Properties

Label 380.2.k.c.267.2
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.2
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38561 - 0.282971i) q^{2} +(0.321015 + 0.321015i) q^{3} +(1.83985 + 0.784178i) q^{4} +(1.77712 + 1.35715i) q^{5} +(-0.353965 - 0.535642i) q^{6} +(1.91243 - 1.91243i) q^{7} +(-2.32743 - 1.60719i) q^{8} -2.79390i q^{9} +O(q^{10})\) \(q+(-1.38561 - 0.282971i) q^{2} +(0.321015 + 0.321015i) q^{3} +(1.83985 + 0.784178i) q^{4} +(1.77712 + 1.35715i) q^{5} +(-0.353965 - 0.535642i) q^{6} +(1.91243 - 1.91243i) q^{7} +(-2.32743 - 1.60719i) q^{8} -2.79390i q^{9} +(-2.07836 - 2.38336i) q^{10} -5.65006i q^{11} +(0.338888 + 0.842355i) q^{12} +(-2.00460 + 2.00460i) q^{13} +(-3.19106 + 2.10873i) q^{14} +(0.134816 + 1.00615i) q^{15} +(2.77013 + 2.88555i) q^{16} +(3.89197 + 3.89197i) q^{17} +(-0.790593 + 3.87127i) q^{18} +1.00000 q^{19} +(2.20539 + 3.89054i) q^{20} +1.22784 q^{21} +(-1.59880 + 7.82880i) q^{22} +(-3.04830 - 3.04830i) q^{23} +(-0.231207 - 1.26307i) q^{24} +(1.31629 + 4.82363i) q^{25} +(3.34485 - 2.21036i) q^{26} +(1.85993 - 1.85993i) q^{27} +(5.01829 - 2.01891i) q^{28} -8.56783i q^{29} +(0.0979086 - 1.43228i) q^{30} +3.58721i q^{31} +(-3.02180 - 4.78212i) q^{32} +(1.81376 - 1.81376i) q^{33} +(-4.29145 - 6.49409i) q^{34} +(5.99408 - 0.803157i) q^{35} +(2.19091 - 5.14037i) q^{36} +(3.87230 + 3.87230i) q^{37} +(-1.38561 - 0.282971i) q^{38} -1.28702 q^{39} +(-1.95491 - 6.01484i) q^{40} -0.0555658 q^{41} +(-1.70132 - 0.347444i) q^{42} +(1.97854 + 1.97854i) q^{43} +(4.43065 - 10.3953i) q^{44} +(3.79174 - 4.96508i) q^{45} +(3.36118 + 5.08634i) q^{46} +(-4.74358 + 4.74358i) q^{47} +(-0.0370507 + 1.81556i) q^{48} -0.314813i q^{49} +(-0.458916 - 7.05616i) q^{50} +2.49877i q^{51} +(-5.26015 + 2.11621i) q^{52} +(-7.95199 + 7.95199i) q^{53} +(-3.10345 + 2.05084i) q^{54} +(7.66798 - 10.0408i) q^{55} +(-7.52471 + 1.37740i) q^{56} +(0.321015 + 0.321015i) q^{57} +(-2.42445 + 11.8717i) q^{58} +8.34740 q^{59} +(-0.540958 + 1.95689i) q^{60} +12.0737 q^{61} +(1.01508 - 4.97049i) q^{62} +(-5.34315 - 5.34315i) q^{63} +(2.83385 + 7.48126i) q^{64} +(-6.28297 + 0.841866i) q^{65} +(-3.02641 + 1.99992i) q^{66} +(6.55823 - 6.55823i) q^{67} +(4.10866 + 10.2127i) q^{68} -1.95710i q^{69} +(-8.53275 - 0.583286i) q^{70} +7.24112i q^{71} +(-4.49034 + 6.50260i) q^{72} +(-3.34075 + 3.34075i) q^{73} +(-4.26977 - 6.46127i) q^{74} +(-1.12591 + 1.97101i) q^{75} +(1.83985 + 0.784178i) q^{76} +(-10.8054 - 10.8054i) q^{77} +(1.78331 + 0.364189i) q^{78} -13.0319 q^{79} +(1.00672 + 8.88744i) q^{80} -7.18756 q^{81} +(0.0769927 + 0.0157235i) q^{82} +(-4.60217 - 4.60217i) q^{83} +(2.25905 + 0.962847i) q^{84} +(1.63450 + 12.1985i) q^{85} +(-2.18162 - 3.30136i) q^{86} +(2.75040 - 2.75040i) q^{87} +(-9.08074 + 13.1501i) q^{88} +4.22554i q^{89} +(-6.65887 + 5.80674i) q^{90} +7.66735i q^{91} +(-3.21801 - 7.99883i) q^{92} +(-1.15155 + 1.15155i) q^{93} +(7.91506 - 5.23047i) q^{94} +(1.77712 + 1.35715i) q^{95} +(0.565089 - 2.50518i) q^{96} +(-3.74804 - 3.74804i) q^{97} +(-0.0890829 + 0.436209i) q^{98} -15.7857 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38561 0.282971i −0.979777 0.200091i
\(3\) 0.321015 + 0.321015i 0.185338 + 0.185338i 0.793677 0.608339i \(-0.208164\pi\)
−0.608339 + 0.793677i \(0.708164\pi\)
\(4\) 1.83985 + 0.784178i 0.919927 + 0.392089i
\(5\) 1.77712 + 1.35715i 0.794751 + 0.606936i
\(6\) −0.353965 0.535642i −0.144506 0.218675i
\(7\) 1.91243 1.91243i 0.722832 0.722832i −0.246349 0.969181i \(-0.579231\pi\)
0.969181 + 0.246349i \(0.0792309\pi\)
\(8\) −2.32743 1.60719i −0.822870 0.568229i
\(9\) 2.79390i 0.931299i
\(10\) −2.07836 2.38336i −0.657236 0.753685i
\(11\) 5.65006i 1.70356i −0.523903 0.851778i \(-0.675525\pi\)
0.523903 0.851778i \(-0.324475\pi\)
\(12\) 0.338888 + 0.842355i 0.0978287 + 0.243167i
\(13\) −2.00460 + 2.00460i −0.555977 + 0.555977i −0.928160 0.372182i \(-0.878610\pi\)
0.372182 + 0.928160i \(0.378610\pi\)
\(14\) −3.19106 + 2.10873i −0.852847 + 0.563583i
\(15\) 0.134816 + 1.00615i 0.0348092 + 0.259786i
\(16\) 2.77013 + 2.88555i 0.692532 + 0.721387i
\(17\) 3.89197 + 3.89197i 0.943942 + 0.943942i 0.998510 0.0545685i \(-0.0173783\pi\)
−0.0545685 + 0.998510i \(0.517378\pi\)
\(18\) −0.790593 + 3.87127i −0.186345 + 0.912466i
\(19\) 1.00000 0.229416
\(20\) 2.20539 + 3.89054i 0.493140 + 0.869950i
\(21\) 1.22784 0.267937
\(22\) −1.59880 + 7.82880i −0.340866 + 1.66911i
\(23\) −3.04830 3.04830i −0.635614 0.635614i 0.313857 0.949470i \(-0.398379\pi\)
−0.949470 + 0.313857i \(0.898379\pi\)
\(24\) −0.231207 1.26307i −0.0471948 0.257824i
\(25\) 1.31629 + 4.82363i 0.263257 + 0.964726i
\(26\) 3.34485 2.21036i 0.655980 0.433488i
\(27\) 1.85993 1.85993i 0.357944 0.357944i
\(28\) 5.01829 2.01891i 0.948368 0.381539i
\(29\) 8.56783i 1.59101i −0.605950 0.795503i \(-0.707207\pi\)
0.605950 0.795503i \(-0.292793\pi\)
\(30\) 0.0979086 1.43228i 0.0178756 0.261498i
\(31\) 3.58721i 0.644282i 0.946692 + 0.322141i \(0.104403\pi\)
−0.946692 + 0.322141i \(0.895597\pi\)
\(32\) −3.02180 4.78212i −0.534185 0.845368i
\(33\) 1.81376 1.81376i 0.315734 0.315734i
\(34\) −4.29145 6.49409i −0.735978 1.11373i
\(35\) 5.99408 0.803157i 1.01318 0.135758i
\(36\) 2.19091 5.14037i 0.365152 0.856728i
\(37\) 3.87230 + 3.87230i 0.636603 + 0.636603i 0.949716 0.313113i \(-0.101372\pi\)
−0.313113 + 0.949716i \(0.601372\pi\)
\(38\) −1.38561 0.282971i −0.224776 0.0459040i
\(39\) −1.28702 −0.206088
\(40\) −1.95491 6.01484i −0.309098 0.951030i
\(41\) −0.0555658 −0.00867792 −0.00433896 0.999991i \(-0.501381\pi\)
−0.00433896 + 0.999991i \(0.501381\pi\)
\(42\) −1.70132 0.347444i −0.262519 0.0536118i
\(43\) 1.97854 + 1.97854i 0.301724 + 0.301724i 0.841688 0.539964i \(-0.181562\pi\)
−0.539964 + 0.841688i \(0.681562\pi\)
\(44\) 4.43065 10.3953i 0.667946 1.56715i
\(45\) 3.79174 4.96508i 0.565239 0.740151i
\(46\) 3.36118 + 5.08634i 0.495579 + 0.749940i
\(47\) −4.74358 + 4.74358i −0.691922 + 0.691922i −0.962655 0.270733i \(-0.912734\pi\)
0.270733 + 0.962655i \(0.412734\pi\)
\(48\) −0.0370507 + 1.81556i −0.00534781 + 0.262053i
\(49\) 0.314813i 0.0449732i
\(50\) −0.458916 7.05616i −0.0649005 0.997892i
\(51\) 2.49877i 0.349897i
\(52\) −5.26015 + 2.11621i −0.729451 + 0.293466i
\(53\) −7.95199 + 7.95199i −1.09229 + 1.09229i −0.0970058 + 0.995284i \(0.530927\pi\)
−0.995284 + 0.0970058i \(0.969073\pi\)
\(54\) −3.10345 + 2.05084i −0.422327 + 0.279084i
\(55\) 7.66798 10.0408i 1.03395 1.35390i
\(56\) −7.52471 + 1.37740i −1.00553 + 0.184063i
\(57\) 0.321015 + 0.321015i 0.0425195 + 0.0425195i
\(58\) −2.42445 + 11.8717i −0.318346 + 1.55883i
\(59\) 8.34740 1.08674 0.543369 0.839494i \(-0.317148\pi\)
0.543369 + 0.839494i \(0.317148\pi\)
\(60\) −0.540958 + 1.95689i −0.0698374 + 0.252633i
\(61\) 12.0737 1.54588 0.772939 0.634481i \(-0.218786\pi\)
0.772939 + 0.634481i \(0.218786\pi\)
\(62\) 1.01508 4.97049i 0.128915 0.631253i
\(63\) −5.34315 5.34315i −0.673173 0.673173i
\(64\) 2.83385 + 7.48126i 0.354232 + 0.935158i
\(65\) −6.28297 + 0.841866i −0.779306 + 0.104421i
\(66\) −3.02641 + 1.99992i −0.372525 + 0.246174i
\(67\) 6.55823 6.55823i 0.801215 0.801215i −0.182071 0.983285i \(-0.558280\pi\)
0.983285 + 0.182071i \(0.0582800\pi\)
\(68\) 4.10866 + 10.2127i 0.498248 + 1.23847i
\(69\) 1.95710i 0.235607i
\(70\) −8.53275 0.583286i −1.01986 0.0697160i
\(71\) 7.24112i 0.859363i 0.902980 + 0.429682i \(0.141374\pi\)
−0.902980 + 0.429682i \(0.858626\pi\)
\(72\) −4.49034 + 6.50260i −0.529191 + 0.766339i
\(73\) −3.34075 + 3.34075i −0.391005 + 0.391005i −0.875046 0.484040i \(-0.839169\pi\)
0.484040 + 0.875046i \(0.339169\pi\)
\(74\) −4.26977 6.46127i −0.496351 0.751107i
\(75\) −1.12591 + 1.97101i −0.130009 + 0.227592i
\(76\) 1.83985 + 0.784178i 0.211046 + 0.0899514i
\(77\) −10.8054 10.8054i −1.23139 1.23139i
\(78\) 1.78331 + 0.364189i 0.201920 + 0.0412363i
\(79\) −13.0319 −1.46620 −0.733100 0.680121i \(-0.761927\pi\)
−0.733100 + 0.680121i \(0.761927\pi\)
\(80\) 1.00672 + 8.88744i 0.112555 + 0.993646i
\(81\) −7.18756 −0.798618
\(82\) 0.0769927 + 0.0157235i 0.00850242 + 0.00173637i
\(83\) −4.60217 4.60217i −0.505154 0.505154i 0.407881 0.913035i \(-0.366268\pi\)
−0.913035 + 0.407881i \(0.866268\pi\)
\(84\) 2.25905 + 0.962847i 0.246483 + 0.105055i
\(85\) 1.63450 + 12.1985i 0.177286 + 1.32311i
\(86\) −2.18162 3.30136i −0.235250 0.355994i
\(87\) 2.75040 2.75040i 0.294874 0.294874i
\(88\) −9.08074 + 13.1501i −0.968010 + 1.40181i
\(89\) 4.22554i 0.447906i 0.974600 + 0.223953i \(0.0718962\pi\)
−0.974600 + 0.223953i \(0.928104\pi\)
\(90\) −6.65887 + 5.80674i −0.701906 + 0.612084i
\(91\) 7.66735i 0.803757i
\(92\) −3.21801 7.99883i −0.335501 0.833935i
\(93\) −1.15155 + 1.15155i −0.119410 + 0.119410i
\(94\) 7.91506 5.23047i 0.816376 0.539482i
\(95\) 1.77712 + 1.35715i 0.182328 + 0.139241i
\(96\) 0.565089 2.50518i 0.0576742 0.255684i
\(97\) −3.74804 3.74804i −0.380556 0.380556i 0.490747 0.871302i \(-0.336724\pi\)
−0.871302 + 0.490747i \(0.836724\pi\)
\(98\) −0.0890829 + 0.436209i −0.00899873 + 0.0440637i
\(99\) −15.7857 −1.58652
\(100\) −1.36081 + 9.90698i −0.136081 + 0.990698i
\(101\) −2.63822 −0.262513 −0.131256 0.991348i \(-0.541901\pi\)
−0.131256 + 0.991348i \(0.541901\pi\)
\(102\) 0.707079 3.46232i 0.0700112 0.342821i
\(103\) 6.61857 + 6.61857i 0.652147 + 0.652147i 0.953510 0.301363i \(-0.0974415\pi\)
−0.301363 + 0.953510i \(0.597441\pi\)
\(104\) 7.88736 1.44379i 0.773420 0.141575i
\(105\) 2.18202 + 1.66637i 0.212943 + 0.162621i
\(106\) 13.2686 8.76821i 1.28876 0.851643i
\(107\) −6.65655 + 6.65655i −0.643513 + 0.643513i −0.951417 0.307904i \(-0.900372\pi\)
0.307904 + 0.951417i \(0.400372\pi\)
\(108\) 4.88052 1.96349i 0.469628 0.188936i
\(109\) 0.604648i 0.0579148i 0.999581 + 0.0289574i \(0.00921871\pi\)
−0.999581 + 0.0289574i \(0.990781\pi\)
\(110\) −13.4661 + 11.7429i −1.28394 + 1.11964i
\(111\) 2.48614i 0.235974i
\(112\) 10.8161 + 0.220728i 1.02203 + 0.0208568i
\(113\) 3.55461 3.55461i 0.334389 0.334389i −0.519861 0.854251i \(-0.674016\pi\)
0.854251 + 0.519861i \(0.174016\pi\)
\(114\) −0.353965 0.535642i −0.0331519 0.0501674i
\(115\) −1.28018 9.55417i −0.119377 0.890931i
\(116\) 6.71870 15.7636i 0.623816 1.46361i
\(117\) 5.60066 + 5.60066i 0.517781 + 0.517781i
\(118\) −11.5663 2.36207i −1.06476 0.217447i
\(119\) 14.8863 1.36462
\(120\) 1.30330 2.55841i 0.118975 0.233550i
\(121\) −20.9231 −1.90210
\(122\) −16.7295 3.41651i −1.51462 0.309316i
\(123\) −0.0178375 0.0178375i −0.00160835 0.00160835i
\(124\) −2.81301 + 6.59995i −0.252616 + 0.592693i
\(125\) −4.20720 + 10.3585i −0.376303 + 0.926497i
\(126\) 5.89159 + 8.91550i 0.524864 + 0.794256i
\(127\) −8.47034 + 8.47034i −0.751621 + 0.751621i −0.974782 0.223161i \(-0.928363\pi\)
0.223161 + 0.974782i \(0.428363\pi\)
\(128\) −1.80965 11.1680i −0.159952 0.987125i
\(129\) 1.27028i 0.111842i
\(130\) 8.94399 + 0.611397i 0.784440 + 0.0536231i
\(131\) 0.0987163i 0.00862489i 0.999991 + 0.00431244i \(0.00137270\pi\)
−0.999991 + 0.00431244i \(0.998627\pi\)
\(132\) 4.75935 1.91474i 0.414248 0.166657i
\(133\) 1.91243 1.91243i 0.165829 0.165829i
\(134\) −10.9430 + 7.23138i −0.945328 + 0.624696i
\(135\) 5.82952 0.781108i 0.501725 0.0672270i
\(136\) −2.80313 15.3134i −0.240367 1.31312i
\(137\) −10.4246 10.4246i −0.890634 0.890634i 0.103949 0.994583i \(-0.466852\pi\)
−0.994583 + 0.103949i \(0.966852\pi\)
\(138\) −0.553803 + 2.71179i −0.0471428 + 0.230843i
\(139\) −8.14601 −0.690935 −0.345468 0.938431i \(-0.612280\pi\)
−0.345468 + 0.938431i \(0.612280\pi\)
\(140\) 11.6581 + 3.22273i 0.985285 + 0.272371i
\(141\) −3.04552 −0.256479
\(142\) 2.04903 10.0334i 0.171951 0.841985i
\(143\) 11.3261 + 11.3261i 0.947139 + 0.947139i
\(144\) 8.06192 7.73946i 0.671827 0.644955i
\(145\) 11.6278 15.2260i 0.965639 1.26445i
\(146\) 5.57433 3.68366i 0.461335 0.304862i
\(147\) 0.101060 0.101060i 0.00833526 0.00833526i
\(148\) 4.08790 + 10.1611i 0.336023 + 0.835233i
\(149\) 20.1596i 1.65154i −0.564009 0.825769i \(-0.690742\pi\)
0.564009 0.825769i \(-0.309258\pi\)
\(150\) 2.11782 2.41246i 0.172919 0.196976i
\(151\) 4.29284i 0.349346i 0.984626 + 0.174673i \(0.0558869\pi\)
−0.984626 + 0.174673i \(0.944113\pi\)
\(152\) −2.32743 1.60719i −0.188779 0.130361i
\(153\) 10.8738 10.8738i 0.879092 0.879092i
\(154\) 11.9145 + 18.0297i 0.960095 + 1.45287i
\(155\) −4.86839 + 6.37489i −0.391038 + 0.512044i
\(156\) −2.36793 1.00925i −0.189586 0.0808048i
\(157\) −0.932967 0.932967i −0.0744589 0.0744589i 0.668897 0.743355i \(-0.266767\pi\)
−0.743355 + 0.668897i \(0.766767\pi\)
\(158\) 18.0571 + 3.68764i 1.43655 + 0.293373i
\(159\) −5.10542 −0.404886
\(160\) 1.11996 12.5994i 0.0885407 0.996073i
\(161\) −11.6593 −0.918884
\(162\) 9.95919 + 2.03387i 0.782468 + 0.159796i
\(163\) 1.46169 + 1.46169i 0.114488 + 0.114488i 0.762030 0.647542i \(-0.224203\pi\)
−0.647542 + 0.762030i \(0.724203\pi\)
\(164\) −0.102233 0.0435735i −0.00798305 0.00340252i
\(165\) 5.68479 0.761715i 0.442560 0.0592995i
\(166\) 5.07455 + 7.67912i 0.393862 + 0.596015i
\(167\) −8.67695 + 8.67695i −0.671442 + 0.671442i −0.958049 0.286606i \(-0.907473\pi\)
0.286606 + 0.958049i \(0.407473\pi\)
\(168\) −2.85772 1.97338i −0.220478 0.152250i
\(169\) 4.96312i 0.381778i
\(170\) 1.18704 17.3649i 0.0910416 1.33183i
\(171\) 2.79390i 0.213655i
\(172\) 2.08869 + 5.19174i 0.159261 + 0.395867i
\(173\) 6.45817 6.45817i 0.491005 0.491005i −0.417617 0.908623i \(-0.637135\pi\)
0.908623 + 0.417617i \(0.137135\pi\)
\(174\) −4.58928 + 3.03271i −0.347913 + 0.229909i
\(175\) 11.7422 + 6.70756i 0.887626 + 0.507044i
\(176\) 16.3035 15.6514i 1.22892 1.17977i
\(177\) 2.67964 + 2.67964i 0.201414 + 0.201414i
\(178\) 1.19571 5.85497i 0.0896219 0.438848i
\(179\) −23.2404 −1.73707 −0.868535 0.495627i \(-0.834938\pi\)
−0.868535 + 0.495627i \(0.834938\pi\)
\(180\) 10.8698 6.16163i 0.810184 0.459261i
\(181\) 7.16494 0.532566 0.266283 0.963895i \(-0.414204\pi\)
0.266283 + 0.963895i \(0.414204\pi\)
\(182\) 2.16964 10.6240i 0.160824 0.787503i
\(183\) 3.87584 + 3.87584i 0.286510 + 0.286510i
\(184\) 2.19549 + 11.9939i 0.161854 + 0.884202i
\(185\) 1.62624 + 12.1368i 0.119563 + 0.892318i
\(186\) 1.92146 1.26975i 0.140888 0.0931025i
\(187\) 21.9899 21.9899i 1.60806 1.60806i
\(188\) −12.4473 + 5.00768i −0.907813 + 0.365223i
\(189\) 7.11399i 0.517467i
\(190\) −2.07836 2.38336i −0.150780 0.172907i
\(191\) 19.7928i 1.43215i 0.698022 + 0.716077i \(0.254064\pi\)
−0.698022 + 0.716077i \(0.745936\pi\)
\(192\) −1.49189 + 3.31131i −0.107668 + 0.238973i
\(193\) 4.77524 4.77524i 0.343730 0.343730i −0.514038 0.857767i \(-0.671851\pi\)
0.857767 + 0.514038i \(0.171851\pi\)
\(194\) 4.13275 + 6.25392i 0.296714 + 0.449005i
\(195\) −2.28718 1.74668i −0.163788 0.125082i
\(196\) 0.246869 0.579209i 0.0176335 0.0413721i
\(197\) 12.5130 + 12.5130i 0.891516 + 0.891516i 0.994666 0.103150i \(-0.0328923\pi\)
−0.103150 + 0.994666i \(0.532892\pi\)
\(198\) 21.8729 + 4.46689i 1.55444 + 0.317448i
\(199\) −15.8810 −1.12577 −0.562886 0.826534i \(-0.690309\pi\)
−0.562886 + 0.826534i \(0.690309\pi\)
\(200\) 4.68895 13.3422i 0.331559 0.943435i
\(201\) 4.21058 0.296992
\(202\) 3.65556 + 0.746541i 0.257204 + 0.0525264i
\(203\) −16.3854 16.3854i −1.15003 1.15003i
\(204\) −1.95948 + 4.59736i −0.137191 + 0.321880i
\(205\) −0.0987468 0.0754111i −0.00689678 0.00526694i
\(206\) −7.29792 11.0436i −0.508470 0.769447i
\(207\) −8.51663 + 8.51663i −0.591946 + 0.591946i
\(208\) −11.3374 0.231366i −0.786107 0.0160424i
\(209\) 5.65006i 0.390823i
\(210\) −2.55190 2.92639i −0.176098 0.201940i
\(211\) 10.7864i 0.742568i −0.928519 0.371284i \(-0.878918\pi\)
0.928519 0.371284i \(-0.121082\pi\)
\(212\) −20.8663 + 8.39473i −1.43310 + 0.576552i
\(213\) −2.32451 + 2.32451i −0.159273 + 0.159273i
\(214\) 11.1070 7.33980i 0.759260 0.501738i
\(215\) 0.830917 + 6.20126i 0.0566681 + 0.422922i
\(216\) −7.31813 + 1.33959i −0.497935 + 0.0911473i
\(217\) 6.86031 + 6.86031i 0.465708 + 0.465708i
\(218\) 0.171098 0.837809i 0.0115882 0.0567436i
\(219\) −2.14486 −0.144937
\(220\) 21.9817 12.4606i 1.48201 0.840091i
\(221\) −15.6037 −1.04962
\(222\) 0.703506 3.44483i 0.0472162 0.231202i
\(223\) −14.8860 14.8860i −0.996843 0.996843i 0.00315185 0.999995i \(-0.498997\pi\)
−0.999995 + 0.00315185i \(0.998997\pi\)
\(224\) −14.9245 3.36649i −0.997185 0.224933i
\(225\) 13.4767 3.67757i 0.898448 0.245171i
\(226\) −5.93117 + 3.91946i −0.394535 + 0.260719i
\(227\) 16.9491 16.9491i 1.12495 1.12495i 0.133963 0.990986i \(-0.457230\pi\)
0.990986 0.133963i \(-0.0427705\pi\)
\(228\) 0.338888 + 0.842355i 0.0224434 + 0.0557863i
\(229\) 12.2209i 0.807580i 0.914852 + 0.403790i \(0.132307\pi\)
−0.914852 + 0.403790i \(0.867693\pi\)
\(230\) −0.929719 + 13.6007i −0.0613039 + 0.896800i
\(231\) 6.93738i 0.456446i
\(232\) −13.7702 + 19.9410i −0.904055 + 1.30919i
\(233\) 13.3876 13.3876i 0.877051 0.877051i −0.116178 0.993228i \(-0.537064\pi\)
0.993228 + 0.116178i \(0.0370642\pi\)
\(234\) −6.17553 9.34518i −0.403707 0.610914i
\(235\) −14.8676 + 1.99214i −0.969857 + 0.129953i
\(236\) 15.3580 + 6.54585i 0.999721 + 0.426098i
\(237\) −4.18343 4.18343i −0.271743 0.271743i
\(238\) −20.6266 4.21239i −1.33703 0.273049i
\(239\) 25.0913 1.62302 0.811511 0.584338i \(-0.198646\pi\)
0.811511 + 0.584338i \(0.198646\pi\)
\(240\) −2.52983 + 3.17618i −0.163300 + 0.205021i
\(241\) 20.2239 1.30274 0.651369 0.758761i \(-0.274195\pi\)
0.651369 + 0.758761i \(0.274195\pi\)
\(242\) 28.9914 + 5.92064i 1.86364 + 0.380593i
\(243\) −7.88711 7.88711i −0.505958 0.505958i
\(244\) 22.2138 + 9.46792i 1.42209 + 0.606121i
\(245\) 0.427248 0.559459i 0.0272959 0.0357425i
\(246\) 0.0196684 + 0.0297633i 0.00125401 + 0.00189764i
\(247\) −2.00460 + 2.00460i −0.127550 + 0.127550i
\(248\) 5.76535 8.34898i 0.366100 0.530161i
\(249\) 2.95474i 0.187249i
\(250\) 8.76072 13.1624i 0.554077 0.832466i
\(251\) 14.1483i 0.893034i 0.894775 + 0.446517i \(0.147336\pi\)
−0.894775 + 0.446517i \(0.852664\pi\)
\(252\) −5.64064 14.0206i −0.355327 0.883214i
\(253\) −17.2230 + 17.2230i −1.08280 + 1.08280i
\(254\) 14.1335 9.33976i 0.886814 0.586029i
\(255\) −3.39120 + 4.44060i −0.212365 + 0.278081i
\(256\) −0.652763 + 15.9867i −0.0407977 + 0.999167i
\(257\) 1.76563 + 1.76563i 0.110137 + 0.110137i 0.760028 0.649891i \(-0.225185\pi\)
−0.649891 + 0.760028i \(0.725185\pi\)
\(258\) 0.359453 1.76012i 0.0223786 0.109580i
\(259\) 14.8111 0.920314
\(260\) −12.2199 3.37805i −0.757847 0.209498i
\(261\) −23.9376 −1.48170
\(262\) 0.0279339 0.136783i 0.00172576 0.00845047i
\(263\) 1.92483 + 1.92483i 0.118690 + 0.118690i 0.763957 0.645267i \(-0.223254\pi\)
−0.645267 + 0.763957i \(0.723254\pi\)
\(264\) −7.13644 + 1.30633i −0.439218 + 0.0803990i
\(265\) −24.9237 + 3.33956i −1.53105 + 0.205148i
\(266\) −3.19106 + 2.10873i −0.195657 + 0.129295i
\(267\) −1.35646 + 1.35646i −0.0830142 + 0.0830142i
\(268\) 17.2090 6.92336i 1.05121 0.422912i
\(269\) 2.85728i 0.174211i −0.996199 0.0871056i \(-0.972238\pi\)
0.996199 0.0871056i \(-0.0277618\pi\)
\(270\) −8.29850 0.567272i −0.505030 0.0345231i
\(271\) 23.3292i 1.41715i 0.705637 + 0.708573i \(0.250661\pi\)
−0.705637 + 0.708573i \(0.749339\pi\)
\(272\) −0.449201 + 22.0117i −0.0272368 + 1.33466i
\(273\) −2.46134 + 2.46134i −0.148967 + 0.148967i
\(274\) 11.4946 + 17.3943i 0.694415 + 1.05083i
\(275\) 27.2538 7.43709i 1.64346 0.448473i
\(276\) 1.53471 3.60078i 0.0923790 0.216741i
\(277\) −10.1512 10.1512i −0.609928 0.609928i 0.332999 0.942927i \(-0.391939\pi\)
−0.942927 + 0.332999i \(0.891939\pi\)
\(278\) 11.2872 + 2.30509i 0.676963 + 0.138250i
\(279\) 10.0223 0.600020
\(280\) −15.2416 7.76436i −0.910861 0.464009i
\(281\) −2.12728 −0.126903 −0.0634515 0.997985i \(-0.520211\pi\)
−0.0634515 + 0.997985i \(0.520211\pi\)
\(282\) 4.21992 + 0.861795i 0.251293 + 0.0513192i
\(283\) −15.7907 15.7907i −0.938660 0.938660i 0.0595643 0.998224i \(-0.481029\pi\)
−0.998224 + 0.0595643i \(0.981029\pi\)
\(284\) −5.67833 + 13.3226i −0.336947 + 0.790552i
\(285\) 0.134816 + 1.00615i 0.00798578 + 0.0595991i
\(286\) −12.4887 18.8986i −0.738471 1.11750i
\(287\) −0.106266 + 0.106266i −0.00627268 + 0.00627268i
\(288\) −13.3608 + 8.44262i −0.787291 + 0.497486i
\(289\) 13.2949i 0.782051i
\(290\) −20.4202 + 17.8071i −1.19912 + 1.04567i
\(291\) 2.40636i 0.141063i
\(292\) −8.76624 + 3.52675i −0.513005 + 0.206388i
\(293\) −5.98202 + 5.98202i −0.349473 + 0.349473i −0.859913 0.510440i \(-0.829482\pi\)
0.510440 + 0.859913i \(0.329482\pi\)
\(294\) −0.168627 + 0.111433i −0.00983451 + 0.00649889i
\(295\) 14.8343 + 11.3287i 0.863686 + 0.659581i
\(296\) −2.78897 15.2361i −0.162106 0.885578i
\(297\) −10.5087 10.5087i −0.609777 0.609777i
\(298\) −5.70458 + 27.9334i −0.330458 + 1.61814i
\(299\) 12.2213 0.706773
\(300\) −3.61713 + 2.74345i −0.208835 + 0.158393i
\(301\) 7.56764 0.436191
\(302\) 1.21475 5.94822i 0.0699010 0.342282i
\(303\) −0.846910 0.846910i −0.0486537 0.0486537i
\(304\) 2.77013 + 2.88555i 0.158878 + 0.165497i
\(305\) 21.4563 + 16.3858i 1.22859 + 0.938249i
\(306\) −18.1438 + 11.9899i −1.03721 + 0.685416i
\(307\) −12.9642 + 12.9642i −0.739909 + 0.739909i −0.972560 0.232651i \(-0.925260\pi\)
0.232651 + 0.972560i \(0.425260\pi\)
\(308\) −11.4070 28.3536i −0.649972 1.61560i
\(309\) 4.24932i 0.241736i
\(310\) 8.54962 7.45553i 0.485586 0.423446i
\(311\) 0.353348i 0.0200365i 0.999950 + 0.0100183i \(0.00318896\pi\)
−0.999950 + 0.0100183i \(0.996811\pi\)
\(312\) 2.99544 + 2.06849i 0.169584 + 0.117105i
\(313\) 8.56622 8.56622i 0.484191 0.484191i −0.422276 0.906467i \(-0.638769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(314\) 1.02873 + 1.55674i 0.0580546 + 0.0878517i
\(315\) −2.24394 16.7469i −0.126432 0.943578i
\(316\) −23.9767 10.2193i −1.34880 0.574881i
\(317\) −3.15859 3.15859i −0.177404 0.177404i 0.612819 0.790223i \(-0.290035\pi\)
−0.790223 + 0.612819i \(0.790035\pi\)
\(318\) 7.07415 + 1.44469i 0.396698 + 0.0810140i
\(319\) −48.4087 −2.71037
\(320\) −5.11711 + 17.1410i −0.286055 + 0.958213i
\(321\) −4.27371 −0.238535
\(322\) 16.1553 + 3.29926i 0.900302 + 0.183860i
\(323\) 3.89197 + 3.89197i 0.216555 + 0.216555i
\(324\) −13.2241 5.63633i −0.734670 0.313129i
\(325\) −12.3081 7.03084i −0.682731 0.390001i
\(326\) −1.61172 2.43895i −0.0892650 0.135081i
\(327\) −0.194101 + 0.194101i −0.0107338 + 0.0107338i
\(328\) 0.129325 + 0.0893050i 0.00714080 + 0.00493104i
\(329\) 18.1436i 1.00029i
\(330\) −8.09247 0.553189i −0.445476 0.0304520i
\(331\) 21.2084i 1.16572i −0.812573 0.582859i \(-0.801934\pi\)
0.812573 0.582859i \(-0.198066\pi\)
\(332\) −4.85840 12.0762i −0.266640 0.662770i
\(333\) 10.8188 10.8188i 0.592868 0.592868i
\(334\) 14.4782 9.56758i 0.792214 0.523515i
\(335\) 20.5552 2.75423i 1.12305 0.150480i
\(336\) 3.40128 + 3.54300i 0.185555 + 0.193286i
\(337\) 1.23960 + 1.23960i 0.0675252 + 0.0675252i 0.740063 0.672538i \(-0.234796\pi\)
−0.672538 + 0.740063i \(0.734796\pi\)
\(338\) 1.40442 6.87697i 0.0763904 0.374058i
\(339\) 2.28217 0.123950
\(340\) −6.55854 + 23.7252i −0.355687 + 1.28668i
\(341\) 20.2679 1.09757
\(342\) −0.790593 + 3.87127i −0.0427504 + 0.209334i
\(343\) 12.7850 + 12.7850i 0.690324 + 0.690324i
\(344\) −1.42501 7.78479i −0.0768314 0.419728i
\(345\) 2.65608 3.47799i 0.142998 0.187249i
\(346\) −10.7760 + 7.12106i −0.579322 + 0.382830i
\(347\) 12.6644 12.6644i 0.679859 0.679859i −0.280109 0.959968i \(-0.590371\pi\)
0.959968 + 0.280109i \(0.0903706\pi\)
\(348\) 7.21715 2.90354i 0.386880 0.155646i
\(349\) 16.0318i 0.858164i 0.903266 + 0.429082i \(0.141163\pi\)
−0.903266 + 0.429082i \(0.858837\pi\)
\(350\) −14.3721 12.6168i −0.768221 0.674396i
\(351\) 7.45685i 0.398017i
\(352\) −27.0193 + 17.0734i −1.44013 + 0.910013i
\(353\) −25.1710 + 25.1710i −1.33972 + 1.33972i −0.443387 + 0.896330i \(0.646223\pi\)
−0.896330 + 0.443387i \(0.853777\pi\)
\(354\) −2.95469 4.47121i −0.157040 0.237642i
\(355\) −9.82730 + 12.8683i −0.521579 + 0.682980i
\(356\) −3.31357 + 7.77438i −0.175619 + 0.412041i
\(357\) 4.77872 + 4.77872i 0.252917 + 0.252917i
\(358\) 32.2023 + 6.57637i 1.70194 + 0.347572i
\(359\) −0.347833 −0.0183579 −0.00917897 0.999958i \(-0.502922\pi\)
−0.00917897 + 0.999958i \(0.502922\pi\)
\(360\) −16.8049 + 5.46181i −0.885694 + 0.287863i
\(361\) 1.00000 0.0526316
\(362\) −9.92784 2.02747i −0.521796 0.106562i
\(363\) −6.71665 6.71665i −0.352533 0.352533i
\(364\) −6.01257 + 14.1068i −0.315144 + 0.739398i
\(365\) −10.4708 + 1.40300i −0.548067 + 0.0734365i
\(366\) −4.27367 6.46717i −0.223388 0.338044i
\(367\) −4.99380 + 4.99380i −0.260674 + 0.260674i −0.825328 0.564654i \(-0.809010\pi\)
0.564654 + 0.825328i \(0.309010\pi\)
\(368\) 0.351826 17.2402i 0.0183402 0.898706i
\(369\) 0.155245i 0.00808174i
\(370\) 1.18104 17.2771i 0.0613993 0.898196i
\(371\) 30.4153i 1.57908i
\(372\) −3.02171 + 1.21566i −0.156668 + 0.0630293i
\(373\) 14.4139 14.4139i 0.746325 0.746325i −0.227462 0.973787i \(-0.573043\pi\)
0.973787 + 0.227462i \(0.0730428\pi\)
\(374\) −36.6920 + 24.2470i −1.89730 + 1.25378i
\(375\) −4.67583 + 1.97468i −0.241459 + 0.101972i
\(376\) 18.6642 3.41649i 0.962532 0.176192i
\(377\) 17.1751 + 17.1751i 0.884563 + 0.884563i
\(378\) −2.01305 + 9.85725i −0.103540 + 0.507002i
\(379\) 20.2693 1.04117 0.520583 0.853811i \(-0.325715\pi\)
0.520583 + 0.853811i \(0.325715\pi\)
\(380\) 2.20539 + 3.89054i 0.113134 + 0.199580i
\(381\) −5.43822 −0.278608
\(382\) 5.60078 27.4251i 0.286561 1.40319i
\(383\) 21.4388 + 21.4388i 1.09547 + 1.09547i 0.994933 + 0.100539i \(0.0320567\pi\)
0.100539 + 0.994933i \(0.467943\pi\)
\(384\) 3.00419 4.16604i 0.153307 0.212597i
\(385\) −4.53788 33.8669i −0.231272 1.72602i
\(386\) −7.96790 + 5.26539i −0.405556 + 0.268001i
\(387\) 5.52783 5.52783i 0.280995 0.280995i
\(388\) −3.95672 9.83497i −0.200872 0.499295i
\(389\) 0.701293i 0.0355570i 0.999842 + 0.0177785i \(0.00565937\pi\)
−0.999842 + 0.0177785i \(0.994341\pi\)
\(390\) 2.67489 + 3.06743i 0.135448 + 0.155325i
\(391\) 23.7278i 1.19996i
\(392\) −0.505965 + 0.732704i −0.0255551 + 0.0370071i
\(393\) −0.0316895 + 0.0316895i −0.00159852 + 0.00159852i
\(394\) −13.7974 20.8790i −0.695103 1.05187i
\(395\) −23.1592 17.6862i −1.16526 0.889890i
\(396\) −29.0434 12.3788i −1.45948 0.622057i
\(397\) 5.76351 + 5.76351i 0.289262 + 0.289262i 0.836789 0.547526i \(-0.184430\pi\)
−0.547526 + 0.836789i \(0.684430\pi\)
\(398\) 22.0049 + 4.49386i 1.10301 + 0.225257i
\(399\) 1.22784 0.0614690
\(400\) −10.2725 + 17.1603i −0.513626 + 0.858014i
\(401\) −9.38653 −0.468741 −0.234370 0.972147i \(-0.575303\pi\)
−0.234370 + 0.972147i \(0.575303\pi\)
\(402\) −5.83424 1.19147i −0.290986 0.0594253i
\(403\) −7.19094 7.19094i −0.358206 0.358206i
\(404\) −4.85394 2.06884i −0.241493 0.102928i
\(405\) −12.7731 9.75460i −0.634702 0.484710i
\(406\) 18.0673 + 27.3405i 0.896663 + 1.35688i
\(407\) 21.8787 21.8787i 1.08449 1.08449i
\(408\) 4.01600 5.81570i 0.198822 0.287920i
\(409\) 35.3014i 1.74554i −0.488128 0.872772i \(-0.662320\pi\)
0.488128 0.872772i \(-0.337680\pi\)
\(410\) 0.115486 + 0.132433i 0.00570344 + 0.00654041i
\(411\) 6.69292i 0.330137i
\(412\) 6.98707 + 17.3673i 0.344228 + 0.855627i
\(413\) 15.9639 15.9639i 0.785530 0.785530i
\(414\) 14.2107 9.39080i 0.698419 0.461533i
\(415\) −1.93275 14.4244i −0.0948752 0.708067i
\(416\) 15.6438 + 3.52874i 0.767000 + 0.173011i
\(417\) −2.61499 2.61499i −0.128057 0.128057i
\(418\) −1.59880 + 7.82880i −0.0782000 + 0.382919i
\(419\) 20.7626 1.01432 0.507160 0.861852i \(-0.330695\pi\)
0.507160 + 0.861852i \(0.330695\pi\)
\(420\) 2.70787 + 4.77696i 0.132130 + 0.233092i
\(421\) −7.87092 −0.383605 −0.191803 0.981434i \(-0.561433\pi\)
−0.191803 + 0.981434i \(0.561433\pi\)
\(422\) −3.05225 + 14.9458i −0.148581 + 0.727552i
\(423\) 13.2531 + 13.2531i 0.644386 + 0.644386i
\(424\) 31.2881 5.72730i 1.51948 0.278142i
\(425\) −13.6505 + 23.8964i −0.662145 + 1.15914i
\(426\) 3.87865 2.56311i 0.187921 0.124183i
\(427\) 23.0901 23.0901i 1.11741 1.11741i
\(428\) −17.4670 + 7.02716i −0.844299 + 0.339671i
\(429\) 7.27172i 0.351082i
\(430\) 0.603446 8.82768i 0.0291008 0.425708i
\(431\) 22.8584i 1.10105i −0.834819 0.550525i \(-0.814428\pi\)
0.834819 0.550525i \(-0.185572\pi\)
\(432\) 10.5192 + 0.214668i 0.506104 + 0.0103282i
\(433\) −0.545440 + 0.545440i −0.0262122 + 0.0262122i −0.720091 0.693879i \(-0.755900\pi\)
0.693879 + 0.720091i \(0.255900\pi\)
\(434\) −7.56447 11.4470i −0.363106 0.549474i
\(435\) 8.62050 1.15508i 0.413321 0.0553817i
\(436\) −0.474152 + 1.11246i −0.0227077 + 0.0532774i
\(437\) −3.04830 3.04830i −0.145820 0.145820i
\(438\) 2.97196 + 0.606935i 0.142006 + 0.0290005i
\(439\) 3.55487 0.169665 0.0848324 0.996395i \(-0.472965\pi\)
0.0848324 + 0.996395i \(0.472965\pi\)
\(440\) −33.9842 + 11.0453i −1.62013 + 0.526566i
\(441\) −0.879554 −0.0418835
\(442\) 21.6207 + 4.41541i 1.02839 + 0.210019i
\(443\) −12.5438 12.5438i −0.595974 0.595974i 0.343264 0.939239i \(-0.388467\pi\)
−0.939239 + 0.343264i \(0.888467\pi\)
\(444\) −1.94958 + 4.57413i −0.0925227 + 0.217079i
\(445\) −5.73469 + 7.50927i −0.271850 + 0.355974i
\(446\) 16.4140 + 24.8386i 0.777225 + 1.17614i
\(447\) 6.47154 6.47154i 0.306093 0.306093i
\(448\) 19.7270 + 8.88786i 0.932012 + 0.419912i
\(449\) 32.9577i 1.55537i 0.628655 + 0.777685i \(0.283606\pi\)
−0.628655 + 0.777685i \(0.716394\pi\)
\(450\) −19.7142 + 1.28216i −0.929336 + 0.0604418i
\(451\) 0.313950i 0.0147833i
\(452\) 9.32741 3.75252i 0.438724 0.176504i
\(453\) −1.37807 + 1.37807i −0.0647473 + 0.0647473i
\(454\) −28.2810 + 18.6888i −1.32729 + 0.877108i
\(455\) −10.4057 + 13.6258i −0.487829 + 0.638786i
\(456\) −0.231207 1.26307i −0.0108272 0.0591489i
\(457\) 0.759073 + 0.759073i 0.0355079 + 0.0355079i 0.724638 0.689130i \(-0.242007\pi\)
−0.689130 + 0.724638i \(0.742007\pi\)
\(458\) 3.45816 16.9335i 0.161589 0.791249i
\(459\) 14.4776 0.675756
\(460\) 5.13683 18.5822i 0.239506 0.866398i
\(461\) 34.3719 1.60086 0.800429 0.599427i \(-0.204605\pi\)
0.800429 + 0.599427i \(0.204605\pi\)
\(462\) −1.96308 + 9.61253i −0.0913306 + 0.447215i
\(463\) −7.60575 7.60575i −0.353469 0.353469i 0.507930 0.861399i \(-0.330411\pi\)
−0.861399 + 0.507930i \(0.830411\pi\)
\(464\) 24.7229 23.7340i 1.14773 1.10182i
\(465\) −3.60927 + 0.483612i −0.167376 + 0.0224270i
\(466\) −22.3384 + 14.7617i −1.03480 + 0.683825i
\(467\) −18.0342 + 18.0342i −0.834521 + 0.834521i −0.988131 0.153611i \(-0.950910\pi\)
0.153611 + 0.988131i \(0.450910\pi\)
\(468\) 5.91249 + 14.6963i 0.273305 + 0.679338i
\(469\) 25.0844i 1.15829i
\(470\) 21.1645 + 1.44677i 0.976247 + 0.0667347i
\(471\) 0.598994i 0.0276002i
\(472\) −19.4280 13.4159i −0.894245 0.617516i
\(473\) 11.1788 11.1788i 0.514003 0.514003i
\(474\) 4.61283 + 6.98041i 0.211874 + 0.320621i
\(475\) 1.31629 + 4.82363i 0.0603953 + 0.221323i
\(476\) 27.3886 + 11.6735i 1.25535 + 0.535054i
\(477\) 22.2170 + 22.2170i 1.01725 + 1.01725i
\(478\) −34.7669 7.10012i −1.59020 0.324752i
\(479\) −12.8104 −0.585323 −0.292662 0.956216i \(-0.594541\pi\)
−0.292662 + 0.956216i \(0.594541\pi\)
\(480\) 4.40414 3.68509i 0.201020 0.168200i
\(481\) −15.5249 −0.707873
\(482\) −28.0226 5.72279i −1.27639 0.260666i
\(483\) −3.74283 3.74283i −0.170304 0.170304i
\(484\) −38.4955 16.4075i −1.74980 0.745794i
\(485\) −1.57405 11.7473i −0.0714738 0.533420i
\(486\) 8.69667 + 13.1603i 0.394489 + 0.596964i
\(487\) 11.2221 11.2221i 0.508520 0.508520i −0.405552 0.914072i \(-0.632921\pi\)
0.914072 + 0.405552i \(0.132921\pi\)
\(488\) −28.1006 19.4048i −1.27206 0.878412i
\(489\) 0.938449i 0.0424382i
\(490\) −0.750312 + 0.654295i −0.0338956 + 0.0295580i
\(491\) 30.6682i 1.38403i 0.721881 + 0.692017i \(0.243278\pi\)
−0.721881 + 0.692017i \(0.756722\pi\)
\(492\) −0.0188306 0.0468061i −0.000848949 0.00211018i
\(493\) 33.3457 33.3457i 1.50182 1.50182i
\(494\) 3.34485 2.21036i 0.150492 0.0994490i
\(495\) −28.0530 21.4235i −1.26089 0.962917i
\(496\) −10.3511 + 9.93704i −0.464777 + 0.446186i
\(497\) 13.8482 + 13.8482i 0.621176 + 0.621176i
\(498\) −0.836105 + 4.09412i −0.0374668 + 0.183462i
\(499\) 23.9769 1.07335 0.536676 0.843788i \(-0.319680\pi\)
0.536676 + 0.843788i \(0.319680\pi\)
\(500\) −15.8636 + 15.7590i −0.709441 + 0.704765i
\(501\) −5.57087 −0.248888
\(502\) 4.00357 19.6041i 0.178688 0.874974i
\(503\) −0.229488 0.229488i −0.0102324 0.0102324i 0.701972 0.712204i \(-0.252303\pi\)
−0.712204 + 0.701972i \(0.752303\pi\)
\(504\) 3.84832 + 21.0233i 0.171418 + 0.936451i
\(505\) −4.68843 3.58046i −0.208632 0.159329i
\(506\) 28.7381 18.9909i 1.27757 0.844247i
\(507\) −1.59324 + 1.59324i −0.0707582 + 0.0707582i
\(508\) −22.2264 + 8.94194i −0.986139 + 0.396734i
\(509\) 40.6326i 1.80101i 0.434846 + 0.900505i \(0.356803\pi\)
−0.434846 + 0.900505i \(0.643197\pi\)
\(510\) 5.95546 5.19334i 0.263712 0.229965i
\(511\) 12.7779i 0.565263i
\(512\) 5.42825 21.9667i 0.239897 0.970798i
\(513\) 1.85993 1.85993i 0.0821179 0.0821179i
\(514\) −1.94685 2.94610i −0.0858721 0.129947i
\(515\) 2.77957 + 20.7444i 0.122483 + 0.914106i
\(516\) −0.996126 + 2.33713i −0.0438520 + 0.102886i
\(517\) 26.8015 + 26.8015i 1.17873 + 1.17873i
\(518\) −20.5224 4.19110i −0.901703 0.184146i
\(519\) 4.14634 0.182004
\(520\) 15.9762 + 8.13856i 0.700603 + 0.356900i
\(521\) 0.640624 0.0280662 0.0140331 0.999902i \(-0.495533\pi\)
0.0140331 + 0.999902i \(0.495533\pi\)
\(522\) 33.1683 + 6.77366i 1.45174 + 0.296475i
\(523\) −12.4974 12.4974i −0.546474 0.546474i 0.378945 0.925419i \(-0.376287\pi\)
−0.925419 + 0.378945i \(0.876287\pi\)
\(524\) −0.0774112 + 0.181624i −0.00338172 + 0.00793427i
\(525\) 1.61619 + 5.92265i 0.0705363 + 0.258486i
\(526\) −2.12240 3.21175i −0.0925412 0.140039i
\(527\) −13.9613 + 13.9613i −0.608165 + 0.608165i
\(528\) 10.2580 + 0.209339i 0.446423 + 0.00911030i
\(529\) 4.41579i 0.191991i
\(530\) 35.4796 + 2.42533i 1.54113 + 0.105350i
\(531\) 23.3218i 1.01208i
\(532\) 5.01829 2.01891i 0.217571 0.0875310i
\(533\) 0.111387 0.111387i 0.00482472 0.00482472i
\(534\) 2.26337 1.49569i 0.0979458 0.0647250i
\(535\) −20.8634 + 2.79552i −0.902003 + 0.120861i
\(536\) −25.8041 + 4.72346i −1.11457 + 0.204023i
\(537\) −7.46053 7.46053i −0.321946 0.321946i
\(538\) −0.808527 + 3.95908i −0.0348581 + 0.170688i
\(539\) −1.77871 −0.0766144
\(540\) 11.3380 + 3.13426i 0.487910 + 0.134877i
\(541\) 17.4549 0.750445 0.375223 0.926935i \(-0.377566\pi\)
0.375223 + 0.926935i \(0.377566\pi\)
\(542\) 6.60149 32.3253i 0.283558 1.38849i
\(543\) 2.30006 + 2.30006i 0.0987048 + 0.0987048i
\(544\) 6.85110 30.3727i 0.293739 1.30222i
\(545\) −0.820598 + 1.07453i −0.0351506 + 0.0460278i
\(546\) 4.10695 2.71398i 0.175761 0.116148i
\(547\) 14.4169 14.4169i 0.616423 0.616423i −0.328189 0.944612i \(-0.606438\pi\)
0.944612 + 0.328189i \(0.106438\pi\)
\(548\) −11.0050 27.3545i −0.470111 1.16853i
\(549\) 33.7327i 1.43967i
\(550\) −39.8677 + 2.59290i −1.69996 + 0.110562i
\(551\) 8.56783i 0.365002i
\(552\) −3.14544 + 4.55501i −0.133879 + 0.193874i
\(553\) −24.9226 + 24.9226i −1.05982 + 1.05982i
\(554\) 11.1932 + 16.9382i 0.475552 + 0.719634i
\(555\) −3.37406 + 4.41816i −0.143221 + 0.187540i
\(556\) −14.9875 6.38792i −0.635610 0.270908i
\(557\) −12.4086 12.4086i −0.525768 0.525768i 0.393539 0.919308i \(-0.371250\pi\)
−0.919308 + 0.393539i \(0.871250\pi\)
\(558\) −13.8870 2.83602i −0.587886 0.120058i
\(559\) −7.93236 −0.335503
\(560\) 18.9219 + 15.0714i 0.799597 + 0.636881i
\(561\) 14.1182 0.596069
\(562\) 2.94759 + 0.601959i 0.124337 + 0.0253921i
\(563\) −11.6114 11.6114i −0.489364 0.489364i 0.418742 0.908105i \(-0.362471\pi\)
−0.908105 + 0.418742i \(0.862471\pi\)
\(564\) −5.60332 2.38823i −0.235942 0.100563i
\(565\) 11.1411 1.49281i 0.468709 0.0628032i
\(566\) 17.4115 + 26.3481i 0.731861 + 1.10750i
\(567\) −13.7457 + 13.7457i −0.577267 + 0.577267i
\(568\) 11.6379 16.8532i 0.488315 0.707145i
\(569\) 14.6399i 0.613737i 0.951752 + 0.306869i \(0.0992813\pi\)
−0.951752 + 0.306869i \(0.900719\pi\)
\(570\) 0.0979086 1.43228i 0.00410094 0.0599917i
\(571\) 23.5114i 0.983922i −0.870617 0.491961i \(-0.836280\pi\)
0.870617 0.491961i \(-0.163720\pi\)
\(572\) 11.9567 + 29.7201i 0.499936 + 1.24266i
\(573\) −6.35378 + 6.35378i −0.265433 + 0.265433i
\(574\) 0.177314 0.117173i 0.00740093 0.00489072i
\(575\) 10.6914 18.7163i 0.445863 0.780522i
\(576\) 20.9019 7.91750i 0.870912 0.329896i
\(577\) 7.05916 + 7.05916i 0.293877 + 0.293877i 0.838610 0.544733i \(-0.183369\pi\)
−0.544733 + 0.838610i \(0.683369\pi\)
\(578\) 3.76207 18.4216i 0.156481 0.766236i
\(579\) 3.06585 0.127413
\(580\) 33.3334 18.8954i 1.38410 0.784588i
\(581\) −17.6027 −0.730283
\(582\) −0.680929 + 3.33428i −0.0282254 + 0.138210i
\(583\) 44.9292 + 44.9292i 1.86078 + 1.86078i
\(584\) 13.1446 2.40613i 0.543927 0.0995662i
\(585\) 2.35209 + 17.5540i 0.0972468 + 0.725767i
\(586\) 9.98151 6.59603i 0.412332 0.272479i
\(587\) −33.5755 + 33.5755i −1.38581 + 1.38581i −0.551899 + 0.833911i \(0.686097\pi\)
−0.833911 + 0.551899i \(0.813903\pi\)
\(588\) 0.265184 0.106686i 0.0109360 0.00439967i
\(589\) 3.58721i 0.147808i
\(590\) −17.3489 19.8949i −0.714244 0.819058i
\(591\) 8.03374i 0.330464i
\(592\) −0.446931 + 21.9005i −0.0183688 + 0.900105i
\(593\) 7.65769 7.65769i 0.314464 0.314464i −0.532172 0.846636i \(-0.678624\pi\)
0.846636 + 0.532172i \(0.178624\pi\)
\(594\) 11.5874 + 17.5347i 0.475435 + 0.719457i
\(595\) 26.4546 + 20.2029i 1.08453 + 0.828239i
\(596\) 15.8087 37.0907i 0.647550 1.51929i
\(597\) −5.09804 5.09804i −0.208649 0.208649i
\(598\) −16.9339 3.45826i −0.692481 0.141419i
\(599\) 11.2535 0.459804 0.229902 0.973214i \(-0.426159\pi\)
0.229902 + 0.973214i \(0.426159\pi\)
\(600\) 5.78827 2.77782i 0.236305 0.113404i
\(601\) 28.4675 1.16121 0.580606 0.814185i \(-0.302816\pi\)
0.580606 + 0.814185i \(0.302816\pi\)
\(602\) −10.4858 2.14142i −0.427371 0.0872779i
\(603\) −18.3230 18.3230i −0.746171 0.746171i
\(604\) −3.36635 + 7.89820i −0.136975 + 0.321373i
\(605\) −37.1828 28.3958i −1.51170 1.15446i
\(606\) 0.933839 + 1.41314i 0.0379346 + 0.0574049i
\(607\) −21.9473 + 21.9473i −0.890812 + 0.890812i −0.994599 0.103788i \(-0.966904\pi\)
0.103788 + 0.994599i \(0.466904\pi\)
\(608\) −3.02180 4.78212i −0.122550 0.193941i
\(609\) 10.5199i 0.426289i
\(610\) −25.0935 28.7759i −1.01601 1.16510i
\(611\) 19.0180i 0.769386i
\(612\) 28.5331 11.4792i 1.15338 0.464018i
\(613\) 9.00839 9.00839i 0.363845 0.363845i −0.501381 0.865226i \(-0.667175\pi\)
0.865226 + 0.501381i \(0.167175\pi\)
\(614\) 21.6320 14.2949i 0.872995 0.576897i
\(615\) −0.00749113 0.0559074i −0.000302071 0.00225440i
\(616\) 7.78240 + 42.5150i 0.313562 + 1.71298i
\(617\) −3.55609 3.55609i −0.143163 0.143163i 0.631893 0.775056i \(-0.282278\pi\)
−0.775056 + 0.631893i \(0.782278\pi\)
\(618\) 1.20244 5.88793i 0.0483691 0.236847i
\(619\) −39.9486 −1.60567 −0.802834 0.596202i \(-0.796676\pi\)
−0.802834 + 0.596202i \(0.796676\pi\)
\(620\) −13.9562 + 7.91119i −0.560493 + 0.317721i
\(621\) −11.3392 −0.455028
\(622\) 0.0999872 0.489604i 0.00400912 0.0196313i
\(623\) 8.08107 + 8.08107i 0.323761 + 0.323761i
\(624\) −3.56521 3.71375i −0.142722 0.148669i
\(625\) −21.5348 + 12.6985i −0.861391 + 0.507942i
\(626\) −14.2935 + 9.44548i −0.571282 + 0.377517i
\(627\) 1.81376 1.81376i 0.0724344 0.0724344i
\(628\) −0.984912 2.44814i −0.0393023 0.0976913i
\(629\) 30.1418i 1.20183i
\(630\) −1.62964 + 23.8396i −0.0649265 + 0.949794i
\(631\) 10.1547i 0.404254i −0.979359 0.202127i \(-0.935215\pi\)
0.979359 0.202127i \(-0.0647854\pi\)
\(632\) 30.3308 + 20.9447i 1.20649 + 0.833137i
\(633\) 3.46261 3.46261i 0.137626 0.137626i
\(634\) 3.48280 + 5.27038i 0.138320 + 0.209314i
\(635\) −26.5483 + 3.55725i −1.05354 + 0.141165i
\(636\) −9.39323 4.00356i −0.372466 0.158751i
\(637\) 0.631075 + 0.631075i 0.0250041 + 0.0250041i
\(638\) 67.0758 + 13.6983i 2.65556 + 0.542320i
\(639\) 20.2310 0.800325
\(640\) 11.9408 22.3029i 0.472000 0.881599i
\(641\) −20.4445 −0.807510 −0.403755 0.914867i \(-0.632295\pi\)
−0.403755 + 0.914867i \(0.632295\pi\)
\(642\) 5.92171 + 1.20934i 0.233711 + 0.0477287i
\(643\) 17.7673 + 17.7673i 0.700672 + 0.700672i 0.964555 0.263883i \(-0.0850032\pi\)
−0.263883 + 0.964555i \(0.585003\pi\)
\(644\) −21.4515 9.14299i −0.845307 0.360284i
\(645\) −1.72396 + 2.25744i −0.0678809 + 0.0888865i
\(646\) −4.29145 6.49409i −0.168845 0.255506i
\(647\) 3.58437 3.58437i 0.140916 0.140916i −0.633130 0.774046i \(-0.718230\pi\)
0.774046 + 0.633130i \(0.218230\pi\)
\(648\) 16.7285 + 11.5518i 0.657159 + 0.453798i
\(649\) 47.1633i 1.85132i
\(650\) 15.0648 + 13.2249i 0.590888 + 0.518722i
\(651\) 4.40453i 0.172627i
\(652\) 1.54307 + 3.83552i 0.0604313 + 0.150211i
\(653\) −17.1613 + 17.1613i −0.671572 + 0.671572i −0.958078 0.286506i \(-0.907506\pi\)
0.286506 + 0.958078i \(0.407506\pi\)
\(654\) 0.323875 0.214025i 0.0126645 0.00836902i
\(655\) −0.133973 + 0.175430i −0.00523475 + 0.00685463i
\(656\) −0.153924 0.160338i −0.00600974 0.00626013i
\(657\) 9.33372 + 9.33372i 0.364143 + 0.364143i
\(658\) 5.13410 25.1400i 0.200148 0.980058i
\(659\) −3.92382 −0.152851 −0.0764253 0.997075i \(-0.524351\pi\)
−0.0764253 + 0.997075i \(0.524351\pi\)
\(660\) 11.0565 + 3.05644i 0.430374 + 0.118972i
\(661\) −7.98789 −0.310693 −0.155347 0.987860i \(-0.549649\pi\)
−0.155347 + 0.987860i \(0.549649\pi\)
\(662\) −6.00136 + 29.3866i −0.233249 + 1.14214i
\(663\) −5.00904 5.00904i −0.194535 0.194535i
\(664\) 3.31464 + 18.1078i 0.128633 + 0.702719i
\(665\) 5.99408 0.803157i 0.232440 0.0311451i
\(666\) −18.0521 + 11.9293i −0.699506 + 0.462251i
\(667\) −26.1173 + 26.1173i −1.01126 + 1.01126i
\(668\) −22.7686 + 9.16005i −0.880943 + 0.354413i
\(669\) 9.55730i 0.369507i
\(670\) −29.2610 2.00024i −1.13045 0.0772758i
\(671\) 68.2170i 2.63349i
\(672\) −3.71030 5.87169i −0.143128 0.226505i
\(673\) −17.1641 + 17.1641i −0.661626 + 0.661626i −0.955763 0.294137i \(-0.904968\pi\)
0.294137 + 0.955763i \(0.404968\pi\)
\(674\) −1.36683 2.06838i −0.0526485 0.0796709i
\(675\) 11.4198 + 6.52342i 0.439549 + 0.251086i
\(676\) −3.89197 + 9.13142i −0.149691 + 0.351208i
\(677\) −17.0473 17.0473i −0.655180 0.655180i 0.299055 0.954236i \(-0.403328\pi\)
−0.954236 + 0.299055i \(0.903328\pi\)
\(678\) −3.16221 0.645788i −0.121444 0.0248013i
\(679\) −14.3358 −0.550156
\(680\) 15.8011 31.0180i 0.605946 1.18949i
\(681\) 10.8818 0.416993
\(682\) −28.0836 5.73525i −1.07537 0.219614i
\(683\) 19.4927 + 19.4927i 0.745869 + 0.745869i 0.973701 0.227832i \(-0.0731636\pi\)
−0.227832 + 0.973701i \(0.573164\pi\)
\(684\) 2.19091 5.14037i 0.0837717 0.196547i
\(685\) −4.37798 32.6735i −0.167274 1.24839i
\(686\) −14.0973 21.3328i −0.538236 0.814492i
\(687\) −3.92310 + 3.92310i −0.149676 + 0.149676i
\(688\) −0.228357 + 11.1900i −0.00870604 + 0.426613i
\(689\) 31.8812i 1.21458i
\(690\) −4.66447 + 4.06756i −0.177573 + 0.154850i
\(691\) 10.0408i 0.381969i −0.981593 0.190985i \(-0.938832\pi\)
0.981593 0.190985i \(-0.0611681\pi\)
\(692\) 16.9464 6.81774i 0.644207 0.259171i
\(693\) −30.1891 + 30.1891i −1.14679 + 1.14679i
\(694\) −21.1316 + 13.9643i −0.802144 + 0.530077i
\(695\) −14.4764 11.0554i −0.549121 0.419354i
\(696\) −10.8218 + 1.98094i −0.410199 + 0.0750872i
\(697\) −0.216260 0.216260i −0.00819144 0.00819144i
\(698\) 4.53655 22.2139i 0.171711 0.840810i
\(699\) 8.59525 0.325102
\(700\) 16.3440 + 21.5489i 0.617745 + 0.814472i
\(701\) 5.87705 0.221973 0.110987 0.993822i \(-0.464599\pi\)
0.110987 + 0.993822i \(0.464599\pi\)
\(702\) 2.11007 10.3323i 0.0796396 0.389968i
\(703\) 3.87230 + 3.87230i 0.146047 + 0.146047i
\(704\) 42.2695 16.0114i 1.59309 0.603453i
\(705\) −5.41225 4.13323i −0.203837 0.155667i
\(706\) 42.0000 27.7546i 1.58069 1.04456i
\(707\) −5.04543 + 5.04543i −0.189753 + 0.189753i
\(708\) 2.82884 + 7.03147i 0.106314 + 0.264259i
\(709\) 3.43572i 0.129031i 0.997917 + 0.0645156i \(0.0205502\pi\)
−0.997917 + 0.0645156i \(0.979450\pi\)
\(710\) 17.2582 15.0497i 0.647689 0.564805i
\(711\) 36.4097i 1.36547i
\(712\) 6.79126 9.83464i 0.254513 0.368569i
\(713\) 10.9349 10.9349i 0.409514 0.409514i
\(714\) −5.26923 7.97371i −0.197196 0.298409i
\(715\) 4.75659 + 35.4991i 0.177886 + 1.32759i
\(716\) −42.7590 18.2246i −1.59798 0.681086i
\(717\) 8.05469 + 8.05469i 0.300808 + 0.300808i
\(718\) 0.481963 + 0.0984269i 0.0179867 + 0.00367326i
\(719\) −0.800777 −0.0298640 −0.0149320 0.999889i \(-0.504753\pi\)
−0.0149320 + 0.999889i \(0.504753\pi\)
\(720\) 24.8306 2.81268i 0.925381 0.104822i
\(721\) 25.3152 0.942786
\(722\) −1.38561 0.282971i −0.0515672 0.0105311i
\(723\) 6.49220 + 6.49220i 0.241447 + 0.241447i
\(724\) 13.1824 + 5.61859i 0.489922 + 0.208813i
\(725\) 41.3280 11.2777i 1.53488 0.418843i
\(726\) 7.40607 + 11.2073i 0.274865 + 0.415942i
\(727\) 15.8191 15.8191i 0.586696 0.586696i −0.350039 0.936735i \(-0.613832\pi\)
0.936735 + 0.350039i \(0.113832\pi\)
\(728\) 12.3229 17.8452i 0.456718 0.661388i
\(729\) 16.4989i 0.611071i
\(730\) 14.9055 + 1.01892i 0.551678 + 0.0377118i
\(731\) 15.4008i 0.569619i
\(732\) 4.09163 + 10.1703i 0.151231 + 0.375906i
\(733\) −29.5915 + 29.5915i −1.09299 + 1.09299i −0.0977792 + 0.995208i \(0.531174\pi\)
−0.995208 + 0.0977792i \(0.968826\pi\)
\(734\) 8.33258 5.50638i 0.307561 0.203244i
\(735\) 0.316748 0.0424416i 0.0116834 0.00156548i
\(736\) −5.36597 + 23.7887i −0.197792 + 0.876862i
\(737\) −37.0543 37.0543i −1.36491 1.36491i
\(738\) 0.0439299 0.215110i 0.00161708 0.00791830i
\(739\) 15.3771 0.565656 0.282828 0.959171i \(-0.408727\pi\)
0.282828 + 0.959171i \(0.408727\pi\)
\(740\) −6.52540 + 23.6053i −0.239879 + 0.867747i
\(741\) −1.28702 −0.0472798
\(742\) 8.60666 42.1439i 0.315960 1.54715i
\(743\) −0.642631 0.642631i −0.0235758 0.0235758i 0.695221 0.718796i \(-0.255307\pi\)
−0.718796 + 0.695221i \(0.755307\pi\)
\(744\) 4.53092 0.829387i 0.166111 0.0304068i
\(745\) 27.3596 35.8259i 1.00238 1.31256i
\(746\) −24.0509 + 15.8934i −0.880565 + 0.581899i
\(747\) −12.8580 + 12.8580i −0.470449 + 0.470449i
\(748\) 57.7021 23.2142i 2.10980 0.848794i
\(749\) 25.4604i 0.930304i
\(750\) 7.03767 1.41302i 0.256979 0.0515961i
\(751\) 8.45843i 0.308652i −0.988020 0.154326i \(-0.950679\pi\)
0.988020 0.154326i \(-0.0493207\pi\)
\(752\) −26.8281 0.547491i −0.978321 0.0199649i
\(753\) −4.54183 + 4.54183i −0.165513 + 0.165513i
\(754\) −18.9380 28.6581i −0.689682 1.04367i
\(755\) −5.82603 + 7.62888i −0.212031 + 0.277643i
\(756\) 5.57864 13.0887i 0.202893 0.476032i
\(757\) −20.6260 20.6260i −0.749665 0.749665i 0.224752 0.974416i \(-0.427843\pi\)
−0.974416 + 0.224752i \(0.927843\pi\)
\(758\) −28.0855 5.73564i −1.02011 0.208328i
\(759\) −11.0577 −0.401370
\(760\) −1.95491 6.01484i −0.0709120 0.218181i
\(761\) 19.3261 0.700571 0.350286 0.936643i \(-0.386085\pi\)
0.350286 + 0.936643i \(0.386085\pi\)
\(762\) 7.53527 + 1.53886i 0.272974 + 0.0557470i
\(763\) 1.15635 + 1.15635i 0.0418627 + 0.0418627i
\(764\) −15.5210 + 36.4158i −0.561532 + 1.31748i
\(765\) 34.0813 4.56661i 1.23221 0.165106i
\(766\) −23.6394 35.7725i −0.854125 1.29251i
\(767\) −16.7332 + 16.7332i −0.604202 + 0.604202i
\(768\) −5.34152 + 4.92242i −0.192745 + 0.177623i
\(769\) 16.9936i 0.612803i −0.951902 0.306402i \(-0.900875\pi\)
0.951902 0.306402i \(-0.0991251\pi\)
\(770\) −3.29560 + 48.2105i −0.118765 + 1.73739i
\(771\) 1.13359i