Properties

Label 380.2.k.c.267.20
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.20
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08061 + 0.912296i) q^{2} +(1.34016 + 1.34016i) q^{3} +(0.335432 + 1.97167i) q^{4} +(-2.21942 - 0.272360i) q^{5} +(0.225567 + 2.67081i) q^{6} +(-0.697742 + 0.697742i) q^{7} +(-1.43628 + 2.43662i) q^{8} +0.592060i q^{9} +O(q^{10})\) \(q+(1.08061 + 0.912296i) q^{2} +(1.34016 + 1.34016i) q^{3} +(0.335432 + 1.97167i) q^{4} +(-2.21942 - 0.272360i) q^{5} +(0.225567 + 2.67081i) q^{6} +(-0.697742 + 0.697742i) q^{7} +(-1.43628 + 2.43662i) q^{8} +0.592060i q^{9} +(-2.14985 - 2.31908i) q^{10} +4.74628i q^{11} +(-2.19282 + 3.09189i) q^{12} +(3.30493 - 3.30493i) q^{13} +(-1.39053 + 0.117439i) q^{14} +(-2.60937 - 3.33938i) q^{15} +(-3.77497 + 1.32272i) q^{16} +(-1.03069 - 1.03069i) q^{17} +(-0.540133 + 0.639785i) q^{18} +1.00000 q^{19} +(-0.207460 - 4.46732i) q^{20} -1.87017 q^{21} +(-4.33001 + 5.12887i) q^{22} +(6.40614 + 6.40614i) q^{23} +(-5.19030 + 1.34062i) q^{24} +(4.85164 + 1.20896i) q^{25} +(6.58642 - 0.556264i) q^{26} +(3.22703 - 3.22703i) q^{27} +(-1.60976 - 1.14167i) q^{28} -1.98037i q^{29} +(0.226796 - 5.98909i) q^{30} -9.29923i q^{31} +(-5.28598 - 2.01454i) q^{32} +(-6.36077 + 6.36077i) q^{33} +(-0.173479 - 2.05407i) q^{34} +(1.73862 - 1.35854i) q^{35} +(-1.16735 + 0.198596i) q^{36} +(-5.70256 - 5.70256i) q^{37} +(1.08061 + 0.912296i) q^{38} +8.85828 q^{39} +(3.85134 - 5.01669i) q^{40} +9.41542 q^{41} +(-2.02093 - 1.70615i) q^{42} +(-1.89635 - 1.89635i) q^{43} +(-9.35809 + 1.59205i) q^{44} +(0.161254 - 1.31403i) q^{45} +(1.07824 + 12.7668i) q^{46} +(-1.10706 + 1.10706i) q^{47} +(-6.83173 - 3.28640i) q^{48} +6.02631i q^{49} +(4.13979 + 5.73255i) q^{50} -2.76258i q^{51} +(7.62482 + 5.40766i) q^{52} +(-0.00450773 + 0.00450773i) q^{53} +(6.43116 - 0.543151i) q^{54} +(1.29270 - 10.5340i) q^{55} +(-0.697982 - 2.70228i) q^{56} +(1.34016 + 1.34016i) q^{57} +(1.80669 - 2.14001i) q^{58} +3.02457 q^{59} +(5.70890 - 6.26496i) q^{60} -0.724786 q^{61} +(8.48365 - 10.0488i) q^{62} +(-0.413105 - 0.413105i) q^{63} +(-3.87422 - 6.99931i) q^{64} +(-8.23516 + 6.43490i) q^{65} +(-12.6764 + 1.07060i) q^{66} +(-10.1252 + 10.1252i) q^{67} +(1.68645 - 2.37791i) q^{68} +17.1705i q^{69} +(3.11816 + 0.118079i) q^{70} -9.29365i q^{71} +(-1.44262 - 0.850361i) q^{72} +(-4.54609 + 4.54609i) q^{73} +(-0.959817 - 11.3647i) q^{74} +(4.88177 + 8.12218i) q^{75} +(0.335432 + 1.97167i) q^{76} +(-3.31168 - 3.31168i) q^{77} +(9.57234 + 8.08137i) q^{78} -0.319115 q^{79} +(8.73850 - 1.90753i) q^{80} +10.4256 q^{81} +(10.1744 + 8.58965i) q^{82} +(2.15376 + 2.15376i) q^{83} +(-0.627316 - 3.68736i) q^{84} +(2.00681 + 2.56825i) q^{85} +(-0.319181 - 3.77925i) q^{86} +(2.65402 - 2.65402i) q^{87} +(-11.5649 - 6.81696i) q^{88} -8.13569i q^{89} +(1.37303 - 1.27284i) q^{90} +4.61198i q^{91} +(-10.4820 + 14.7796i) q^{92} +(12.4625 - 12.4625i) q^{93} +(-2.20627 + 0.186333i) q^{94} +(-2.21942 - 0.272360i) q^{95} +(-4.38426 - 9.78387i) q^{96} +(-8.29185 - 8.29185i) q^{97} +(-5.49778 + 6.51209i) q^{98} -2.81008 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.08061 + 0.912296i 0.764106 + 0.645091i
\(3\) 1.34016 + 1.34016i 0.773742 + 0.773742i 0.978759 0.205017i \(-0.0657248\pi\)
−0.205017 + 0.978759i \(0.565725\pi\)
\(4\) 0.335432 + 1.97167i 0.167716 + 0.985835i
\(5\) −2.21942 0.272360i −0.992554 0.121803i
\(6\) 0.225567 + 2.67081i 0.0920873 + 1.09035i
\(7\) −0.697742 + 0.697742i −0.263722 + 0.263722i −0.826564 0.562842i \(-0.809708\pi\)
0.562842 + 0.826564i \(0.309708\pi\)
\(8\) −1.43628 + 2.43662i −0.507800 + 0.861475i
\(9\) 0.592060i 0.197353i
\(10\) −2.14985 2.31908i −0.679843 0.733358i
\(11\) 4.74628i 1.43106i 0.698584 + 0.715528i \(0.253814\pi\)
−0.698584 + 0.715528i \(0.746186\pi\)
\(12\) −2.19282 + 3.09189i −0.633013 + 0.892551i
\(13\) 3.30493 3.30493i 0.916623 0.916623i −0.0801589 0.996782i \(-0.525543\pi\)
0.996782 + 0.0801589i \(0.0255428\pi\)
\(14\) −1.39053 + 0.117439i −0.371636 + 0.0313870i
\(15\) −2.60937 3.33938i −0.673737 0.862225i
\(16\) −3.77497 + 1.32272i −0.943743 + 0.330681i
\(17\) −1.03069 1.03069i −0.249979 0.249979i 0.570983 0.820962i \(-0.306562\pi\)
−0.820962 + 0.570983i \(0.806562\pi\)
\(18\) −0.540133 + 0.639785i −0.127311 + 0.150799i
\(19\) 1.00000 0.229416
\(20\) −0.207460 4.46732i −0.0463895 0.998923i
\(21\) −1.87017 −0.408105
\(22\) −4.33001 + 5.12887i −0.923161 + 1.09348i
\(23\) 6.40614 + 6.40614i 1.33577 + 1.33577i 0.900110 + 0.435662i \(0.143486\pi\)
0.435662 + 0.900110i \(0.356514\pi\)
\(24\) −5.19030 + 1.34062i −1.05947 + 0.273653i
\(25\) 4.85164 + 1.20896i 0.970328 + 0.241793i
\(26\) 6.58642 0.556264i 1.29170 0.109092i
\(27\) 3.22703 3.22703i 0.621042 0.621042i
\(28\) −1.60976 1.14167i −0.304217 0.215756i
\(29\) 1.98037i 0.367746i −0.982950 0.183873i \(-0.941136\pi\)
0.982950 0.183873i \(-0.0588636\pi\)
\(30\) 0.226796 5.98909i 0.0414071 1.09345i
\(31\) 9.29923i 1.67019i −0.550106 0.835095i \(-0.685413\pi\)
0.550106 0.835095i \(-0.314587\pi\)
\(32\) −5.28598 2.01454i −0.934439 0.356124i
\(33\) −6.36077 + 6.36077i −1.10727 + 1.10727i
\(34\) −0.173479 2.05407i −0.0297513 0.352269i
\(35\) 1.73862 1.35854i 0.293880 0.229636i
\(36\) −1.16735 + 0.198596i −0.194558 + 0.0330993i
\(37\) −5.70256 5.70256i −0.937496 0.937496i 0.0606627 0.998158i \(-0.480679\pi\)
−0.998158 + 0.0606627i \(0.980679\pi\)
\(38\) 1.08061 + 0.912296i 0.175298 + 0.147994i
\(39\) 8.85828 1.41846
\(40\) 3.85134 5.01669i 0.608950 0.793209i
\(41\) 9.41542 1.47044 0.735221 0.677828i \(-0.237078\pi\)
0.735221 + 0.677828i \(0.237078\pi\)
\(42\) −2.02093 1.70615i −0.311836 0.263265i
\(43\) −1.89635 1.89635i −0.289191 0.289191i 0.547569 0.836760i \(-0.315553\pi\)
−0.836760 + 0.547569i \(0.815553\pi\)
\(44\) −9.35809 + 1.59205i −1.41079 + 0.240011i
\(45\) 0.161254 1.31403i 0.0240383 0.195884i
\(46\) 1.07824 + 12.7668i 0.158978 + 1.88237i
\(47\) −1.10706 + 1.10706i −0.161482 + 0.161482i −0.783223 0.621741i \(-0.786426\pi\)
0.621741 + 0.783223i \(0.286426\pi\)
\(48\) −6.83173 3.28640i −0.986075 0.474351i
\(49\) 6.02631i 0.860902i
\(50\) 4.13979 + 5.73255i 0.585455 + 0.810705i
\(51\) 2.76258i 0.386838i
\(52\) 7.62482 + 5.40766i 1.05737 + 0.749907i
\(53\) −0.00450773 + 0.00450773i −0.000619185 + 0.000619185i −0.707416 0.706797i \(-0.750139\pi\)
0.706797 + 0.707416i \(0.250139\pi\)
\(54\) 6.43116 0.543151i 0.875170 0.0739135i
\(55\) 1.29270 10.5340i 0.174307 1.42040i
\(56\) −0.697982 2.70228i −0.0932717 0.361108i
\(57\) 1.34016 + 1.34016i 0.177509 + 0.177509i
\(58\) 1.80669 2.14001i 0.237230 0.280997i
\(59\) 3.02457 0.393765 0.196883 0.980427i \(-0.436918\pi\)
0.196883 + 0.980427i \(0.436918\pi\)
\(60\) 5.70890 6.26496i 0.737015 0.808802i
\(61\) −0.724786 −0.0927993 −0.0463997 0.998923i \(-0.514775\pi\)
−0.0463997 + 0.998923i \(0.514775\pi\)
\(62\) 8.48365 10.0488i 1.07742 1.27620i
\(63\) −0.413105 0.413105i −0.0520463 0.0520463i
\(64\) −3.87422 6.99931i −0.484278 0.874914i
\(65\) −8.23516 + 6.43490i −1.02145 + 0.798151i
\(66\) −12.6764 + 1.07060i −1.56036 + 0.131782i
\(67\) −10.1252 + 10.1252i −1.23699 + 1.23699i −0.275761 + 0.961226i \(0.588930\pi\)
−0.961226 + 0.275761i \(0.911070\pi\)
\(68\) 1.68645 2.37791i 0.204512 0.288364i
\(69\) 17.1705i 2.06709i
\(70\) 3.11816 + 0.118079i 0.372692 + 0.0141132i
\(71\) 9.29365i 1.10295i −0.834190 0.551477i \(-0.814065\pi\)
0.834190 0.551477i \(-0.185935\pi\)
\(72\) −1.44262 0.850361i −0.170015 0.100216i
\(73\) −4.54609 + 4.54609i −0.532079 + 0.532079i −0.921191 0.389112i \(-0.872782\pi\)
0.389112 + 0.921191i \(0.372782\pi\)
\(74\) −0.959817 11.3647i −0.111576 1.32112i
\(75\) 4.88177 + 8.12218i 0.563698 + 0.937869i
\(76\) 0.335432 + 1.97167i 0.0384767 + 0.226166i
\(77\) −3.31168 3.31168i −0.377401 0.377401i
\(78\) 9.57234 + 8.08137i 1.08385 + 0.915035i
\(79\) −0.319115 −0.0359032 −0.0179516 0.999839i \(-0.505714\pi\)
−0.0179516 + 0.999839i \(0.505714\pi\)
\(80\) 8.73850 1.90753i 0.976994 0.213268i
\(81\) 10.4256 1.15840
\(82\) 10.1744 + 8.58965i 1.12357 + 0.948568i
\(83\) 2.15376 + 2.15376i 0.236406 + 0.236406i 0.815360 0.578954i \(-0.196539\pi\)
−0.578954 + 0.815360i \(0.696539\pi\)
\(84\) −0.627316 3.68736i −0.0684458 0.402324i
\(85\) 2.00681 + 2.56825i 0.217669 + 0.278566i
\(86\) −0.319181 3.77925i −0.0344182 0.407527i
\(87\) 2.65402 2.65402i 0.284541 0.284541i
\(88\) −11.5649 6.81696i −1.23282 0.726690i
\(89\) 8.13569i 0.862381i −0.902261 0.431191i \(-0.858094\pi\)
0.902261 0.431191i \(-0.141906\pi\)
\(90\) 1.37303 1.27284i 0.144731 0.134169i
\(91\) 4.61198i 0.483467i
\(92\) −10.4820 + 14.7796i −1.09282 + 1.54088i
\(93\) 12.4625 12.4625i 1.29230 1.29230i
\(94\) −2.20627 + 0.186333i −0.227560 + 0.0192188i
\(95\) −2.21942 0.272360i −0.227708 0.0279436i
\(96\) −4.38426 9.78387i −0.447466 0.998563i
\(97\) −8.29185 8.29185i −0.841910 0.841910i 0.147197 0.989107i \(-0.452975\pi\)
−0.989107 + 0.147197i \(0.952975\pi\)
\(98\) −5.49778 + 6.51209i −0.555360 + 0.657820i
\(99\) −2.81008 −0.282423
\(100\) −0.756281 + 9.97136i −0.0756281 + 0.997136i
\(101\) 2.37691 0.236512 0.118256 0.992983i \(-0.462270\pi\)
0.118256 + 0.992983i \(0.462270\pi\)
\(102\) 2.52029 2.98527i 0.249546 0.295585i
\(103\) 3.18098 + 3.18098i 0.313432 + 0.313432i 0.846237 0.532806i \(-0.178862\pi\)
−0.532806 + 0.846237i \(0.678862\pi\)
\(104\) 3.30607 + 12.7997i 0.324186 + 1.25511i
\(105\) 4.15070 + 0.509361i 0.405066 + 0.0497085i
\(106\) −0.00898348 0.000758711i −0.000872553 7.36925e-5i
\(107\) −11.3868 + 11.3868i −1.10080 + 1.10080i −0.106490 + 0.994314i \(0.533961\pi\)
−0.994314 + 0.106490i \(0.966039\pi\)
\(108\) 7.44508 + 5.28018i 0.716403 + 0.508086i
\(109\) 10.1057i 0.967951i −0.875082 0.483975i \(-0.839192\pi\)
0.875082 0.483975i \(-0.160808\pi\)
\(110\) 11.0070 10.2038i 1.04948 0.972893i
\(111\) 15.2847i 1.45076i
\(112\) 1.71104 3.55688i 0.161678 0.336093i
\(113\) 4.33960 4.33960i 0.408236 0.408236i −0.472887 0.881123i \(-0.656788\pi\)
0.881123 + 0.472887i \(0.156788\pi\)
\(114\) 0.225567 + 2.67081i 0.0211263 + 0.250144i
\(115\) −12.4731 15.9627i −1.16312 1.48853i
\(116\) 3.90465 0.664282i 0.362537 0.0616770i
\(117\) 1.95672 + 1.95672i 0.180899 + 0.180899i
\(118\) 3.26838 + 2.75930i 0.300878 + 0.254014i
\(119\) 1.43831 0.131850
\(120\) 11.8846 1.56177i 1.08491 0.142569i
\(121\) −11.5271 −1.04792
\(122\) −0.783210 0.661219i −0.0709085 0.0598640i
\(123\) 12.6182 + 12.6182i 1.13774 + 1.13774i
\(124\) 18.3350 3.11926i 1.64653 0.280118i
\(125\) −10.4385 4.00459i −0.933652 0.358181i
\(126\) −0.0695310 0.823279i −0.00619432 0.0733435i
\(127\) 5.74713 5.74713i 0.509976 0.509976i −0.404543 0.914519i \(-0.632570\pi\)
0.914519 + 0.404543i \(0.132570\pi\)
\(128\) 2.19892 11.0980i 0.194359 0.980930i
\(129\) 5.08283i 0.447518i
\(130\) −14.7695 0.559296i −1.29537 0.0490535i
\(131\) 8.12224i 0.709644i −0.934934 0.354822i \(-0.884542\pi\)
0.934934 0.354822i \(-0.115458\pi\)
\(132\) −14.6750 10.4077i −1.27729 0.905877i
\(133\) −0.697742 + 0.697742i −0.0605019 + 0.0605019i
\(134\) −20.1785 + 1.70420i −1.74316 + 0.147221i
\(135\) −8.04104 + 6.28321i −0.692062 + 0.540773i
\(136\) 3.99175 1.03104i 0.342290 0.0884112i
\(137\) 4.96810 + 4.96810i 0.424453 + 0.424453i 0.886734 0.462281i \(-0.152969\pi\)
−0.462281 + 0.886734i \(0.652969\pi\)
\(138\) −15.6646 + 18.5546i −1.33346 + 1.57947i
\(139\) −4.21496 −0.357508 −0.178754 0.983894i \(-0.557207\pi\)
−0.178754 + 0.983894i \(0.557207\pi\)
\(140\) 3.26179 + 2.97228i 0.275672 + 0.251204i
\(141\) −2.96728 −0.249890
\(142\) 8.47856 10.0428i 0.711505 0.842774i
\(143\) 15.6861 + 15.6861i 1.31174 + 1.31174i
\(144\) −0.783132 2.23501i −0.0652610 0.186251i
\(145\) −0.539375 + 4.39528i −0.0447927 + 0.365008i
\(146\) −9.05992 + 0.765167i −0.749804 + 0.0633256i
\(147\) −8.07622 + 8.07622i −0.666116 + 0.666116i
\(148\) 9.33075 13.1564i 0.766983 1.08145i
\(149\) 7.03834i 0.576603i −0.957540 0.288302i \(-0.906909\pi\)
0.957540 0.288302i \(-0.0930906\pi\)
\(150\) −2.13455 + 13.2305i −0.174285 + 1.08027i
\(151\) 16.8075i 1.36777i −0.729589 0.683886i \(-0.760289\pi\)
0.729589 0.683886i \(-0.239711\pi\)
\(152\) −1.43628 + 2.43662i −0.116497 + 0.197636i
\(153\) 0.610229 0.610229i 0.0493341 0.0493341i
\(154\) −0.557399 6.59986i −0.0449165 0.531832i
\(155\) −2.53274 + 20.6389i −0.203435 + 1.65775i
\(156\) 2.97135 + 17.4656i 0.237899 + 1.39837i
\(157\) 11.5208 + 11.5208i 0.919458 + 0.919458i 0.996990 0.0775322i \(-0.0247040\pi\)
−0.0775322 + 0.996990i \(0.524704\pi\)
\(158\) −0.344839 0.291127i −0.0274339 0.0231608i
\(159\) −0.0120822 −0.000958178
\(160\) 11.1831 + 5.91080i 0.884104 + 0.467290i
\(161\) −8.93967 −0.704544
\(162\) 11.2660 + 9.51127i 0.885144 + 0.747276i
\(163\) −8.50009 8.50009i −0.665778 0.665778i 0.290958 0.956736i \(-0.406026\pi\)
−0.956736 + 0.290958i \(0.906026\pi\)
\(164\) 3.15824 + 18.5641i 0.246617 + 1.44961i
\(165\) 15.8496 12.3848i 1.23389 0.964155i
\(166\) 0.362506 + 4.29223i 0.0281359 + 0.333142i
\(167\) −11.7917 + 11.7917i −0.912471 + 0.912471i −0.996466 0.0839953i \(-0.973232\pi\)
0.0839953 + 0.996466i \(0.473232\pi\)
\(168\) 2.68608 4.55690i 0.207236 0.351572i
\(169\) 8.84515i 0.680396i
\(170\) −0.174424 + 4.60608i −0.0133777 + 0.353270i
\(171\) 0.592060i 0.0452759i
\(172\) 3.10288 4.37508i 0.236593 0.333597i
\(173\) −14.0451 + 14.0451i −1.06783 + 1.06783i −0.0703074 + 0.997525i \(0.522398\pi\)
−0.997525 + 0.0703074i \(0.977602\pi\)
\(174\) 5.28921 0.446707i 0.400974 0.0338647i
\(175\) −4.22874 + 2.54165i −0.319663 + 0.192131i
\(176\) −6.27801 17.9170i −0.473223 1.35055i
\(177\) 4.05341 + 4.05341i 0.304673 + 0.304673i
\(178\) 7.42215 8.79150i 0.556314 0.658951i
\(179\) −8.86640 −0.662706 −0.331353 0.943507i \(-0.607505\pi\)
−0.331353 + 0.943507i \(0.607505\pi\)
\(180\) 2.64492 0.122829i 0.197141 0.00915511i
\(181\) 5.73740 0.426457 0.213229 0.977002i \(-0.431602\pi\)
0.213229 + 0.977002i \(0.431602\pi\)
\(182\) −4.20749 + 4.98375i −0.311880 + 0.369420i
\(183\) −0.971329 0.971329i −0.0718027 0.0718027i
\(184\) −24.8103 + 6.40834i −1.82904 + 0.472429i
\(185\) 11.1032 + 14.2095i 0.816325 + 1.04471i
\(186\) 24.8365 2.09760i 1.82110 0.153803i
\(187\) 4.89194 4.89194i 0.357734 0.357734i
\(188\) −2.55411 1.81142i −0.186278 0.132111i
\(189\) 4.50326i 0.327564i
\(190\) −2.14985 2.31908i −0.155967 0.168244i
\(191\) 3.42146i 0.247568i 0.992309 + 0.123784i \(0.0395030\pi\)
−0.992309 + 0.123784i \(0.960497\pi\)
\(192\) 4.18812 14.5723i 0.302252 1.05166i
\(193\) 14.1458 14.1458i 1.01824 1.01824i 0.0184059 0.999831i \(-0.494141\pi\)
0.999831 0.0184059i \(-0.00585912\pi\)
\(194\) −1.39563 16.5249i −0.100200 1.18642i
\(195\) −19.6602 2.41264i −1.40790 0.172773i
\(196\) −11.8819 + 2.02142i −0.848707 + 0.144387i
\(197\) −3.94287 3.94287i −0.280918 0.280918i 0.552557 0.833475i \(-0.313652\pi\)
−0.833475 + 0.552557i \(0.813652\pi\)
\(198\) −3.03660 2.56362i −0.215801 0.182189i
\(199\) −22.6493 −1.60557 −0.802785 0.596269i \(-0.796649\pi\)
−0.802785 + 0.596269i \(0.796649\pi\)
\(200\) −9.91408 + 10.0852i −0.701031 + 0.713131i
\(201\) −27.1387 −1.91422
\(202\) 2.56851 + 2.16845i 0.180720 + 0.152571i
\(203\) 1.38179 + 1.38179i 0.0969827 + 0.0969827i
\(204\) 5.44689 0.926658i 0.381359 0.0648790i
\(205\) −20.8968 2.56439i −1.45949 0.179105i
\(206\) 0.535402 + 6.33940i 0.0373032 + 0.441687i
\(207\) −3.79282 + 3.79282i −0.263619 + 0.263619i
\(208\) −8.10451 + 16.8475i −0.561946 + 1.16817i
\(209\) 4.74628i 0.328307i
\(210\) 4.02059 + 4.33708i 0.277447 + 0.299287i
\(211\) 23.7055i 1.63196i 0.578083 + 0.815978i \(0.303801\pi\)
−0.578083 + 0.815978i \(0.696199\pi\)
\(212\) −0.0103998 0.00737572i −0.000714261 0.000506567i
\(213\) 12.4550 12.4550i 0.853402 0.853402i
\(214\) −22.6928 + 1.91655i −1.55125 + 0.131013i
\(215\) 3.69231 + 4.72529i 0.251813 + 0.322262i
\(216\) 3.22813 + 12.4979i 0.219647 + 0.850377i
\(217\) 6.48846 + 6.48846i 0.440465 + 0.440465i
\(218\) 9.21939 10.9203i 0.624416 0.739617i
\(219\) −12.1850 −0.823384
\(220\) 21.2031 0.984662i 1.42952 0.0663859i
\(221\) −6.81272 −0.458273
\(222\) 13.9442 16.5168i 0.935871 1.10853i
\(223\) −12.4637 12.4637i −0.834631 0.834631i 0.153515 0.988146i \(-0.450941\pi\)
−0.988146 + 0.153515i \(0.950941\pi\)
\(224\) 5.09388 2.28262i 0.340349 0.152514i
\(225\) −0.715778 + 2.87246i −0.0477186 + 0.191497i
\(226\) 8.64842 0.730413i 0.575284 0.0485863i
\(227\) −0.871636 + 0.871636i −0.0578525 + 0.0578525i −0.735441 0.677589i \(-0.763025\pi\)
0.677589 + 0.735441i \(0.263025\pi\)
\(228\) −2.19282 + 3.09189i −0.145223 + 0.204765i
\(229\) 10.1929i 0.673563i 0.941583 + 0.336782i \(0.109338\pi\)
−0.941583 + 0.336782i \(0.890662\pi\)
\(230\) 1.08412 28.6286i 0.0714844 1.88771i
\(231\) 8.87635i 0.584021i
\(232\) 4.82542 + 2.84436i 0.316804 + 0.186742i
\(233\) −5.24568 + 5.24568i −0.343656 + 0.343656i −0.857740 0.514084i \(-0.828132\pi\)
0.514084 + 0.857740i \(0.328132\pi\)
\(234\) 0.329341 + 3.89955i 0.0215297 + 0.254922i
\(235\) 2.75856 2.15552i 0.179948 0.140610i
\(236\) 1.01454 + 5.96345i 0.0660408 + 0.388188i
\(237\) −0.427665 0.427665i −0.0277798 0.0277798i
\(238\) 1.55425 + 1.31216i 0.100747 + 0.0850550i
\(239\) 0.785993 0.0508417 0.0254208 0.999677i \(-0.491907\pi\)
0.0254208 + 0.999677i \(0.491907\pi\)
\(240\) 14.2674 + 9.15460i 0.920955 + 0.590927i
\(241\) 18.3499 1.18202 0.591009 0.806665i \(-0.298730\pi\)
0.591009 + 0.806665i \(0.298730\pi\)
\(242\) −12.4563 10.5162i −0.800723 0.676004i
\(243\) 4.29096 + 4.29096i 0.275265 + 0.275265i
\(244\) −0.243117 1.42904i −0.0155639 0.0914848i
\(245\) 1.64133 13.3749i 0.104861 0.854492i
\(246\) 2.12381 + 25.1468i 0.135409 + 1.60330i
\(247\) 3.30493 3.30493i 0.210288 0.210288i
\(248\) 22.6587 + 13.3563i 1.43883 + 0.848123i
\(249\) 5.77276i 0.365834i
\(250\) −7.62662 13.8504i −0.482350 0.875979i
\(251\) 8.10035i 0.511290i −0.966771 0.255645i \(-0.917712\pi\)
0.966771 0.255645i \(-0.0822878\pi\)
\(252\) 0.675938 0.953075i 0.0425801 0.0600381i
\(253\) −30.4053 + 30.4053i −1.91156 + 1.91156i
\(254\) 11.4535 0.967319i 0.718656 0.0606950i
\(255\) −0.752417 + 6.13132i −0.0471182 + 0.383958i
\(256\) 12.5008 9.98649i 0.781300 0.624156i
\(257\) 8.11783 + 8.11783i 0.506376 + 0.506376i 0.913412 0.407036i \(-0.133438\pi\)
−0.407036 + 0.913412i \(0.633438\pi\)
\(258\) 4.63704 5.49255i 0.288690 0.341951i
\(259\) 7.95784 0.494476
\(260\) −15.4498 14.0786i −0.958158 0.873115i
\(261\) 1.17250 0.0725759
\(262\) 7.40989 8.77697i 0.457784 0.542243i
\(263\) 7.91763 + 7.91763i 0.488222 + 0.488222i 0.907745 0.419523i \(-0.137803\pi\)
−0.419523 + 0.907745i \(0.637803\pi\)
\(264\) −6.36295 24.6346i −0.391613 1.51615i
\(265\) 0.0112323 0.00877682i 0.000689993 0.000539156i
\(266\) −1.39053 + 0.117439i −0.0852591 + 0.00720066i
\(267\) 10.9031 10.9031i 0.667261 0.667261i
\(268\) −23.3598 16.5672i −1.42693 1.01200i
\(269\) 17.7957i 1.08502i −0.840049 0.542510i \(-0.817474\pi\)
0.840049 0.542510i \(-0.182526\pi\)
\(270\) −14.4214 0.546112i −0.877656 0.0332353i
\(271\) 16.0644i 0.975843i 0.872888 + 0.487921i \(0.162245\pi\)
−0.872888 + 0.487921i \(0.837755\pi\)
\(272\) 5.25414 + 2.52750i 0.318579 + 0.153252i
\(273\) −6.18079 + 6.18079i −0.374079 + 0.374079i
\(274\) 0.836197 + 9.90095i 0.0505165 + 0.598138i
\(275\) −5.73807 + 23.0272i −0.346019 + 1.38859i
\(276\) −33.8546 + 5.75954i −2.03781 + 0.346684i
\(277\) −9.82279 9.82279i −0.590195 0.590195i 0.347489 0.937684i \(-0.387034\pi\)
−0.937684 + 0.347489i \(0.887034\pi\)
\(278\) −4.55472 3.84529i −0.273174 0.230625i
\(279\) 5.50569 0.329617
\(280\) 0.813119 + 6.18760i 0.0485932 + 0.369780i
\(281\) 10.4171 0.621431 0.310715 0.950503i \(-0.399431\pi\)
0.310715 + 0.950503i \(0.399431\pi\)
\(282\) −3.20648 2.70704i −0.190943 0.161202i
\(283\) 9.74230 + 9.74230i 0.579120 + 0.579120i 0.934661 0.355541i \(-0.115703\pi\)
−0.355541 + 0.934661i \(0.615703\pi\)
\(284\) 18.3240 3.11739i 1.08733 0.184983i
\(285\) −2.60937 3.33938i −0.154566 0.197808i
\(286\) 2.64018 + 31.2609i 0.156117 + 1.84850i
\(287\) −6.56954 + 6.56954i −0.387787 + 0.387787i
\(288\) 1.19273 3.12962i 0.0702822 0.184414i
\(289\) 14.8754i 0.875021i
\(290\) −4.59265 + 4.25751i −0.269690 + 0.250010i
\(291\) 22.2248i 1.30284i
\(292\) −10.4883 7.43848i −0.613781 0.435304i
\(293\) −17.9213 + 17.9213i −1.04697 + 1.04697i −0.0481339 + 0.998841i \(0.515327\pi\)
−0.998841 + 0.0481339i \(0.984673\pi\)
\(294\) −16.0951 + 1.35934i −0.938688 + 0.0792781i
\(295\) −6.71278 0.823773i −0.390833 0.0479619i
\(296\) 22.0854 5.70452i 1.28369 0.331569i
\(297\) 15.3164 + 15.3164i 0.888745 + 0.888745i
\(298\) 6.42105 7.60569i 0.371961 0.440586i
\(299\) 42.3437 2.44880
\(300\) −14.3768 + 12.3497i −0.830043 + 0.713009i
\(301\) 2.64633 0.152532
\(302\) 15.3334 18.1623i 0.882337 1.04512i
\(303\) 3.18544 + 3.18544i 0.182999 + 0.182999i
\(304\) −3.77497 + 1.32272i −0.216509 + 0.0758634i
\(305\) 1.60860 + 0.197403i 0.0921083 + 0.0113033i
\(306\) 1.21613 0.102710i 0.0695215 0.00587152i
\(307\) 4.46875 4.46875i 0.255045 0.255045i −0.567990 0.823035i \(-0.692279\pi\)
0.823035 + 0.567990i \(0.192279\pi\)
\(308\) 5.41869 7.64038i 0.308759 0.435351i
\(309\) 8.52605i 0.485030i
\(310\) −21.5657 + 19.9919i −1.22485 + 1.13547i
\(311\) 0.594436i 0.0337074i 0.999858 + 0.0168537i \(0.00536495\pi\)
−0.999858 + 0.0168537i \(0.994635\pi\)
\(312\) −12.7229 + 21.5842i −0.720294 + 1.22197i
\(313\) 14.2529 14.2529i 0.805624 0.805624i −0.178344 0.983968i \(-0.557074\pi\)
0.983968 + 0.178344i \(0.0570740\pi\)
\(314\) 1.93910 + 22.9598i 0.109430 + 1.29570i
\(315\) 0.804339 + 1.02937i 0.0453194 + 0.0579982i
\(316\) −0.107041 0.629190i −0.00602155 0.0353947i
\(317\) −8.72134 8.72134i −0.489840 0.489840i 0.418416 0.908256i \(-0.362585\pi\)
−0.908256 + 0.418416i \(0.862585\pi\)
\(318\) −0.0130561 0.0110225i −0.000732150 0.000618112i
\(319\) 9.39940 0.526265
\(320\) 6.69219 + 16.5896i 0.374105 + 0.927386i
\(321\) −30.5203 −1.70348
\(322\) −9.66028 8.15562i −0.538347 0.454495i
\(323\) −1.03069 1.03069i −0.0573491 0.0573491i
\(324\) 3.49710 + 20.5559i 0.194283 + 1.14200i
\(325\) 20.0299 12.0388i 1.11106 0.667792i
\(326\) −1.43068 16.9399i −0.0792379 0.938213i
\(327\) 13.5433 13.5433i 0.748944 0.748944i
\(328\) −13.5231 + 22.9418i −0.746690 + 1.26675i
\(329\) 1.54489i 0.0851725i
\(330\) 28.4259 + 1.07644i 1.56479 + 0.0592559i
\(331\) 12.5175i 0.688023i −0.938966 0.344011i \(-0.888214\pi\)
0.938966 0.344011i \(-0.111786\pi\)
\(332\) −3.52406 + 4.96894i −0.193408 + 0.272706i
\(333\) 3.37626 3.37626i 0.185018 0.185018i
\(334\) −23.4998 + 1.98470i −1.28585 + 0.108598i
\(335\) 25.2297 19.7143i 1.37845 1.07711i
\(336\) 7.05985 2.47372i 0.385146 0.134953i
\(337\) −10.1313 10.1313i −0.551887 0.551887i 0.375098 0.926985i \(-0.377609\pi\)
−0.926985 + 0.375098i \(0.877609\pi\)
\(338\) 8.06939 9.55815i 0.438917 0.519895i
\(339\) 11.6315 0.631738
\(340\) −4.39059 + 4.81825i −0.238113 + 0.261306i
\(341\) 44.1367 2.39014
\(342\) −0.540133 + 0.639785i −0.0292071 + 0.0345956i
\(343\) −9.08901 9.08901i −0.490760 0.490760i
\(344\) 7.34437 1.89700i 0.395982 0.102279i
\(345\) 4.67657 38.1085i 0.251778 2.05169i
\(346\) −27.9906 + 2.36398i −1.50479 + 0.127089i
\(347\) 0.483917 0.483917i 0.0259781 0.0259781i −0.693998 0.719976i \(-0.744153\pi\)
0.719976 + 0.693998i \(0.244153\pi\)
\(348\) 6.12309 + 4.34261i 0.328232 + 0.232788i
\(349\) 12.0418i 0.644582i 0.946641 + 0.322291i \(0.104453\pi\)
−0.946641 + 0.322291i \(0.895547\pi\)
\(350\) −6.88835 1.11133i −0.368198 0.0594032i
\(351\) 21.3302i 1.13852i
\(352\) 9.56157 25.0887i 0.509633 1.33723i
\(353\) −19.3284 + 19.3284i −1.02875 + 1.02875i −0.0291749 + 0.999574i \(0.509288\pi\)
−0.999574 + 0.0291749i \(0.990712\pi\)
\(354\) 0.682242 + 8.07806i 0.0362608 + 0.429344i
\(355\) −2.53122 + 20.6265i −0.134343 + 1.09474i
\(356\) 16.0409 2.72897i 0.850166 0.144635i
\(357\) 1.92757 + 1.92757i 0.102018 + 0.102018i
\(358\) −9.58112 8.08878i −0.506378 0.427505i
\(359\) 23.7453 1.25323 0.626614 0.779330i \(-0.284440\pi\)
0.626614 + 0.779330i \(0.284440\pi\)
\(360\) 2.97018 + 2.28022i 0.156542 + 0.120178i
\(361\) 1.00000 0.0526316
\(362\) 6.19988 + 5.23420i 0.325859 + 0.275104i
\(363\) −15.4482 15.4482i −0.810820 0.810820i
\(364\) −9.09331 + 1.54701i −0.476619 + 0.0810852i
\(365\) 11.3278 8.85150i 0.592926 0.463308i
\(366\) −0.163488 1.93577i −0.00854563 0.101184i
\(367\) 13.2536 13.2536i 0.691835 0.691835i −0.270801 0.962635i \(-0.587288\pi\)
0.962635 + 0.270801i \(0.0872885\pi\)
\(368\) −32.6565 15.7094i −1.70234 0.818910i
\(369\) 5.57449i 0.290196i
\(370\) −0.965049 + 25.4844i −0.0501705 + 1.32487i
\(371\) 0.00629047i 0.000326585i
\(372\) 28.7522 + 20.3915i 1.49073 + 1.05725i
\(373\) −8.99990 + 8.99990i −0.465997 + 0.465997i −0.900615 0.434618i \(-0.856883\pi\)
0.434618 + 0.900615i \(0.356883\pi\)
\(374\) 9.74916 0.823378i 0.504117 0.0425758i
\(375\) −8.62253 19.3561i −0.445266 0.999546i
\(376\) −1.10744 4.28754i −0.0571120 0.221113i
\(377\) −6.54500 6.54500i −0.337085 0.337085i
\(378\) −4.10831 + 4.86627i −0.211309 + 0.250294i
\(379\) −1.33948 −0.0688044 −0.0344022 0.999408i \(-0.510953\pi\)
−0.0344022 + 0.999408i \(0.510953\pi\)
\(380\) −0.207460 4.46732i −0.0106425 0.229169i
\(381\) 15.4042 0.789179
\(382\) −3.12138 + 3.69726i −0.159704 + 0.189168i
\(383\) −2.40611 2.40611i −0.122946 0.122946i 0.642956 0.765903i \(-0.277708\pi\)
−0.765903 + 0.642956i \(0.777708\pi\)
\(384\) 17.8200 11.9261i 0.909371 0.608603i
\(385\) 6.44803 + 8.25197i 0.328622 + 0.420559i
\(386\) 28.1912 2.38092i 1.43490 0.121186i
\(387\) 1.12275 1.12275i 0.0570727 0.0570727i
\(388\) 13.5674 19.1302i 0.688783 0.971186i
\(389\) 26.3685i 1.33693i 0.743742 + 0.668467i \(0.233049\pi\)
−0.743742 + 0.668467i \(0.766951\pi\)
\(390\) −19.0440 20.5431i −0.964329 1.04024i
\(391\) 13.2055i 0.667830i
\(392\) −14.6838 8.65545i −0.741645 0.437166i
\(393\) 10.8851 10.8851i 0.549081 0.549081i
\(394\) −0.663637 7.85777i −0.0334336 0.395869i
\(395\) 0.708250 + 0.0869143i 0.0356359 + 0.00437313i
\(396\) −0.942591 5.54055i −0.0473670 0.278423i
\(397\) 15.2631 + 15.2631i 0.766032 + 0.766032i 0.977405 0.211373i \(-0.0677935\pi\)
−0.211373 + 0.977405i \(0.567793\pi\)
\(398\) −24.4751 20.6629i −1.22683 1.03574i
\(399\) −1.87017 −0.0936257
\(400\) −19.9139 + 1.85358i −0.995696 + 0.0926790i
\(401\) −13.0632 −0.652343 −0.326171 0.945311i \(-0.605759\pi\)
−0.326171 + 0.945311i \(0.605759\pi\)
\(402\) −29.3263 24.7585i −1.46267 1.23484i
\(403\) −30.7333 30.7333i −1.53094 1.53094i
\(404\) 0.797293 + 4.68649i 0.0396668 + 0.233161i
\(405\) −23.1389 2.83953i −1.14978 0.141097i
\(406\) 0.232574 + 2.75378i 0.0115424 + 0.136668i
\(407\) 27.0659 27.0659i 1.34161 1.34161i
\(408\) 6.73135 + 3.96782i 0.333251 + 0.196437i
\(409\) 30.5100i 1.50862i −0.656517 0.754312i \(-0.727971\pi\)
0.656517 0.754312i \(-0.272029\pi\)
\(410\) −20.2418 21.8351i −0.999669 1.07836i
\(411\) 13.3161i 0.656834i
\(412\) −5.20485 + 7.33885i −0.256424 + 0.361559i
\(413\) −2.11037 + 2.11037i −0.103844 + 0.103844i
\(414\) −7.55872 + 0.638381i −0.371491 + 0.0313747i
\(415\) −4.19349 5.36669i −0.205850 0.263440i
\(416\) −24.1277 + 10.8119i −1.18296 + 0.530097i
\(417\) −5.64872 5.64872i −0.276619 0.276619i
\(418\) −4.33001 + 5.12887i −0.211788 + 0.250861i
\(419\) 9.78783 0.478167 0.239083 0.970999i \(-0.423153\pi\)
0.239083 + 0.970999i \(0.423153\pi\)
\(420\) 0.387986 + 8.35466i 0.0189318 + 0.407666i
\(421\) 26.7931 1.30582 0.652909 0.757437i \(-0.273549\pi\)
0.652909 + 0.757437i \(0.273549\pi\)
\(422\) −21.6264 + 25.6164i −1.05276 + 1.24699i
\(423\) −0.655447 0.655447i −0.0318689 0.0318689i
\(424\) −0.00450928 0.0174580i −0.000218990 0.000847834i
\(425\) −3.75447 6.24660i −0.182118 0.303005i
\(426\) 24.8216 2.09634i 1.20261 0.101568i
\(427\) 0.505714 0.505714i 0.0244732 0.0244732i
\(428\) −26.2705 18.6315i −1.26983 0.900589i
\(429\) 42.0438i 2.02989i
\(430\) −0.320921 + 8.47467i −0.0154762 + 0.408685i
\(431\) 2.45196i 0.118107i 0.998255 + 0.0590534i \(0.0188082\pi\)
−0.998255 + 0.0590534i \(0.981192\pi\)
\(432\) −7.91346 + 16.4504i −0.380737 + 0.791470i
\(433\) 20.7659 20.7659i 0.997948 0.997948i −0.00205006 0.999998i \(-0.500653\pi\)
0.999998 + 0.00205006i \(0.000652555\pi\)
\(434\) 1.09209 + 12.9309i 0.0524222 + 0.620702i
\(435\) −6.61323 + 5.16753i −0.317080 + 0.247764i
\(436\) 19.9251 3.38978i 0.954240 0.162341i
\(437\) 6.40614 + 6.40614i 0.306447 + 0.306447i
\(438\) −13.1672 11.1163i −0.629153 0.531157i
\(439\) 24.9711 1.19180 0.595902 0.803057i \(-0.296795\pi\)
0.595902 + 0.803057i \(0.296795\pi\)
\(440\) 23.8106 + 18.2795i 1.13513 + 0.871441i
\(441\) −3.56794 −0.169902
\(442\) −7.36188 6.21521i −0.350169 0.295628i
\(443\) 14.4843 + 14.4843i 0.688170 + 0.688170i 0.961827 0.273657i \(-0.0882333\pi\)
−0.273657 + 0.961827i \(0.588233\pi\)
\(444\) 30.1364 5.12698i 1.43021 0.243316i
\(445\) −2.21584 + 18.0565i −0.105041 + 0.855960i
\(446\) −2.09781 24.8390i −0.0993340 1.17616i
\(447\) 9.43250 9.43250i 0.446142 0.446142i
\(448\) 7.58693 + 2.18051i 0.358449 + 0.103019i
\(449\) 33.6613i 1.58857i −0.607543 0.794286i \(-0.707845\pi\)
0.607543 0.794286i \(-0.292155\pi\)
\(450\) −3.39401 + 2.45100i −0.159995 + 0.115541i
\(451\) 44.6882i 2.10428i
\(452\) 10.0119 + 7.10063i 0.470921 + 0.333985i
\(453\) 22.5247 22.5247i 1.05830 1.05830i
\(454\) −1.73709 + 0.146708i −0.0815256 + 0.00688535i
\(455\) 1.25612 10.2359i 0.0588878 0.479867i
\(456\) −5.19030 + 1.34062i −0.243058 + 0.0627803i
\(457\) 7.29974 + 7.29974i 0.341468 + 0.341468i 0.856919 0.515451i \(-0.172376\pi\)
−0.515451 + 0.856919i \(0.672376\pi\)
\(458\) −9.29890 + 11.0145i −0.434509 + 0.514674i
\(459\) −6.65212 −0.310495
\(460\) 27.2893 29.9473i 1.27237 1.39630i
\(461\) −0.951158 −0.0442999 −0.0221499 0.999755i \(-0.507051\pi\)
−0.0221499 + 0.999755i \(0.507051\pi\)
\(462\) 8.09786 9.59187i 0.376747 0.446254i
\(463\) 13.1374 + 13.1374i 0.610549 + 0.610549i 0.943089 0.332540i \(-0.107906\pi\)
−0.332540 + 0.943089i \(0.607906\pi\)
\(464\) 2.61949 + 7.47585i 0.121607 + 0.347058i
\(465\) −31.0537 + 24.2651i −1.44008 + 1.12527i
\(466\) −10.4541 + 0.882918i −0.484279 + 0.0409004i
\(467\) −19.9319 + 19.9319i −0.922339 + 0.922339i −0.997194 0.0748550i \(-0.976151\pi\)
0.0748550 + 0.997194i \(0.476151\pi\)
\(468\) −3.20165 + 4.51435i −0.147997 + 0.208676i
\(469\) 14.1295i 0.652441i
\(470\) 4.94739 + 0.187349i 0.228206 + 0.00864177i
\(471\) 30.8794i 1.42285i
\(472\) −4.34411 + 7.36972i −0.199954 + 0.339219i
\(473\) 9.00060 9.00060i 0.413848 0.413848i
\(474\) −0.0719817 0.852296i −0.00330623 0.0391473i
\(475\) 4.85164 + 1.20896i 0.222608 + 0.0554710i
\(476\) 0.482456 + 2.83587i 0.0221133 + 0.129982i
\(477\) −0.00266885 0.00266885i −0.000122198 0.000122198i
\(478\) 0.849352 + 0.717058i 0.0388484 + 0.0327975i
\(479\) 29.5471 1.35004 0.675021 0.737799i \(-0.264135\pi\)
0.675021 + 0.737799i \(0.264135\pi\)
\(480\) 7.06576 + 22.9086i 0.322506 + 1.04563i
\(481\) −37.6932 −1.71866
\(482\) 19.8290 + 16.7405i 0.903188 + 0.762509i
\(483\) −11.9806 11.9806i −0.545135 0.545135i
\(484\) −3.86657 22.7277i −0.175753 1.03308i
\(485\) 16.1447 + 20.6615i 0.733094 + 0.938189i
\(486\) 0.722225 + 8.55147i 0.0327608 + 0.387902i
\(487\) −28.7952 + 28.7952i −1.30483 + 1.30483i −0.379742 + 0.925092i \(0.623987\pi\)
−0.925092 + 0.379742i \(0.876013\pi\)
\(488\) 1.04099 1.76603i 0.0471235 0.0799443i
\(489\) 22.7830i 1.03028i
\(490\) 13.9755 12.9557i 0.631349 0.585278i
\(491\) 2.85127i 0.128676i −0.997928 0.0643380i \(-0.979506\pi\)
0.997928 0.0643380i \(-0.0204936\pi\)
\(492\) −20.6463 + 29.1114i −0.930809 + 1.31244i
\(493\) −2.04115 + 2.04115i −0.0919288 + 0.0919288i
\(494\) 6.58642 0.556264i 0.296337 0.0250275i
\(495\) 6.23674 + 0.765354i 0.280321 + 0.0344001i
\(496\) 12.3003 + 35.1043i 0.552300 + 1.57623i
\(497\) 6.48457 + 6.48457i 0.290873 + 0.290873i
\(498\) −5.26647 + 6.23810i −0.235996 + 0.279536i
\(499\) 12.2247 0.547252 0.273626 0.961836i \(-0.411777\pi\)
0.273626 + 0.961836i \(0.411777\pi\)
\(500\) 4.39431 21.9246i 0.196519 0.980500i
\(501\) −31.6056 −1.41203
\(502\) 7.38992 8.75331i 0.329828 0.390680i
\(503\) −22.0965 22.0965i −0.985234 0.985234i 0.0146587 0.999893i \(-0.495334\pi\)
−0.999893 + 0.0146587i \(0.995334\pi\)
\(504\) 1.59991 0.413247i 0.0712657 0.0184075i
\(505\) −5.27536 0.647377i −0.234751 0.0288079i
\(506\) −60.5949 + 5.11761i −2.69377 + 0.227506i
\(507\) 11.8539 11.8539i 0.526451 0.526451i
\(508\) 13.2592 + 9.40368i 0.588283 + 0.417221i
\(509\) 5.44703i 0.241435i 0.992687 + 0.120718i \(0.0385196\pi\)
−0.992687 + 0.120718i \(0.961480\pi\)
\(510\) −6.40664 + 5.93913i −0.283691 + 0.262989i
\(511\) 6.34399i 0.280642i
\(512\) 22.6191 + 0.612936i 0.999633 + 0.0270882i
\(513\) 3.22703 3.22703i 0.142477 0.142477i
\(514\) 1.36634 + 16.1781i 0.0602666 + 0.713584i
\(515\) −6.19356 7.92631i −0.272921 0.349275i
\(516\) 10.0217 1.70495i 0.441179 0.0750560i
\(517\) −5.25443 5.25443i −0.231089 0.231089i
\(518\) 8.59931 + 7.25990i 0.377832 + 0.318982i
\(519\) −37.6455 −1.65245
\(520\) −3.85143 29.3082i −0.168896 1.28525i
\(521\) −14.5598 −0.637877 −0.318938 0.947775i \(-0.603326\pi\)
−0.318938 + 0.947775i \(0.603326\pi\)
\(522\) 1.26701 + 1.06967i 0.0554557 + 0.0468180i
\(523\) 1.82937 + 1.82937i 0.0799929 + 0.0799929i 0.745971 0.665978i \(-0.231986\pi\)
−0.665978 + 0.745971i \(0.731986\pi\)
\(524\) 16.0144 2.72446i 0.699592 0.119019i
\(525\) −9.07340 2.26097i −0.395996 0.0986768i
\(526\) 1.33264 + 15.7791i 0.0581060 + 0.688001i
\(527\) −9.58461 + 9.58461i −0.417512 + 0.417512i
\(528\) 15.5982 32.4253i 0.678823 1.41113i
\(529\) 59.0772i 2.56857i
\(530\) 0.0201448 0.000762847i 0.000875032 3.31359e-5i
\(531\) 1.79072i 0.0777108i
\(532\) −1.60976 1.14167i −0.0697921 0.0494978i
\(533\) 31.1173 31.1173i 1.34784 1.34784i
\(534\) 21.7289 1.83514i 0.940301 0.0794143i
\(535\) 28.3734 22.1708i 1.22669 0.958526i
\(536\) −10.1287 39.2137i −0.437491 1.69378i
\(537\) −11.8824 11.8824i −0.512763 0.512763i
\(538\) 16.2349 19.2301i 0.699936 0.829071i
\(539\) −28.6025 −1.23200
\(540\) −15.0856 13.7467i −0.649183 0.591563i
\(541\) −36.8551 −1.58452 −0.792262 0.610181i \(-0.791097\pi\)
−0.792262 + 0.610181i \(0.791097\pi\)
\(542\) −14.6555 + 17.3593i −0.629507 + 0.745647i
\(543\) 7.68903 + 7.68903i 0.329968 + 0.329968i
\(544\) 3.37184 + 7.52457i 0.144566 + 0.322613i
\(545\) −2.75239 + 22.4288i −0.117900 + 0.960744i
\(546\) −12.3177 + 1.04031i −0.527150 + 0.0445211i
\(547\) 7.80179 7.80179i 0.333580 0.333580i −0.520364 0.853944i \(-0.674204\pi\)
0.853944 + 0.520364i \(0.174204\pi\)
\(548\) −8.12899 + 11.4619i −0.347253 + 0.489629i
\(549\) 0.429116i 0.0183142i
\(550\) −27.2083 + 19.6486i −1.16016 + 0.837819i
\(551\) 1.98037i 0.0843668i
\(552\) −41.8380 24.6616i −1.78074 1.04967i
\(553\) 0.222660 0.222660i 0.00946846 0.00946846i
\(554\) −1.65331 19.5759i −0.0702423 0.831700i
\(555\) −4.16295 + 33.9231i −0.176707 + 1.43996i
\(556\) −1.41383 8.31051i −0.0599599 0.352444i
\(557\) −1.76844 1.76844i −0.0749310 0.0749310i 0.668648 0.743579i \(-0.266873\pi\)
−0.743579 + 0.668648i \(0.766873\pi\)
\(558\) 5.94950 + 5.02282i 0.251863 + 0.212633i
\(559\) −12.5346 −0.530158
\(560\) −4.76626 + 7.42818i −0.201411 + 0.313898i
\(561\) 13.1120 0.553587
\(562\) 11.2568 + 9.50346i 0.474839 + 0.400879i
\(563\) −6.91763 6.91763i −0.291543 0.291543i 0.546146 0.837690i \(-0.316094\pi\)
−0.837690 + 0.546146i \(0.816094\pi\)
\(564\) −0.995323 5.85051i −0.0419107 0.246351i
\(565\) −10.8133 + 8.44946i −0.454920 + 0.355472i
\(566\) 1.63976 + 19.4155i 0.0689242 + 0.816094i
\(567\) −7.27441 + 7.27441i −0.305497 + 0.305497i
\(568\) 22.6451 + 13.3482i 0.950167 + 0.560080i
\(569\) 8.71597i 0.365392i 0.983169 + 0.182696i \(0.0584825\pi\)
−0.983169 + 0.182696i \(0.941518\pi\)
\(570\) 0.226796 5.98909i 0.00949945 0.250855i
\(571\) 44.1078i 1.84586i 0.384973 + 0.922928i \(0.374211\pi\)
−0.384973 + 0.922928i \(0.625789\pi\)
\(572\) −25.6662 + 36.1895i −1.07316 + 1.51316i
\(573\) −4.58530 + 4.58530i −0.191554 + 0.191554i
\(574\) −13.0925 + 1.10574i −0.546469 + 0.0461527i
\(575\) 23.3355 + 38.8251i 0.973157 + 1.61912i
\(576\) 4.14401 2.29377i 0.172667 0.0955738i
\(577\) −9.97337 9.97337i −0.415197 0.415197i 0.468348 0.883544i \(-0.344850\pi\)
−0.883544 + 0.468348i \(0.844850\pi\)
\(578\) 13.5707 16.0744i 0.564468 0.668609i
\(579\) 37.9153 1.57570
\(580\) −8.84697 + 0.410848i −0.367350 + 0.0170596i
\(581\) −3.00553 −0.124691
\(582\) 20.2756 24.0163i 0.840451 0.995510i
\(583\) −0.0213949 0.0213949i −0.000886088 0.000886088i
\(584\) −4.54765 17.6065i −0.188183 0.728563i
\(585\) −3.80984 4.87571i −0.157518 0.201586i
\(586\) −35.7155 + 3.01640i −1.47539 + 0.124606i
\(587\) 5.10277 5.10277i 0.210614 0.210614i −0.593914 0.804528i \(-0.702418\pi\)
0.804528 + 0.593914i \(0.202418\pi\)
\(588\) −18.6327 13.2146i −0.768399 0.544962i
\(589\) 9.29923i 0.383168i
\(590\) −6.50237 7.01422i −0.267698 0.288771i
\(591\) 10.5682i 0.434716i
\(592\) 29.0699 + 13.9841i 1.19477 + 0.574742i
\(593\) 3.54561 3.54561i 0.145601 0.145601i −0.630549 0.776150i \(-0.717170\pi\)
0.776150 + 0.630549i \(0.217170\pi\)
\(594\) 2.57795 + 30.5240i 0.105774 + 1.25242i
\(595\) −3.19221 0.391739i −0.130868 0.0160597i
\(596\) 13.8773 2.36089i 0.568436 0.0967057i
\(597\) −30.3537 30.3537i −1.24230 1.24230i
\(598\) 45.7570 + 38.6300i 1.87114 + 1.57970i
\(599\) −30.4232 −1.24306 −0.621529 0.783391i \(-0.713488\pi\)
−0.621529 + 0.783391i \(0.713488\pi\)
\(600\) −26.8022 + 0.229324i −1.09420 + 0.00936211i
\(601\) 26.2371 1.07023 0.535117 0.844778i \(-0.320268\pi\)
0.535117 + 0.844778i \(0.320268\pi\)
\(602\) 2.85965 + 2.41423i 0.116550 + 0.0983968i
\(603\) −5.99471 5.99471i −0.244123 0.244123i
\(604\) 33.1388 5.63777i 1.34840 0.229397i
\(605\) 25.5835 + 3.13953i 1.04012 + 0.127640i
\(606\) 0.536152 + 6.34829i 0.0217797 + 0.257881i
\(607\) 0.273256 0.273256i 0.0110911 0.0110911i −0.701539 0.712631i \(-0.747504\pi\)
0.712631 + 0.701539i \(0.247504\pi\)
\(608\) −5.28598 2.01454i −0.214375 0.0817005i
\(609\) 3.70364i 0.150079i
\(610\) 1.55818 + 1.68084i 0.0630889 + 0.0680551i
\(611\) 7.31754i 0.296036i
\(612\) 1.40786 + 0.998481i 0.0569095 + 0.0403612i
\(613\) −6.40183 + 6.40183i −0.258567 + 0.258567i −0.824471 0.565904i \(-0.808527\pi\)
0.565904 + 0.824471i \(0.308527\pi\)
\(614\) 8.90579 0.752149i 0.359408 0.0303543i
\(615\) −24.5683 31.4417i −0.990690 1.26785i
\(616\) 12.8258 3.31281i 0.516765 0.133477i
\(617\) 21.3006 + 21.3006i 0.857530 + 0.857530i 0.991047 0.133517i \(-0.0426269\pi\)
−0.133517 + 0.991047i \(0.542627\pi\)
\(618\) −7.77828 + 9.21333i −0.312888 + 0.370615i
\(619\) 21.5289 0.865320 0.432660 0.901557i \(-0.357575\pi\)
0.432660 + 0.901557i \(0.357575\pi\)
\(620\) −41.5426 + 1.92922i −1.66839 + 0.0774792i
\(621\) 41.3456 1.65914
\(622\) −0.542302 + 0.642353i −0.0217443 + 0.0257560i
\(623\) 5.67661 + 5.67661i 0.227429 + 0.227429i
\(624\) −33.4397 + 11.7171i −1.33866 + 0.469058i
\(625\) 22.0768 + 11.7309i 0.883073 + 0.469236i
\(626\) 28.4048 2.39896i 1.13528 0.0958817i
\(627\) −6.36077 + 6.36077i −0.254025 + 0.254025i
\(628\) −18.8507 + 26.5796i −0.752226 + 1.06064i
\(629\) 11.7551i 0.468708i
\(630\) −0.0699100 + 1.84614i −0.00278528 + 0.0735519i
\(631\) 33.6642i 1.34015i 0.742294 + 0.670074i \(0.233738\pi\)
−0.742294 + 0.670074i \(0.766262\pi\)
\(632\) 0.458337 0.777562i 0.0182317 0.0309297i
\(633\) −31.7692 + 31.7692i −1.26271 + 1.26271i
\(634\) −1.46792 17.3808i −0.0582985 0.690280i
\(635\) −14.3206 + 11.1900i −0.568295 + 0.444062i
\(636\) −0.00405275 0.0238221i −0.000160702 0.000944606i
\(637\) 19.9166 + 19.9166i 0.789122 + 0.789122i
\(638\) 10.1571 + 8.57503i 0.402123 + 0.339489i
\(639\) 5.50240 0.217671
\(640\) −7.90298 + 24.0321i −0.312393 + 0.949953i
\(641\) −11.4028 −0.450383 −0.225192 0.974314i \(-0.572301\pi\)
−0.225192 + 0.974314i \(0.572301\pi\)
\(642\) −32.9805 27.8435i −1.30164 1.09890i
\(643\) −31.2371 31.2371i −1.23187 1.23187i −0.963244 0.268629i \(-0.913430\pi\)
−0.268629 0.963244i \(-0.586570\pi\)
\(644\) −2.99865 17.6261i −0.118163 0.694565i
\(645\) −1.38436 + 11.2809i −0.0545092 + 0.444186i
\(646\) −0.173479 2.05407i −0.00682543 0.0808161i
\(647\) −26.4732 + 26.4732i −1.04077 + 1.04077i −0.0416381 + 0.999133i \(0.513258\pi\)
−0.999133 + 0.0416381i \(0.986742\pi\)
\(648\) −14.9741 + 25.4033i −0.588238 + 0.997937i
\(649\) 14.3554i 0.563500i
\(650\) 32.6274 + 5.26394i 1.27975 + 0.206469i
\(651\) 17.3912i 0.681613i
\(652\) 13.9082 19.6106i 0.544686 0.768010i
\(653\) −17.1865 + 17.1865i −0.672558 + 0.672558i −0.958305 0.285747i \(-0.907758\pi\)
0.285747 + 0.958305i \(0.407758\pi\)
\(654\) 26.9904 2.27951i 1.05541 0.0891359i
\(655\) −2.21218 + 18.0267i −0.0864369 + 0.704360i
\(656\) −35.5429 + 12.4540i −1.38772 + 0.486247i
\(657\) −2.69155 2.69155i −0.105008 0.105008i
\(658\) 1.40940 1.66942i 0.0549440 0.0650808i
\(659\) −46.1104 −1.79621 −0.898104 0.439783i \(-0.855055\pi\)
−0.898104 + 0.439783i \(0.855055\pi\)
\(660\) 29.7352 + 27.0960i 1.15744 + 1.05471i
\(661\) 8.33816 0.324317 0.162158 0.986765i \(-0.448154\pi\)
0.162158 + 0.986765i \(0.448154\pi\)
\(662\) 11.4196 13.5265i 0.443837 0.525722i
\(663\) −9.13013 9.13013i −0.354585 0.354585i
\(664\) −8.34128 + 2.15450i −0.323704 + 0.0836107i
\(665\) 1.73862 1.35854i 0.0674208 0.0526821i
\(666\) 6.72856 0.568269i 0.260726 0.0220200i
\(667\) 12.6865 12.6865i 0.491225 0.491225i
\(668\) −27.2047 19.2941i −1.05258 0.746510i
\(669\) 33.4067i 1.29158i
\(670\) 45.2487 + 1.71349i 1.74811 + 0.0661979i
\(671\) 3.44003i 0.132801i
\(672\) 9.88570 + 3.76754i 0.381349 + 0.145336i
\(673\) −0.923216 + 0.923216i −0.0355873 + 0.0355873i −0.724677 0.689089i \(-0.758011\pi\)
0.689089 + 0.724677i \(0.258011\pi\)
\(674\) −1.70523 20.1907i −0.0656831 0.777718i
\(675\) 19.5577 11.7550i 0.752777 0.452451i
\(676\) 17.4397 2.96695i 0.670759 0.114113i
\(677\) 3.76247 + 3.76247i 0.144603 + 0.144603i 0.775702 0.631099i \(-0.217396\pi\)
−0.631099 + 0.775702i \(0.717396\pi\)
\(678\) 12.5691 + 10.6114i 0.482715 + 0.407528i
\(679\) 11.5711 0.444060
\(680\) −9.14018 + 1.20112i −0.350510 + 0.0460609i
\(681\) −2.33626 −0.0895259
\(682\) 47.6945 + 40.2657i 1.82632 + 1.54185i
\(683\) 13.9942 + 13.9942i 0.535473 + 0.535473i 0.922196 0.386723i \(-0.126393\pi\)
−0.386723 + 0.922196i \(0.626393\pi\)
\(684\) −1.16735 + 0.198596i −0.0446346 + 0.00759351i
\(685\) −9.67317 12.3794i −0.369593 0.472993i
\(686\) −1.52980 18.1135i −0.0584081 0.691578i
\(687\) −13.6601 + 13.6601i −0.521164 + 0.521164i
\(688\) 9.66702 + 4.65032i 0.368552 + 0.177292i
\(689\) 0.0297955i 0.00113512i
\(690\) 39.8198 36.9140i 1.51591 1.40529i
\(691\) 10.1227i 0.385087i −0.981288 0.192544i \(-0.938326\pi\)
0.981288 0.192544i \(-0.0616737\pi\)
\(692\) −32.4036 22.9812i −1.23180 0.873614i
\(693\) 1.96071 1.96071i 0.0744812 0.0744812i
\(694\) 0.964402 0.0814497i 0.0366082 0.00309179i
\(695\) 9.35475 + 1.14799i 0.354846 + 0.0435456i
\(696\) 2.65493 + 10.2787i 0.100635 + 0.389614i
\(697\) −9.70437 9.70437i −0.367579 0.367579i
\(698\) −10.9857 + 13.0125i −0.415814 + 0.492529i
\(699\) −14.0601 −0.531802
\(700\) −6.42975 7.48513i −0.243022 0.282911i
\(701\) −21.0307 −0.794320 −0.397160 0.917749i \(-0.630004\pi\)
−0.397160 + 0.917749i \(0.630004\pi\)
\(702\) 19.4595 23.0496i 0.734450 0.869952i
\(703\) −5.70256 5.70256i −0.215076 0.215076i
\(704\) 33.2207 18.3881i 1.25205 0.693029i
\(705\) 6.58565 + 0.808171i 0.248030 + 0.0304375i
\(706\) −38.5198 + 3.25323i −1.44971 + 0.122437i
\(707\) −1.65847 + 1.65847i −0.0623732 + 0.0623732i
\(708\) −6.63234 + 9.35163i −0.249259 + 0.351456i
\(709\) 24.7345i 0.928924i −0.885593 0.464462i \(-0.846248\pi\)
0.885593 0.464462i \(-0.153752\pi\)
\(710\) −21.5527 + 19.9800i −0.808860 + 0.749835i
\(711\) 0.188935i 0.00708562i
\(712\) 19.8236 + 11.6851i 0.742920 + 0.437917i
\(713\) 59.5721 59.5721i 2.23099 2.23099i
\(714\) 0.324435 + 3.84146i 0.0121417 + 0.143763i
\(715\) −30.5418 39.0863i −1.14220 1.46175i
\(716\) −2.97408 17.4816i −0.111147 0.653319i
\(717\) 1.05336 + 1.05336i 0.0393383 + 0.0393383i
\(718\) 25.6594 + 21.6627i 0.957599 + 0.808446i
\(719\) −26.9815 −1.00624 −0.503120 0.864216i \(-0.667815\pi\)
−0.503120 + 0.864216i \(0.667815\pi\)
\(720\) 1.12937 + 5.17371i 0.0420891 + 0.192813i
\(721\) −4.43901 −0.165317
\(722\) 1.08061 + 0.912296i 0.0402161 + 0.0339521i
\(723\) 24.5918 + 24.5918i 0.914578 + 0.914578i
\(724\) 1.92451 + 11.3123i 0.0715238 + 0.420417i
\(725\) 2.39420 9.60806i 0.0889183 0.356834i
\(726\) −2.60014 30.7868i −0.0965001 1.14261i
\(727\) 29.4984 29.4984i 1.09404 1.09404i 0.0989427 0.995093i \(-0.468454\pi\)
0.995093 0.0989427i \(-0.0315461\pi\)
\(728\) −11.2376 6.62408i −0.416495 0.245505i
\(729\) 19.7758i 0.732437i
\(730\) 20.3162 + 0.769337i 0.751935 + 0.0284745i
\(731\) 3.90910i 0.144583i
\(732\) 1.58933 2.24096i 0.0587432 0.0828281i
\(733\) −19.4831 + 19.4831i −0.719625 + 0.719625i −0.968528 0.248904i \(-0.919930\pi\)
0.248904 + 0.968528i \(0.419930\pi\)
\(734\) 26.4133 2.23076i 0.974931 0.0823390i
\(735\) 20.1242 15.7249i 0.742291 0.580021i
\(736\) −20.9573 46.7682i −0.772497 1.72390i
\(737\) −48.0569 48.0569i −1.77020 1.77020i
\(738\) −5.08558 + 6.02384i −0.187203 + 0.221741i
\(739\) −37.1086 −1.36506 −0.682532 0.730856i \(-0.739121\pi\)
−0.682532 + 0.730856i \(0.739121\pi\)
\(740\) −24.2921 + 26.6582i −0.892996 + 0.979976i
\(741\) 8.85828 0.325417
\(742\) 0.00573877 0.00679754i 0.000210677 0.000249545i
\(743\) −12.3911 12.3911i −0.454586 0.454586i 0.442288 0.896873i \(-0.354167\pi\)
−0.896873 + 0.442288i \(0.854167\pi\)
\(744\) 12.4667 + 48.2658i 0.457053 + 1.76951i
\(745\) −1.91696 + 15.6210i −0.0702322 + 0.572310i
\(746\) −17.9359 + 1.51480i −0.656681 + 0.0554609i
\(747\) −1.27515 + 1.27515i −0.0466554 + 0.0466554i
\(748\) 11.2862 + 8.00437i 0.412664 + 0.292669i
\(749\) 15.8901i 0.580612i
\(750\) 8.34092 28.7827i 0.304567 1.05100i
\(751\) 4.32457i 0.157806i −0.996882 0.0789029i \(-0.974858\pi\)
0.996882 0.0789029i \(-0.0251417\pi\)
\(752\) 2.71479 5.64347i 0.0989983 0.205796i
\(753\) 10.8558 10.8558i 0.395606 0.395606i
\(754\) −1.10161 13.0436i −0.0401183 0.475019i
\(755\) −4.57769 + 37.3028i −0.166599 + 1.35759i
\(756\) −8.87895 + 1.51054i −0.322924 + 0.0549378i
\(757\) 4.02457 + 4.02457i 0.146275 + 0.146275i 0.776452 0.630177i \(-0.217017\pi\)
−0.630177 + 0.776452i \(0.717017\pi\)
\(758\) −1.44745 1.22200i −0.0525739 0.0443851i
\(759\) −81.4959 −2.95812
\(760\) 3.85134 5.01669i 0.139703 0.181975i
\(761\) 35.1030 1.27248 0.636241 0.771490i \(-0.280488\pi\)
0.636241 + 0.771490i \(0.280488\pi\)
\(762\) 16.6459 + 14.0532i 0.603016 + 0.509092i
\(763\) 7.05117 + 7.05117i 0.255270 + 0.255270i
\(764\) −6.74599 + 1.14767i −0.244061 + 0.0415212i
\(765\) −1.52056 + 1.18815i −0.0549759 + 0.0429577i
\(766\) −0.404980 4.79515i −0.0146325 0.173256i
\(767\) 9.99599 9.99599i 0.360934 0.360934i
\(768\) 30.1366 + 3.36958i 1.08746 + 0.121589i
\(769\) 50.0247i 1.80394i −0.431802 0.901968i \(-0.642122\pi\)
0.431802 0.901968i \(-0.357878\pi\)