23.2164i 0.895898 + 0.909226i
\(653\) 9.19195 9.19195i 0.359709 0.359709i −0.503997 0.863706i \(-0.668138\pi\)
0.863706 + 0.503997i \(0.168138\pi\)
\(654\) −6.11103 + 6.06608i −0.238960 + 0.237202i
\(655\) 3.67628 18.1920i 0.143644 0.710821i
\(656\) 26.3083 + 0.388529i 1.02717 + 0.0151695i
\(657\) 21.1912 + 21.1912i 0.826746 + 0.826746i
\(658\) 0.0343540 9.30542i 0.00133926 0.362763i
\(659\) 1.02222 0.0398199 0.0199099 0.999802i \(-0.493662\pi\)
0.0199099 + 0.999802i \(0.493662\pi\)
\(660\) −2.30267 + 1.50409i −0.0896312 + 0.0585467i
\(661\) −8.72455 −0.339346 −0.169673 0.985500i \(-0.554271\pi\)
−0.169673 + 0.985500i \(0.554271\pi\)
\(662\) −0.117207 + 31.7478i −0.00455539 + 1.23391i
\(663\) 0.294654 + 0.294654i 0.0114434 + 0.0114434i
\(664\) −12.0242 12.2936i −0.466631 0.477084i
\(665\) −6.98421 + 4.63598i −0.270836 + 0.179776i
\(666\) −28.3715 + 28.1627i −1.09937 + 1.09128i
\(667\) 35.1919 35.1919i 1.36263 1.36263i
\(668\) 7.33499 7.22746i 0.283799 0.279639i
\(669\) 0.803516i 0.0310657i
\(670\) 19.0084 12.5165i 0.734358 0.483556i
\(671\) 1.59004i 0.0613826i
\(672\) −6.37806 0.117746i −0.246039 0.00454216i
\(673\) −15.8449 + 15.8449i −0.610777 + 0.610777i −0.943148 0.332372i \(-0.892151\pi\)
0.332372 + 0.943148i \(0.392151\pi\)
\(674\) −6.66409 6.71348i −0.256691 0.258594i
\(675\) 8.23204 3.35120i 0.316851 0.128988i
\(676\) −0.190461 + 25.7947i −0.00732543 + 0.992102i
\(677\) −19.7428 19.7428i −0.758777 0.758777i 0.217323 0.976100i \(-0.430268\pi\)
−0.976100 + 0.217323i \(0.930268\pi\)
\(678\) 1.81099 + 0.00668587i 0.0695507 + 0.000256769i
\(679\) 13.8048 0.529779
\(680\) −14.8942 22.9870i −0.571167 0.881510i
\(681\) −0.622990 −0.0238730
\(682\) 16.7380 + 0.0617937i 0.640930 + 0.00236620i
\(683\) −25.7242 25.7242i −0.984311 0.984311i 0.0155682 0.999879i \(-0.495044\pi\)
−0.999879 + 0.0155682i \(0.995044\pi\)
\(684\) 0.0429651 5.81888i 0.00164281 0.222490i
\(685\) 5.52918 + 8.32983i 0.211259 + 0.318266i
\(686\) 0.202749 + 0.204252i 0.00774101 + 0.00779838i
\(687\) −0.656975 + 0.656975i −0.0250652 + 0.0250652i
\(688\) 14.6821 + 15.1223i 0.559751 + 0.576532i
\(689\) 3.05274i 0.116300i
\(690\) 1.46679 7.12287i 0.0558399 0.271163i
\(691\) 28.0903i 1.06861i 0.845293 + 0.534303i \(0.179426\pi\)
−0.845293 + 0.534303i \(0.820574\pi\)
\(692\) 2.93167 2.88870i 0.111446 0.109812i
\(693\) −15.7690 + 15.7690i −0.599015 + 0.599015i
\(694\) 36.4137 36.1459i 1.38225 1.37208i
\(695\) 37.2399 + 7.52550i 1.41259 + 0.285459i
\(696\) −3.95947 + 3.87273i −0.150083 + 0.146795i
\(697\) −20.1435 20.1435i −0.762989 0.762989i
\(698\) 0.0573122 15.5241i 0.00216930 0.587596i
\(699\) 0.117134 0.00443043
\(700\) −34.8256 + 13.8783i −1.31628 + 0.524552i
\(701\) 17.5957 0.664579 0.332289 0.943177i \(-0.392179\pi\)
0.332289 + 0.943177i \(0.392179\pi\)
\(702\) −0.00296868 + 0.804123i −0.000112046 + 0.0303497i
\(703\) −6.86987 6.86987i −0.259102 0.259102i
\(704\) −0.362275 + 16.3522i −0.0136538 + 0.616298i
\(705\) −1.15717 0.233843i −0.0435815 0.00880702i
\(706\) 29.2245 29.0095i 1.09988 1.09179i
\(707\) −34.5969 + 34.5969i −1.30115 + 1.30115i
\(708\) −1.86849 1.89629i −0.0702221 0.0712668i
\(709\) 40.9442i 1.53769i −0.639434 0.768846i \(-0.720831\pi\)
0.639434 0.768846i \(-0.279169\pi\)
\(710\) 0.978056 4.74952i 0.0367058 0.178246i
\(711\) 48.0278i 1.80118i
\(712\) 0.273843 24.7243i 0.0102627 0.926582i
\(713\) −31.2948 + 31.2948i −1.17200 + 1.17200i
\(714\) 4.86573 + 4.90179i 0.182095 + 0.183445i
\(715\) −0.808734 1.21838i −0.0302449 0.0455647i
\(716\) 4.39378 + 0.0324425i 0.164203 + 0.00121243i
\(717\) 0.543020 + 0.543020i 0.0202795 + 0.0202795i
\(718\) −30.9487 0.114257i −1.15500 0.00426404i
\(719\) −18.4285 −0.687266 −0.343633 0.939104i \(-0.611658\pi\)
−0.343633 + 0.939104i \(0.611658\pi\)
\(720\) 5.53078 25.4290i 0.206120 0.947683i
\(721\) −65.9627 −2.45658
\(722\) 1.41420 + 0.00522099i 0.0526312 + 0.000194305i
\(723\) −2.31182 2.31182i −0.0859775 0.0859775i
\(724\) −8.96520 0.0661968i −0.333189 0.00246018i
\(725\) −12.6390 + 29.9949i −0.469399 + 1.11398i
\(726\) 2.04386 + 2.05901i 0.0758548 + 0.0764170i
\(727\) −14.2988 + 14.2988i −0.530314 + 0.530314i −0.920666 0.390352i \(-0.872353\pi\)
0.390352 + 0.920666i \(0.372353\pi\)
\(728\) 0.0375643 3.39155i 0.00139223 0.125699i
\(729\) 22.2360i 0.823555i
\(730\) −27.2042 + 17.9133i −1.00687 + 0.663001i
\(731\) 22.8204i 0.844042i
\(732\) 0.328383 + 0.333269i 0.0121374 + 0.0123180i
\(733\) 2.66770 2.66770i 0.0985337 0.0985337i −0.656122 0.754655i \(-0.727804\pi\)
0.754655 + 0.656122i \(0.227804\pi\)
\(734\) −37.0187 + 36.7464i −1.36639 + 1.35633i
\(735\) 3.95320 2.62406i 0.145816 0.0967898i
\(736\) −30.0112 31.1401i −1.10623 1.14784i
\(737\) 10.4049 + 10.4049i 0.383268 + 0.383268i
\(738\) 0.0999203 27.0653i 0.00367812 0.996288i
\(739\) 38.6731 1.42261 0.711307 0.702882i \(-0.248104\pi\)
0.711307 + 0.702882i \(0.248104\pi\)
\(740\) −23.7608 36.3762i −0.873463 1.33722i
\(741\) −0.0962184 −0.00353467
\(742\) 0.186798 50.5978i 0.00685757 1.85750i
\(743\) 1.38756 + 1.38756i 0.0509046 + 0.0509046i 0.732101 0.681196i \(-0.238540\pi\)
−0.681196 + 0.732101i \(0.738540\pi\)
\(744\) 3.52101 3.44387i 0.129087 0.126258i
\(745\) 4.32958 21.4249i 0.158624 0.784948i
\(746\) −6.29252 + 6.24623i −0.230385 + 0.228691i
\(747\) −12.5083 + 12.5083i −0.457654 + 0.457654i
\(748\) 12.6143 12.4293i 0.461223 0.454462i
\(749\) 4.93885i 0.180462i
\(750\) 0.867939 + 4.67626i 0.0316926 + 0.170753i
\(751\) 13.6253i 0.497193i −0.968607 0.248596i \(-0.920031\pi\)
0.968607 0.248596i \(-0.0799693\pi\)
\(752\) −5.03714 + 4.89053i −0.183686 + 0.178339i
\(753\) 4.66569 4.66569i 0.170027 0.170027i
\(754\) −2.07459 2.08997i −0.0755522 0.0761121i
\(755\) 1.86874 9.24747i 0.0680106 0.336550i
\(756\) −0.0984090 + 13.3278i −0.00357910 + 0.484727i
\(757\) 12.0474 + 12.0474i 0.437871 + 0.437871i 0.891295 0.453424i \(-0.149798\pi\)
−0.453424 + 0.891295i \(0.649798\pi\)
\(758\) −35.8205 0.132243i −1.30106 0.00480328i
\(759\) 4.70184 0.170666
\(760\) 6.18499 + 1.32133i 0.224353 + 0.0479299i
\(761\) −9.84572 −0.356907 −0.178454 0.983948i \(-0.557109\pi\)
−0.178454 + 0.983948i \(0.557109\pi\)
\(762\) −3.69557 0.0136434i −0.133876 0.000494248i
\(763\) −53.6566 53.6566i −1.94250 1.94250i
\(764\) −0.0939242 + 12.7204i −0.00339806 + 0.460208i
\(765\) −23.4749 + 15.5822i −0.848736 + 0.563374i
\(766\) −31.2545 31.4862i −1.12927 1.13764i
\(767\) 1.00088 1.00088i 0.0361397 0.0361397i
\(768\) 3.30123 + 3.50222i 0.119123 + 0.126375i
\(769\) 32.7080i 1.17948i −0.807593 0.589741i \(-0.799230\pi\)
0.807593 0.589741i \(-0.200770\pi\)