Properties

Label 380.2.k.c.267.19
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.19
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.683080 - 1.23831i) q^{2} +(-0.494605 - 0.494605i) q^{3} +(-1.06680 - 1.69172i) q^{4} +(1.31079 - 1.81158i) q^{5} +(-0.950327 + 0.274617i) q^{6} +(0.327577 - 0.327577i) q^{7} +(-2.82358 + 0.165443i) q^{8} -2.51073i q^{9} +O(q^{10})\) \(q+(0.683080 - 1.23831i) q^{2} +(-0.494605 - 0.494605i) q^{3} +(-1.06680 - 1.69172i) q^{4} +(1.31079 - 1.81158i) q^{5} +(-0.950327 + 0.274617i) q^{6} +(0.327577 - 0.327577i) q^{7} +(-2.82358 + 0.165443i) q^{8} -2.51073i q^{9} +(-1.34791 - 2.86062i) q^{10} +2.94834i q^{11} +(-0.309090 + 1.36438i) q^{12} +(0.287718 - 0.287718i) q^{13} +(-0.181879 - 0.629402i) q^{14} +(-1.54434 + 0.247693i) q^{15} +(-1.72387 + 3.60947i) q^{16} +(-1.74168 - 1.74168i) q^{17} +(-3.10905 - 1.71503i) q^{18} +1.00000 q^{19} +(-4.46305 - 0.284901i) q^{20} -0.324042 q^{21} +(3.65095 + 2.01395i) q^{22} +(0.570036 + 0.570036i) q^{23} +(1.47839 + 1.31473i) q^{24} +(-1.56365 - 4.74921i) q^{25} +(-0.159749 - 0.552818i) q^{26} +(-2.72563 + 2.72563i) q^{27} +(-0.903630 - 0.204710i) q^{28} -1.85155i q^{29} +(-0.748189 + 2.08156i) q^{30} -1.12279i q^{31} +(3.29209 + 4.60023i) q^{32} +(1.45826 - 1.45826i) q^{33} +(-3.34643 + 0.967023i) q^{34} +(-0.164047 - 1.02282i) q^{35} +(-4.24747 + 2.67846i) q^{36} +(4.08314 + 4.08314i) q^{37} +(0.683080 - 1.23831i) q^{38} -0.284614 q^{39} +(-3.40142 + 5.33201i) q^{40} +10.4815 q^{41} +(-0.221347 + 0.401264i) q^{42} +(-7.09760 - 7.09760i) q^{43} +(4.98778 - 3.14530i) q^{44} +(-4.54839 - 3.29105i) q^{45} +(1.09526 - 0.316498i) q^{46} +(-2.57471 + 2.57471i) q^{47} +(2.63789 - 0.932630i) q^{48} +6.78539i q^{49} +(-6.94907 - 1.30782i) q^{50} +1.72288i q^{51} +(-0.793679 - 0.179802i) q^{52} +(5.67543 - 5.67543i) q^{53} +(1.51334 + 5.23700i) q^{54} +(5.34116 + 3.86466i) q^{55} +(-0.870746 + 0.979137i) q^{56} +(-0.494605 - 0.494605i) q^{57} +(-2.29278 - 1.26476i) q^{58} +14.1245 q^{59} +(2.06653 + 2.34836i) q^{60} +7.69452 q^{61} +(-1.39036 - 0.766955i) q^{62} +(-0.822459 - 0.822459i) q^{63} +(7.94526 - 0.934286i) q^{64} +(-0.144086 - 0.898364i) q^{65} +(-0.809664 - 2.80189i) q^{66} +(9.51194 - 9.51194i) q^{67} +(-1.08841 + 4.80446i) q^{68} -0.563885i q^{69} +(-1.37862 - 0.495527i) q^{70} +9.19745i q^{71} +(0.415384 + 7.08926i) q^{72} +(-4.82935 + 4.82935i) q^{73} +(7.84529 - 2.26706i) q^{74} +(-1.57559 + 3.12237i) q^{75} +(-1.06680 - 1.69172i) q^{76} +(0.965809 + 0.965809i) q^{77} +(-0.194414 + 0.352439i) q^{78} +0.164126 q^{79} +(4.27922 + 7.85419i) q^{80} -4.83597 q^{81} +(7.15972 - 12.9793i) q^{82} +(1.98305 + 1.98305i) q^{83} +(0.345689 + 0.548191i) q^{84} +(-5.43817 + 0.872213i) q^{85} +(-13.6372 + 3.94077i) q^{86} +(-0.915785 + 0.915785i) q^{87} +(-0.487783 - 8.32489i) q^{88} +2.27564i q^{89} +(-7.18224 + 3.38425i) q^{90} -0.188500i q^{91} +(0.356228 - 1.57246i) q^{92} +(-0.555337 + 0.555337i) q^{93} +(1.42954 + 4.94700i) q^{94} +(1.31079 - 1.81158i) q^{95} +(0.647013 - 3.90358i) q^{96} +(-4.13745 - 4.13745i) q^{97} +(8.40238 + 4.63496i) q^{98} +7.40249 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.683080 1.23831i 0.483011 0.875614i
\(3\) −0.494605 0.494605i −0.285560 0.285560i 0.549762 0.835322i \(-0.314719\pi\)
−0.835322 + 0.549762i \(0.814719\pi\)
\(4\) −1.06680 1.69172i −0.533401 0.845862i
\(5\) 1.31079 1.81158i 0.586204 0.810164i
\(6\) −0.950327 + 0.274617i −0.387969 + 0.112112i
\(7\) 0.327577 0.327577i 0.123813 0.123813i −0.642485 0.766298i \(-0.722097\pi\)
0.766298 + 0.642485i \(0.222097\pi\)
\(8\) −2.82358 + 0.165443i −0.998288 + 0.0584930i
\(9\) 2.51073i 0.836911i
\(10\) −1.34791 2.86062i −0.426248 0.904606i
\(11\) 2.94834i 0.888958i 0.895789 + 0.444479i \(0.146611\pi\)
−0.895789 + 0.444479i \(0.853389\pi\)
\(12\) −0.309090 + 1.36438i −0.0892265 + 0.393863i
\(13\) 0.287718 0.287718i 0.0797987 0.0797987i −0.666081 0.745880i \(-0.732029\pi\)
0.745880 + 0.666081i \(0.232029\pi\)
\(14\) −0.181879 0.629402i −0.0486092 0.168215i
\(15\) −1.54434 + 0.247693i −0.398747 + 0.0639539i
\(16\) −1.72387 + 3.60947i −0.430966 + 0.902368i
\(17\) −1.74168 1.74168i −0.422419 0.422419i 0.463617 0.886036i \(-0.346551\pi\)
−0.886036 + 0.463617i \(0.846551\pi\)
\(18\) −3.10905 1.71503i −0.732811 0.404237i
\(19\) 1.00000 0.229416
\(20\) −4.46305 0.284901i −0.997969 0.0637057i
\(21\) −0.324042 −0.0707118
\(22\) 3.65095 + 2.01395i 0.778384 + 0.429376i
\(23\) 0.570036 + 0.570036i 0.118861 + 0.118861i 0.764035 0.645175i \(-0.223215\pi\)
−0.645175 + 0.764035i \(0.723215\pi\)
\(24\) 1.47839 + 1.31473i 0.301774 + 0.268368i
\(25\) −1.56365 4.74921i −0.312730 0.949842i
\(26\) −0.159749 0.552818i −0.0313293 0.108417i
\(27\) −2.72563 + 2.72563i −0.524549 + 0.524549i
\(28\) −0.903630 0.204710i −0.170770 0.0386866i
\(29\) 1.85155i 0.343824i −0.985112 0.171912i \(-0.945006\pi\)
0.985112 0.171912i \(-0.0549945\pi\)
\(30\) −0.748189 + 2.08156i −0.136600 + 0.380039i
\(31\) 1.12279i 0.201659i −0.994904 0.100829i \(-0.967850\pi\)
0.994904 0.100829i \(-0.0321496\pi\)
\(32\) 3.29209 + 4.60023i 0.581965 + 0.813214i
\(33\) 1.45826 1.45826i 0.253851 0.253851i
\(34\) −3.34643 + 0.967023i −0.573909 + 0.165843i
\(35\) −0.164047 1.02282i −0.0277290 0.172888i
\(36\) −4.24747 + 2.67846i −0.707911 + 0.446409i
\(37\) 4.08314 + 4.08314i 0.671264 + 0.671264i 0.958007 0.286743i \(-0.0925727\pi\)
−0.286743 + 0.958007i \(0.592573\pi\)
\(38\) 0.683080 1.23831i 0.110810 0.200880i
\(39\) −0.284614 −0.0455747
\(40\) −3.40142 + 5.33201i −0.537811 + 0.843065i
\(41\) 10.4815 1.63694 0.818470 0.574550i \(-0.194823\pi\)
0.818470 + 0.574550i \(0.194823\pi\)
\(42\) −0.221347 + 0.401264i −0.0341546 + 0.0619163i
\(43\) −7.09760 7.09760i −1.08237 1.08237i −0.996288 0.0860866i \(-0.972564\pi\)
−0.0860866 0.996288i \(-0.527436\pi\)
\(44\) 4.98778 3.14530i 0.751936 0.474171i
\(45\) −4.54839 3.29105i −0.678035 0.490600i
\(46\) 1.09526 0.316498i 0.161487 0.0466651i
\(47\) −2.57471 + 2.57471i −0.375559 + 0.375559i −0.869497 0.493938i \(-0.835557\pi\)
0.493938 + 0.869497i \(0.335557\pi\)
\(48\) 2.63789 0.932630i 0.380747 0.134613i
\(49\) 6.78539i 0.969341i
\(50\) −6.94907 1.30782i −0.982747 0.184953i
\(51\) 1.72288i 0.241252i
\(52\) −0.793679 0.179802i −0.110063 0.0249340i
\(53\) 5.67543 5.67543i 0.779580 0.779580i −0.200180 0.979759i \(-0.564153\pi\)
0.979759 + 0.200180i \(0.0641525\pi\)
\(54\) 1.51334 + 5.23700i 0.205940 + 0.712665i
\(55\) 5.34116 + 3.86466i 0.720201 + 0.521111i
\(56\) −0.870746 + 0.979137i −0.116358 + 0.130843i
\(57\) −0.494605 0.494605i −0.0655120 0.0655120i
\(58\) −2.29278 1.26476i −0.301057 0.166071i
\(59\) 14.1245 1.83885 0.919425 0.393265i \(-0.128655\pi\)
0.919425 + 0.393265i \(0.128655\pi\)
\(60\) 2.06653 + 2.34836i 0.266788 + 0.303172i
\(61\) 7.69452 0.985182 0.492591 0.870261i \(-0.336050\pi\)
0.492591 + 0.870261i \(0.336050\pi\)
\(62\) −1.39036 0.766955i −0.176575 0.0974034i
\(63\) −0.822459 0.822459i −0.103620 0.103620i
\(64\) 7.94526 0.934286i 0.993157 0.116786i
\(65\) −0.144086 0.898364i −0.0178717 0.111428i
\(66\) −0.809664 2.80189i −0.0996628 0.344888i
\(67\) 9.51194 9.51194i 1.16207 1.16207i 0.178047 0.984022i \(-0.443022\pi\)
0.984022 0.178047i \(-0.0569778\pi\)
\(68\) −1.08841 + 4.80446i −0.131990 + 0.582627i
\(69\) 0.563885i 0.0678837i
\(70\) −1.37862 0.495527i −0.164776 0.0592267i
\(71\) 9.19745i 1.09154i 0.837936 + 0.545768i \(0.183762\pi\)
−0.837936 + 0.545768i \(0.816238\pi\)
\(72\) 0.415384 + 7.08926i 0.0489535 + 0.835478i
\(73\) −4.82935 + 4.82935i −0.565233 + 0.565233i −0.930789 0.365556i \(-0.880879\pi\)
0.365556 + 0.930789i \(0.380879\pi\)
\(74\) 7.84529 2.26706i 0.911996 0.263541i
\(75\) −1.57559 + 3.12237i −0.181934 + 0.360540i
\(76\) −1.06680 1.69172i −0.122371 0.194054i
\(77\) 0.965809 + 0.965809i 0.110064 + 0.110064i
\(78\) −0.194414 + 0.352439i −0.0220131 + 0.0399058i
\(79\) 0.164126 0.0184656 0.00923281 0.999957i \(-0.497061\pi\)
0.00923281 + 0.999957i \(0.497061\pi\)
\(80\) 4.27922 + 7.85419i 0.478431 + 0.878125i
\(81\) −4.83597 −0.537331
\(82\) 7.15972 12.9793i 0.790659 1.43333i
\(83\) 1.98305 + 1.98305i 0.217667 + 0.217667i 0.807515 0.589847i \(-0.200812\pi\)
−0.589847 + 0.807515i \(0.700812\pi\)
\(84\) 0.345689 + 0.548191i 0.0377178 + 0.0598125i
\(85\) −5.43817 + 0.872213i −0.589852 + 0.0946048i
\(86\) −13.6372 + 3.94077i −1.47054 + 0.424944i
\(87\) −0.915785 + 0.915785i −0.0981825 + 0.0981825i
\(88\) −0.487783 8.32489i −0.0519979 0.887436i
\(89\) 2.27564i 0.241218i 0.992700 + 0.120609i \(0.0384847\pi\)
−0.992700 + 0.120609i \(0.961515\pi\)
\(90\) −7.18224 + 3.38425i −0.757075 + 0.356732i
\(91\) 0.188500i 0.0197602i
\(92\) 0.356228 1.57246i 0.0371393 0.163940i
\(93\) −0.555337 + 0.555337i −0.0575857 + 0.0575857i
\(94\) 1.42954 + 4.94700i 0.147446 + 0.510244i
\(95\) 1.31079 1.81158i 0.134484 0.185864i
\(96\) 0.647013 3.90358i 0.0660355 0.398407i
\(97\) −4.13745 4.13745i −0.420095 0.420095i 0.465141 0.885236i \(-0.346003\pi\)
−0.885236 + 0.465141i \(0.846003\pi\)
\(98\) 8.40238 + 4.63496i 0.848769 + 0.468202i
\(99\) 7.40249 0.743978
\(100\) −6.36625 + 7.71173i −0.636625 + 0.771173i
\(101\) 4.60617 0.458331 0.229165 0.973387i \(-0.426400\pi\)
0.229165 + 0.973387i \(0.426400\pi\)
\(102\) 2.13346 + 1.17687i 0.211244 + 0.116527i
\(103\) −10.8229 10.8229i −1.06641 1.06641i −0.997632 0.0687770i \(-0.978090\pi\)
−0.0687770 0.997632i \(-0.521910\pi\)
\(104\) −0.764796 + 0.859998i −0.0749944 + 0.0843298i
\(105\) −0.424752 + 0.587029i −0.0414516 + 0.0572882i
\(106\) −3.15114 10.9047i −0.306066 1.05916i
\(107\) 5.10887 5.10887i 0.493893 0.493893i −0.415637 0.909530i \(-0.636441\pi\)
0.909530 + 0.415637i \(0.136441\pi\)
\(108\) 7.51874 + 1.70331i 0.723491 + 0.163901i
\(109\) 5.24030i 0.501930i 0.967996 + 0.250965i \(0.0807479\pi\)
−0.967996 + 0.250965i \(0.919252\pi\)
\(110\) 8.43407 3.97411i 0.804157 0.378917i
\(111\) 4.03908i 0.383372i
\(112\) 0.617681 + 1.74708i 0.0583654 + 0.165083i
\(113\) −9.13170 + 9.13170i −0.859038 + 0.859038i −0.991225 0.132186i \(-0.957800\pi\)
0.132186 + 0.991225i \(0.457800\pi\)
\(114\) −0.950327 + 0.274617i −0.0890062 + 0.0257202i
\(115\) 1.77986 0.285468i 0.165973 0.0266200i
\(116\) −3.13231 + 1.97524i −0.290828 + 0.183396i
\(117\) −0.722384 0.722384i −0.0667844 0.0667844i
\(118\) 9.64815 17.4904i 0.888185 1.61012i
\(119\) −1.14107 −0.104601
\(120\) 4.31960 0.954882i 0.394323 0.0871684i
\(121\) 2.30729 0.209754
\(122\) 5.25597 9.52816i 0.475853 0.862639i
\(123\) −5.18421 5.18421i −0.467445 0.467445i
\(124\) −1.89945 + 1.19779i −0.170576 + 0.107565i
\(125\) −10.6532 3.39255i −0.952851 0.303439i
\(126\) −1.58026 + 0.456650i −0.140781 + 0.0406816i
\(127\) −0.359207 + 0.359207i −0.0318744 + 0.0318744i −0.722864 0.690990i \(-0.757175\pi\)
0.690990 + 0.722864i \(0.257175\pi\)
\(128\) 4.27032 10.4769i 0.377446 0.926031i
\(129\) 7.02101i 0.618166i
\(130\) −1.21087 0.435232i −0.106200 0.0381724i
\(131\) 7.07602i 0.618235i 0.951024 + 0.309117i \(0.100034\pi\)
−0.951024 + 0.309117i \(0.899966\pi\)
\(132\) −4.02266 0.911301i −0.350127 0.0793186i
\(133\) 0.327577 0.327577i 0.0284045 0.0284045i
\(134\) −5.28127 18.2761i −0.456232 1.57882i
\(135\) 1.36497 + 8.51044i 0.117478 + 0.732462i
\(136\) 5.20592 + 4.62962i 0.446404 + 0.396987i
\(137\) 4.32753 + 4.32753i 0.369726 + 0.369726i 0.867377 0.497651i \(-0.165804\pi\)
−0.497651 + 0.867377i \(0.665804\pi\)
\(138\) −0.698261 0.385178i −0.0594400 0.0327886i
\(139\) −11.4346 −0.969873 −0.484937 0.874549i \(-0.661157\pi\)
−0.484937 + 0.874549i \(0.661157\pi\)
\(140\) −1.55532 + 1.36867i −0.131449 + 0.115673i
\(141\) 2.54692 0.214490
\(142\) 11.3893 + 6.28260i 0.955765 + 0.527224i
\(143\) 0.848292 + 0.848292i 0.0709377 + 0.0709377i
\(144\) 9.06242 + 4.32817i 0.755201 + 0.360680i
\(145\) −3.35423 2.42700i −0.278554 0.201551i
\(146\) 2.68138 + 9.27905i 0.221912 + 0.767939i
\(147\) 3.35608 3.35608i 0.276805 0.276805i
\(148\) 2.55165 11.2635i 0.209744 0.925850i
\(149\) 13.1136i 1.07431i 0.843484 + 0.537155i \(0.180501\pi\)
−0.843484 + 0.537155i \(0.819499\pi\)
\(150\) 2.79019 + 4.08390i 0.227818 + 0.333449i
\(151\) 2.25997i 0.183914i −0.995763 0.0919569i \(-0.970688\pi\)
0.995763 0.0919569i \(-0.0293122\pi\)
\(152\) −2.82358 + 0.165443i −0.229023 + 0.0134192i
\(153\) −4.37289 + 4.37289i −0.353527 + 0.353527i
\(154\) 1.85569 0.536242i 0.149536 0.0432116i
\(155\) −2.03402 1.47174i −0.163377 0.118213i
\(156\) 0.303627 + 0.481488i 0.0243096 + 0.0385499i
\(157\) −11.4604 11.4604i −0.914642 0.914642i 0.0819909 0.996633i \(-0.473872\pi\)
−0.996633 + 0.0819909i \(0.973872\pi\)
\(158\) 0.112111 0.203238i 0.00891909 0.0161688i
\(159\) −5.61418 −0.445234
\(160\) 12.6489 + 0.0660585i 0.999986 + 0.00522239i
\(161\) 0.373461 0.0294329
\(162\) −3.30336 + 5.98842i −0.259536 + 0.470494i
\(163\) 10.4983 + 10.4983i 0.822289 + 0.822289i 0.986436 0.164147i \(-0.0524870\pi\)
−0.164147 + 0.986436i \(0.552487\pi\)
\(164\) −11.1817 17.7319i −0.873145 1.38463i
\(165\) −0.730282 4.55324i −0.0568524 0.354469i
\(166\) 3.81020 1.10104i 0.295729 0.0854570i
\(167\) −15.9796 + 15.9796i −1.23654 + 1.23654i −0.275136 + 0.961405i \(0.588723\pi\)
−0.961405 + 0.275136i \(0.911277\pi\)
\(168\) 0.914961 0.0536106i 0.0705908 0.00413615i
\(169\) 12.8344i 0.987264i
\(170\) −2.63464 + 7.32990i −0.202068 + 0.562178i
\(171\) 2.51073i 0.192001i
\(172\) −4.43545 + 19.5789i −0.338200 + 1.49288i
\(173\) −12.7302 + 12.7302i −0.967858 + 0.967858i −0.999499 0.0316413i \(-0.989927\pi\)
0.0316413 + 0.999499i \(0.489927\pi\)
\(174\) 0.508467 + 1.75958i 0.0385468 + 0.133393i
\(175\) −2.06795 1.04352i −0.156322 0.0788825i
\(176\) −10.6419 5.08254i −0.802167 0.383111i
\(177\) −6.98603 6.98603i −0.525102 0.525102i
\(178\) 2.81794 + 1.55445i 0.211214 + 0.116511i
\(179\) −3.57919 −0.267522 −0.133761 0.991014i \(-0.542705\pi\)
−0.133761 + 0.991014i \(0.542705\pi\)
\(180\) −0.715309 + 11.2055i −0.0533160 + 0.835211i
\(181\) −7.40488 −0.550400 −0.275200 0.961387i \(-0.588744\pi\)
−0.275200 + 0.961387i \(0.588744\pi\)
\(182\) −0.233421 0.128761i −0.0173023 0.00954437i
\(183\) −3.80574 3.80574i −0.281329 0.281329i
\(184\) −1.70385 1.51523i −0.125610 0.111705i
\(185\) 12.7491 2.04479i 0.937331 0.150336i
\(186\) 0.308337 + 1.06702i 0.0226084 + 0.0782374i
\(187\) 5.13506 5.13506i 0.375513 0.375513i
\(188\) 7.10239 + 1.60899i 0.517995 + 0.117348i
\(189\) 1.78571i 0.129891i
\(190\) −1.34791 2.86062i −0.0977880 0.207531i
\(191\) 4.12918i 0.298777i −0.988779 0.149388i \(-0.952270\pi\)
0.988779 0.149388i \(-0.0477304\pi\)
\(192\) −4.39186 3.46766i −0.316955 0.250257i
\(193\) 5.54163 5.54163i 0.398895 0.398895i −0.478948 0.877843i \(-0.658982\pi\)
0.877843 + 0.478948i \(0.158982\pi\)
\(194\) −7.94965 + 2.29722i −0.570751 + 0.164931i
\(195\) −0.373069 + 0.515601i −0.0267161 + 0.0369229i
\(196\) 11.4790 7.23867i 0.819929 0.517048i
\(197\) 5.86112 + 5.86112i 0.417588 + 0.417588i 0.884371 0.466784i \(-0.154587\pi\)
−0.466784 + 0.884371i \(0.654587\pi\)
\(198\) 5.05650 9.16655i 0.359350 0.651438i
\(199\) −14.7472 −1.04540 −0.522701 0.852516i \(-0.675076\pi\)
−0.522701 + 0.852516i \(0.675076\pi\)
\(200\) 5.20082 + 13.1511i 0.367754 + 0.929923i
\(201\) −9.40930 −0.663681
\(202\) 3.14638 5.70385i 0.221379 0.401321i
\(203\) −0.606525 0.606525i −0.0425697 0.0425697i
\(204\) 2.91464 1.83798i 0.204066 0.128684i
\(205\) 13.7391 18.9881i 0.959580 1.32619i
\(206\) −20.7949 + 6.00913i −1.44885 + 0.418676i
\(207\) 1.43121 1.43121i 0.0994757 0.0994757i
\(208\) 0.542524 + 1.53450i 0.0376172 + 0.106398i
\(209\) 2.94834i 0.203941i
\(210\) 0.436781 + 0.926961i 0.0301408 + 0.0639664i
\(211\) 3.44024i 0.236836i −0.992964 0.118418i \(-0.962218\pi\)
0.992964 0.118418i \(-0.0377822\pi\)
\(212\) −15.6558 3.54670i −1.07525 0.243588i
\(213\) 4.54910 4.54910i 0.311699 0.311699i
\(214\) −2.83657 9.81611i −0.193904 0.671015i
\(215\) −22.1614 + 3.55440i −1.51139 + 0.242408i
\(216\) 7.24512 8.14700i 0.492968 0.554333i
\(217\) −0.367800 0.367800i −0.0249679 0.0249679i
\(218\) 6.48910 + 3.57955i 0.439497 + 0.242438i
\(219\) 4.77724 0.322816
\(220\) 0.839984 13.1586i 0.0566317 0.887152i
\(221\) −1.00223 −0.0674170
\(222\) −5.00162 2.75902i −0.335686 0.185173i
\(223\) −9.96172 9.96172i −0.667086 0.667086i 0.289955 0.957040i \(-0.406360\pi\)
−0.957040 + 0.289955i \(0.906360\pi\)
\(224\) 2.58534 + 0.428517i 0.172741 + 0.0286315i
\(225\) −11.9240 + 3.92591i −0.794933 + 0.261727i
\(226\) 5.07015 + 17.5455i 0.337262 + 1.16711i
\(227\) 8.44789 8.44789i 0.560706 0.560706i −0.368802 0.929508i \(-0.620232\pi\)
0.929508 + 0.368802i \(0.120232\pi\)
\(228\) −0.309090 + 1.36438i −0.0204700 + 0.0903583i
\(229\) 8.64013i 0.570956i 0.958385 + 0.285478i \(0.0921524\pi\)
−0.958385 + 0.285478i \(0.907848\pi\)
\(230\) 0.862294 2.39901i 0.0568580 0.158186i
\(231\) 0.955387i 0.0628599i
\(232\) 0.306326 + 5.22801i 0.0201113 + 0.343235i
\(233\) −4.54741 + 4.54741i −0.297911 + 0.297911i −0.840195 0.542284i \(-0.817560\pi\)
0.542284 + 0.840195i \(0.317560\pi\)
\(234\) −1.38798 + 0.401086i −0.0907350 + 0.0262198i
\(235\) 1.28938 + 8.03919i 0.0841101 + 0.524419i
\(236\) −15.0680 23.8947i −0.980845 1.55541i
\(237\) −0.0811775 0.0811775i −0.00527304 0.00527304i
\(238\) −0.779441 + 1.41299i −0.0505236 + 0.0915906i
\(239\) −23.0971 −1.49403 −0.747013 0.664810i \(-0.768513\pi\)
−0.747013 + 0.664810i \(0.768513\pi\)
\(240\) 1.76820 6.00124i 0.114137 0.387378i
\(241\) 19.8422 1.27815 0.639075 0.769145i \(-0.279317\pi\)
0.639075 + 0.769145i \(0.279317\pi\)
\(242\) 1.57607 2.85713i 0.101313 0.183663i
\(243\) 10.5688 + 10.5688i 0.677989 + 0.677989i
\(244\) −8.20853 13.0170i −0.525497 0.833328i
\(245\) 12.2923 + 8.89423i 0.785325 + 0.568231i
\(246\) −9.96087 + 2.87841i −0.635082 + 0.183520i
\(247\) 0.287718 0.287718i 0.0183071 0.0183071i
\(248\) 0.185758 + 3.17029i 0.0117956 + 0.201314i
\(249\) 1.96165i 0.124314i
\(250\) −11.4780 + 10.8745i −0.725933 + 0.687766i
\(251\) 5.82734i 0.367819i 0.982943 + 0.183909i \(0.0588753\pi\)
−0.982943 + 0.183909i \(0.941125\pi\)
\(252\) −0.513973 + 2.26877i −0.0323772 + 0.142919i
\(253\) −1.68066 + 1.68066i −0.105662 + 0.105662i
\(254\) 0.199441 + 0.690175i 0.0125140 + 0.0433054i
\(255\) 3.12114 + 2.25834i 0.195454 + 0.141423i
\(256\) −10.0566 12.4445i −0.628536 0.777781i
\(257\) 6.18949 + 6.18949i 0.386090 + 0.386090i 0.873290 0.487200i \(-0.161982\pi\)
−0.487200 + 0.873290i \(0.661982\pi\)
\(258\) 8.69416 + 4.79592i 0.541275 + 0.298581i
\(259\) 2.67509 0.166222
\(260\) −1.36607 + 1.20213i −0.0847203 + 0.0745530i
\(261\) −4.64874 −0.287750
\(262\) 8.76227 + 4.83349i 0.541335 + 0.298614i
\(263\) 8.45067 + 8.45067i 0.521091 + 0.521091i 0.917901 0.396810i \(-0.129883\pi\)
−0.396810 + 0.917901i \(0.629883\pi\)
\(264\) −3.87627 + 4.35879i −0.238568 + 0.268265i
\(265\) −2.84219 17.7208i −0.174594 1.08858i
\(266\) −0.181879 0.629402i −0.0111517 0.0385911i
\(267\) 1.12554 1.12554i 0.0688821 0.0688821i
\(268\) −26.2390 5.94423i −1.60280 0.363101i
\(269\) 1.50260i 0.0916154i −0.998950 0.0458077i \(-0.985414\pi\)
0.998950 0.0458077i \(-0.0145861\pi\)
\(270\) 11.4709 + 4.12307i 0.698098 + 0.250922i
\(271\) 29.6188i 1.79921i −0.436702 0.899606i \(-0.643854\pi\)
0.436702 0.899606i \(-0.356146\pi\)
\(272\) 9.28895 3.28412i 0.563226 0.199129i
\(273\) −0.0932330 + 0.0932330i −0.00564272 + 0.00564272i
\(274\) 8.31485 2.40275i 0.502319 0.145156i
\(275\) 14.0023 4.61017i 0.844370 0.278004i
\(276\) −0.953937 + 0.601553i −0.0574203 + 0.0362093i
\(277\) −18.2366 18.2366i −1.09573 1.09573i −0.994904 0.100825i \(-0.967852\pi\)
−0.100825 0.994904i \(-0.532148\pi\)
\(278\) −7.81078 + 14.1596i −0.468459 + 0.849235i
\(279\) −2.81902 −0.168771
\(280\) 0.632419 + 2.86087i 0.0377943 + 0.170970i
\(281\) 16.2476 0.969249 0.484625 0.874722i \(-0.338956\pi\)
0.484625 + 0.874722i \(0.338956\pi\)
\(282\) 1.73975 3.15387i 0.103601 0.187810i
\(283\) 6.63046 + 6.63046i 0.394140 + 0.394140i 0.876160 0.482020i \(-0.160097\pi\)
−0.482020 + 0.876160i \(0.660097\pi\)
\(284\) 15.5596 9.81186i 0.923290 0.582227i
\(285\) −1.54434 + 0.247693i −0.0914788 + 0.0146720i
\(286\) 1.62990 0.470993i 0.0963778 0.0278504i
\(287\) 3.43351 3.43351i 0.202674 0.202674i
\(288\) 11.5500 8.26556i 0.680587 0.487053i
\(289\) 10.9331i 0.643125i
\(290\) −5.29657 + 2.49573i −0.311025 + 0.146554i
\(291\) 4.09281i 0.239925i
\(292\) 13.3219 + 3.01797i 0.779605 + 0.176613i
\(293\) −14.4511 + 14.4511i −0.844244 + 0.844244i −0.989408 0.145164i \(-0.953629\pi\)
0.145164 + 0.989408i \(0.453629\pi\)
\(294\) −1.86338 6.44833i −0.108675 0.376074i
\(295\) 18.5142 25.5876i 1.07794 1.48977i
\(296\) −12.2046 10.8536i −0.709379 0.630850i
\(297\) −8.03610 8.03610i −0.466302 0.466302i
\(298\) 16.2387 + 8.95765i 0.940681 + 0.518903i
\(299\) 0.328019 0.0189699
\(300\) 6.96304 0.665481i 0.402011 0.0384216i
\(301\) −4.65002 −0.268023
\(302\) −2.79853 1.54374i −0.161038 0.0888323i
\(303\) −2.27823 2.27823i −0.130881 0.130881i
\(304\) −1.72387 + 3.60947i −0.0988705 + 0.207017i
\(305\) 10.0859 13.9392i 0.577517 0.798158i
\(306\) 2.42794 + 8.40200i 0.138796 + 0.480310i
\(307\) 11.3650 11.3650i 0.648638 0.648638i −0.304026 0.952664i \(-0.598331\pi\)
0.952664 + 0.304026i \(0.0983310\pi\)
\(308\) 0.603556 2.66421i 0.0343908 0.151807i
\(309\) 10.7061i 0.609048i
\(310\) −3.21187 + 1.51342i −0.182422 + 0.0859567i
\(311\) 31.6342i 1.79381i 0.442225 + 0.896904i \(0.354189\pi\)
−0.442225 + 0.896904i \(0.645811\pi\)
\(312\) 0.803631 0.0470874i 0.0454966 0.00266580i
\(313\) −4.11199 + 4.11199i −0.232424 + 0.232424i −0.813704 0.581280i \(-0.802552\pi\)
0.581280 + 0.813704i \(0.302552\pi\)
\(314\) −22.0199 + 6.36312i −1.24266 + 0.359092i
\(315\) −2.56802 + 0.411878i −0.144692 + 0.0232067i
\(316\) −0.175090 0.277656i −0.00984958 0.0156194i
\(317\) 21.3697 + 21.3697i 1.20024 + 1.20024i 0.974093 + 0.226149i \(0.0726137\pi\)
0.226149 + 0.974093i \(0.427386\pi\)
\(318\) −3.83494 + 6.95208i −0.215053 + 0.389853i
\(319\) 5.45900 0.305645
\(320\) 8.72204 15.6181i 0.487577 0.873080i
\(321\) −5.05374 −0.282072
\(322\) 0.255104 0.462459i 0.0142164 0.0257718i
\(323\) −1.74168 1.74168i −0.0969095 0.0969095i
\(324\) 5.15903 + 8.18114i 0.286613 + 0.454508i
\(325\) −1.81633 0.916545i −0.100752 0.0508407i
\(326\) 20.1713 5.82891i 1.11718 0.322834i
\(327\) 2.59188 2.59188i 0.143331 0.143331i
\(328\) −29.5955 + 1.73410i −1.63414 + 0.0957496i
\(329\) 1.68683i 0.0929979i
\(330\) −6.13714 2.20592i −0.337839 0.121432i
\(331\) 28.8144i 1.58378i 0.610661 + 0.791892i \(0.290904\pi\)
−0.610661 + 0.791892i \(0.709096\pi\)
\(332\) 1.23925 5.47028i 0.0680127 0.300221i
\(333\) 10.2517 10.2517i 0.561788 0.561788i
\(334\) 8.87230 + 30.7030i 0.485471 + 1.68000i
\(335\) −4.76348 29.6998i −0.260256 1.62268i
\(336\) 0.558606 1.16962i 0.0304744 0.0638081i
\(337\) −13.4380 13.4380i −0.732016 0.732016i 0.239003 0.971019i \(-0.423179\pi\)
−0.971019 + 0.239003i \(0.923179\pi\)
\(338\) 15.8930 + 8.76695i 0.864463 + 0.476859i
\(339\) 9.03317 0.490614
\(340\) 7.27699 + 8.26940i 0.394650 + 0.448471i
\(341\) 3.31036 0.179266
\(342\) −3.10905 1.71503i −0.168118 0.0927383i
\(343\) 4.51578 + 4.51578i 0.243829 + 0.243829i
\(344\) 21.2149 + 18.8664i 1.14383 + 1.01721i
\(345\) −1.02152 0.739135i −0.0549969 0.0397937i
\(346\) 7.06812 + 24.4596i 0.379985 + 1.31496i
\(347\) 19.6995 19.6995i 1.05752 1.05752i 0.0592835 0.998241i \(-0.481118\pi\)
0.998241 0.0592835i \(-0.0188816\pi\)
\(348\) 2.52622 + 0.572295i 0.135419 + 0.0306782i
\(349\) 7.57450i 0.405454i −0.979235 0.202727i \(-0.935020\pi\)
0.979235 0.202727i \(-0.0649804\pi\)
\(350\) −2.70477 + 1.84795i −0.144576 + 0.0987769i
\(351\) 1.56843i 0.0837166i
\(352\) −13.5630 + 9.70620i −0.722913 + 0.517342i
\(353\) −12.3157 + 12.3157i −0.655498 + 0.655498i −0.954311 0.298814i \(-0.903409\pi\)
0.298814 + 0.954311i \(0.403409\pi\)
\(354\) −13.4229 + 3.87882i −0.713417 + 0.206157i
\(355\) 16.6619 + 12.0559i 0.884323 + 0.639863i
\(356\) 3.84976 2.42766i 0.204037 0.128666i
\(357\) 0.564377 + 0.564377i 0.0298700 + 0.0298700i
\(358\) −2.44488 + 4.43214i −0.129216 + 0.234246i
\(359\) −23.4554 −1.23793 −0.618966 0.785418i \(-0.712448\pi\)
−0.618966 + 0.785418i \(0.712448\pi\)
\(360\) 13.3873 + 8.54005i 0.705570 + 0.450100i
\(361\) 1.00000 0.0526316
\(362\) −5.05813 + 9.16950i −0.265849 + 0.481938i
\(363\) −1.14120 1.14120i −0.0598973 0.0598973i
\(364\) −0.318890 + 0.201092i −0.0167144 + 0.0105401i
\(365\) 2.41849 + 15.0790i 0.126589 + 0.789273i
\(366\) −7.31230 + 2.11305i −0.382220 + 0.110451i
\(367\) −23.3564 + 23.3564i −1.21920 + 1.21920i −0.251282 + 0.967914i \(0.580852\pi\)
−0.967914 + 0.251282i \(0.919148\pi\)
\(368\) −3.04019 + 1.07486i −0.158481 + 0.0560311i
\(369\) 26.3163i 1.36997i
\(370\) 6.17657 17.1840i 0.321105 0.893355i
\(371\) 3.71828i 0.193043i
\(372\) 1.53191 + 0.347042i 0.0794259 + 0.0179933i
\(373\) 6.12552 6.12552i 0.317168 0.317168i −0.530511 0.847678i \(-0.678000\pi\)
0.847678 + 0.530511i \(0.178000\pi\)
\(374\) −2.85111 9.86643i −0.147428 0.510181i
\(375\) 3.59115 + 6.94709i 0.185446 + 0.358746i
\(376\) 6.84393 7.69586i 0.352949 0.396884i
\(377\) −0.532725 0.532725i −0.0274367 0.0274367i
\(378\) 2.21126 + 1.21978i 0.113735 + 0.0627389i
\(379\) 22.9714 1.17996 0.589981 0.807417i \(-0.299135\pi\)
0.589981 + 0.807417i \(0.299135\pi\)
\(380\) −4.46305 0.284901i −0.228950 0.0146151i
\(381\) 0.355331 0.0182041
\(382\) −5.11318 2.82056i −0.261613 0.144312i
\(383\) 18.5545 + 18.5545i 0.948090 + 0.948090i 0.998718 0.0506273i \(-0.0161221\pi\)
−0.0506273 + 0.998718i \(0.516122\pi\)
\(384\) −7.29402 + 3.06978i −0.372221 + 0.156654i
\(385\) 3.01561 0.483666i 0.153690 0.0246499i
\(386\) −3.07685 10.6476i −0.156608 0.541949i
\(387\) −17.8202 + 17.8202i −0.905851 + 0.905851i
\(388\) −2.58559 + 11.4133i −0.131263 + 0.579422i
\(389\) 37.2211i 1.88718i −0.331112 0.943592i \(-0.607424\pi\)
0.331112 0.943592i \(-0.392576\pi\)
\(390\) 0.383635 + 0.814171i 0.0194261 + 0.0412271i
\(391\) 1.98564i 0.100418i
\(392\) −1.12260 19.1591i −0.0566997 0.967681i
\(393\) 3.49983 3.49983i 0.176543 0.176543i
\(394\) 11.2615 3.25424i 0.567345 0.163946i
\(395\) 0.215135 0.297327i 0.0108246 0.0149602i
\(396\) −7.89700 12.5230i −0.396839 0.629303i
\(397\) 8.21621 + 8.21621i 0.412360 + 0.412360i 0.882560 0.470200i \(-0.155818\pi\)
−0.470200 + 0.882560i \(0.655818\pi\)
\(398\) −10.0735 + 18.2616i −0.504941 + 0.915369i
\(399\) −0.324042 −0.0162224
\(400\) 19.8377 + 2.54305i 0.991883 + 0.127153i
\(401\) 28.5885 1.42764 0.713821 0.700328i \(-0.246963\pi\)
0.713821 + 0.700328i \(0.246963\pi\)
\(402\) −6.42731 + 11.6516i −0.320565 + 0.581129i
\(403\) −0.323047 0.323047i −0.0160921 0.0160921i
\(404\) −4.91387 7.79237i −0.244474 0.387685i
\(405\) −6.33896 + 8.76076i −0.314985 + 0.435326i
\(406\) −1.16537 + 0.336758i −0.0578363 + 0.0167130i
\(407\) −12.0385 + 12.0385i −0.596725 + 0.596725i
\(408\) −0.285040 4.86471i −0.0141116 0.240839i
\(409\) 8.40060i 0.415383i 0.978194 + 0.207691i \(0.0665950\pi\)
−0.978194 + 0.207691i \(0.933405\pi\)
\(410\) −14.1282 29.9836i −0.697742 1.48079i
\(411\) 4.28083i 0.211158i
\(412\) −6.76346 + 29.8552i −0.333212 + 1.47086i
\(413\) 4.62686 4.62686i 0.227673 0.227673i
\(414\) −0.794642 2.74990i −0.0390545 0.135150i
\(415\) 6.19181 0.993087i 0.303944 0.0487487i
\(416\) 2.27077 + 0.376376i 0.111334 + 0.0184534i
\(417\) 5.65562 + 5.65562i 0.276957 + 0.276957i
\(418\) 3.65095 + 2.01395i 0.178574 + 0.0985057i
\(419\) 14.2962 0.698416 0.349208 0.937045i \(-0.386451\pi\)
0.349208 + 0.937045i \(0.386451\pi\)
\(420\) 1.44622 + 0.0923198i 0.0705682 + 0.00450475i
\(421\) 40.0754 1.95316 0.976579 0.215161i \(-0.0690275\pi\)
0.976579 + 0.215161i \(0.0690275\pi\)
\(422\) −4.26007 2.34996i −0.207377 0.114394i
\(423\) 6.46440 + 6.46440i 0.314310 + 0.314310i
\(424\) −15.0861 + 16.9640i −0.732645 + 0.823845i
\(425\) −5.54822 + 10.9950i −0.269128 + 0.533334i
\(426\) −2.52578 8.74058i −0.122374 0.423483i
\(427\) 2.52055 2.52055i 0.121978 0.121978i
\(428\) −14.0930 3.19265i −0.681209 0.154322i
\(429\) 0.839138i 0.0405140i
\(430\) −10.7366 + 29.8705i −0.517763 + 1.44048i
\(431\) 30.3005i 1.45952i −0.683702 0.729761i \(-0.739631\pi\)
0.683702 0.729761i \(-0.260369\pi\)
\(432\) −5.13947 14.5367i −0.247273 0.699399i
\(433\) 4.16829 4.16829i 0.200315 0.200315i −0.599820 0.800135i \(-0.704761\pi\)
0.800135 + 0.599820i \(0.204761\pi\)
\(434\) −0.706686 + 0.204212i −0.0339220 + 0.00980249i
\(435\) 0.458615 + 2.85942i 0.0219889 + 0.137099i
\(436\) 8.86515 5.59037i 0.424564 0.267730i
\(437\) 0.570036 + 0.570036i 0.0272685 + 0.0272685i
\(438\) 3.26324 5.91568i 0.155924 0.282662i
\(439\) −19.3441 −0.923241 −0.461621 0.887077i \(-0.652732\pi\)
−0.461621 + 0.887077i \(0.652732\pi\)
\(440\) −15.7206 10.0285i −0.749450 0.478092i
\(441\) 17.0363 0.811252
\(442\) −0.684600 + 1.24106i −0.0325631 + 0.0590313i
\(443\) 4.15922 + 4.15922i 0.197611 + 0.197611i 0.798975 0.601364i \(-0.205376\pi\)
−0.601364 + 0.798975i \(0.705376\pi\)
\(444\) −6.83301 + 4.30890i −0.324280 + 0.204491i
\(445\) 4.12251 + 2.98289i 0.195426 + 0.141403i
\(446\) −19.1403 + 5.53100i −0.906320 + 0.261900i
\(447\) 6.48606 6.48606i 0.306780 0.306780i
\(448\) 2.29663 2.90874i 0.108506 0.137425i
\(449\) 22.1626i 1.04592i 0.852358 + 0.522959i \(0.175172\pi\)
−0.852358 + 0.522959i \(0.824828\pi\)
\(450\) −3.28358 + 17.4473i −0.154789 + 0.822472i
\(451\) 30.9031i 1.45517i
\(452\) 25.1901 + 5.70661i 1.18484 + 0.268416i
\(453\) −1.11779 + 1.11779i −0.0525184 + 0.0525184i
\(454\) −4.69048 16.2317i −0.220135 0.761789i
\(455\) −0.341483 0.247084i −0.0160090 0.0115835i
\(456\) 1.47839 + 1.31473i 0.0692318 + 0.0615678i
\(457\) 10.8450 + 10.8450i 0.507307 + 0.507307i 0.913699 0.406392i \(-0.133213\pi\)
−0.406392 + 0.913699i \(0.633213\pi\)
\(458\) 10.6991 + 5.90191i 0.499937 + 0.275778i
\(459\) 9.49435 0.443158
\(460\) −2.38169 2.70650i −0.111047 0.126191i
\(461\) −6.29625 −0.293245 −0.146623 0.989192i \(-0.546840\pi\)
−0.146623 + 0.989192i \(0.546840\pi\)
\(462\) −1.18306 0.652606i −0.0550410 0.0303620i
\(463\) −5.60774 5.60774i −0.260614 0.260614i 0.564690 0.825303i \(-0.308996\pi\)
−0.825303 + 0.564690i \(0.808996\pi\)
\(464\) 6.68312 + 3.19182i 0.310256 + 0.148177i
\(465\) 0.278107 + 1.73397i 0.0128969 + 0.0804109i
\(466\) 2.52484 + 8.73733i 0.116961 + 0.404749i
\(467\) −23.6709 + 23.6709i −1.09536 + 1.09536i −0.100413 + 0.994946i \(0.532017\pi\)
−0.994946 + 0.100413i \(0.967983\pi\)
\(468\) −0.451434 + 1.99272i −0.0208675 + 0.0921133i
\(469\) 6.23179i 0.287757i
\(470\) 10.8357 + 3.89476i 0.499815 + 0.179652i
\(471\) 11.3368i 0.522371i
\(472\) −39.8817 + 2.33680i −1.83570 + 0.107560i
\(473\) 20.9261 20.9261i 0.962185 0.962185i
\(474\) −0.155973 + 0.0450718i −0.00716409 + 0.00207022i
\(475\) −1.56365 4.74921i −0.0717452 0.217909i
\(476\) 1.21729 + 1.93037i 0.0557945 + 0.0884785i
\(477\) −14.2495 14.2495i −0.652439 0.652439i
\(478\) −15.7772 + 28.6012i −0.721631 + 1.30819i
\(479\) −12.8003 −0.584863 −0.292431 0.956286i \(-0.594464\pi\)
−0.292431 + 0.956286i \(0.594464\pi\)
\(480\) −6.22355 6.28890i −0.284065 0.287048i
\(481\) 2.34959 0.107132
\(482\) 13.5538 24.5707i 0.617360 1.11917i
\(483\) −0.184716 0.184716i −0.00840485 0.00840485i
\(484\) −2.46142 3.90330i −0.111883 0.177423i
\(485\) −12.9187 + 2.07199i −0.586607 + 0.0940843i
\(486\) 20.3067 5.86806i 0.921133 0.266181i
\(487\) −10.7519 + 10.7519i −0.487215 + 0.487215i −0.907426 0.420211i \(-0.861956\pi\)
0.420211 + 0.907426i \(0.361956\pi\)
\(488\) −21.7261 + 1.27301i −0.983495 + 0.0576263i
\(489\) 10.3850i 0.469626i
\(490\) 19.4104 9.14612i 0.876872 0.413180i
\(491\) 39.2711i 1.77228i −0.463417 0.886140i \(-0.653377\pi\)
0.463417 0.886140i \(-0.346623\pi\)
\(492\) −3.23973 + 14.3008i −0.146058 + 0.644729i
\(493\) −3.22480 + 3.22480i −0.145238 + 0.145238i
\(494\) −0.159749 0.552818i −0.00718743 0.0248725i
\(495\) 9.70313 13.4102i 0.436123 0.602744i
\(496\) 4.05268 + 1.93554i 0.181971 + 0.0869082i
\(497\) 3.01287 + 3.01287i 0.135146 + 0.135146i
\(498\) −2.42912 1.33996i −0.108851 0.0600452i
\(499\) 35.8517 1.60494 0.802471 0.596692i \(-0.203518\pi\)
0.802471 + 0.596692i \(0.203518\pi\)
\(500\) 5.62560 + 21.6415i 0.251584 + 0.967835i
\(501\) 15.8072 0.706214
\(502\) 7.21603 + 3.98054i 0.322067 + 0.177660i
\(503\) 8.36832 + 8.36832i 0.373125 + 0.373125i 0.868614 0.495489i \(-0.165011\pi\)
−0.495489 + 0.868614i \(0.665011\pi\)
\(504\) 2.45835 + 2.18621i 0.109504 + 0.0973816i
\(505\) 6.03773 8.34445i 0.268675 0.371323i
\(506\) 0.933144 + 3.22919i 0.0414833 + 0.143555i
\(507\) 6.34797 6.34797i 0.281923 0.281923i
\(508\) 0.990881 + 0.224476i 0.0439632 + 0.00995953i
\(509\) 8.31464i 0.368540i −0.982876 0.184270i \(-0.941008\pi\)
0.982876 0.184270i \(-0.0589921\pi\)
\(510\) 4.92851 2.32230i 0.218238 0.102833i
\(511\) 3.16397i 0.139966i
\(512\) −22.2795 + 3.95253i −0.984626 + 0.174679i
\(513\) −2.72563 + 2.72563i −0.120340 + 0.120340i
\(514\) 11.8924 3.43656i 0.524551 0.151580i
\(515\) −33.7930 + 5.41997i −1.48910 + 0.238833i
\(516\) 11.8776 7.49003i 0.522883 0.329730i
\(517\) −7.59111 7.59111i −0.333856 0.333856i
\(518\) 1.82730 3.31257i 0.0802869 0.145546i
\(519\) 12.5928 0.552763
\(520\) 0.555468 + 2.51277i 0.0243589 + 0.110192i
\(521\) −35.8196 −1.56928 −0.784642 0.619949i \(-0.787153\pi\)
−0.784642 + 0.619949i \(0.787153\pi\)
\(522\) −3.17547 + 5.75657i −0.138986 + 0.251958i
\(523\) −14.4962 14.4962i −0.633874 0.633874i 0.315163 0.949038i \(-0.397941\pi\)
−0.949038 + 0.315163i \(0.897941\pi\)
\(524\) 11.9707 7.54871i 0.522941 0.329767i
\(525\) 0.506689 + 1.53895i 0.0221137 + 0.0671651i
\(526\) 16.2370 4.69203i 0.707967 0.204582i
\(527\) −1.95554 + 1.95554i −0.0851845 + 0.0851845i
\(528\) 2.74971 + 7.77741i 0.119666 + 0.338468i
\(529\) 22.3501i 0.971744i
\(530\) −23.8852 8.58523i −1.03751 0.372918i
\(531\) 35.4628i 1.53895i
\(532\) −0.903630 0.204710i −0.0391773 0.00887532i
\(533\) 3.01573 3.01573i 0.130626 0.130626i
\(534\) −0.624930 2.16260i −0.0270434 0.0935850i
\(535\) −2.55847 15.9518i −0.110612 0.689656i
\(536\) −25.2841 + 28.4315i −1.09211 + 1.22805i
\(537\) 1.77029 + 1.77029i 0.0763935 + 0.0763935i
\(538\) −1.86068 1.02640i −0.0802198 0.0442512i
\(539\) −20.0056 −0.861703
\(540\) 12.9412 11.3881i 0.556900 0.490066i
\(541\) −43.9873 −1.89116 −0.945580 0.325390i \(-0.894504\pi\)
−0.945580 + 0.325390i \(0.894504\pi\)
\(542\) −36.6771 20.2320i −1.57542 0.869039i
\(543\) 3.66249 + 3.66249i 0.157172 + 0.157172i
\(544\) 2.27836 13.7459i 0.0976839 0.589350i
\(545\) 9.49323 + 6.86895i 0.406645 + 0.294233i
\(546\) 0.0517653 + 0.179137i 0.00221535 + 0.00766634i
\(547\) −25.2995 + 25.2995i −1.08173 + 1.08173i −0.0853805 + 0.996348i \(0.527211\pi\)
−0.996348 + 0.0853805i \(0.972789\pi\)
\(548\) 2.70437 11.9376i 0.115525 0.509949i
\(549\) 19.3189i 0.824509i
\(550\) 3.85589 20.4882i 0.164416 0.873621i
\(551\) 1.85155i 0.0788787i
\(552\) 0.0932909 + 1.59218i 0.00397073 + 0.0677675i
\(553\) 0.0537639 0.0537639i 0.00228627 0.00228627i
\(554\) −35.0395 + 10.1254i −1.48869 + 0.430187i
\(555\) −7.31712 5.29439i −0.310594 0.224734i
\(556\) 12.1985 + 19.3443i 0.517331 + 0.820379i
\(557\) −11.2381 11.2381i −0.476172 0.476172i 0.427733 0.903905i \(-0.359312\pi\)
−0.903905 + 0.427733i \(0.859312\pi\)
\(558\) −1.92562 + 3.49081i −0.0815180 + 0.147778i
\(559\) −4.08422 −0.172744
\(560\) 3.97463 + 1.17108i 0.167959 + 0.0494871i
\(561\) −5.07965 −0.214463
\(562\) 11.0984 20.1195i 0.468158 0.848689i
\(563\) 0.343770 + 0.343770i 0.0144882 + 0.0144882i 0.714314 0.699826i \(-0.246739\pi\)
−0.699826 + 0.714314i \(0.746739\pi\)
\(564\) −2.71706 4.30869i −0.114409 0.181429i
\(565\) 4.57306 + 28.5126i 0.192390 + 1.19953i
\(566\) 12.7397 3.68140i 0.535489 0.154741i
\(567\) −1.58415 + 1.58415i −0.0665282 + 0.0665282i
\(568\) −1.52166 25.9698i −0.0638473 1.08967i
\(569\) 14.2062i 0.595555i −0.954635 0.297777i \(-0.903755\pi\)
0.954635 0.297777i \(-0.0962453\pi\)
\(570\) −0.748189 + 2.08156i −0.0313382 + 0.0871869i
\(571\) 19.1090i 0.799688i −0.916583 0.399844i \(-0.869064\pi\)
0.916583 0.399844i \(-0.130936\pi\)
\(572\) 0.530117 2.34004i 0.0221653 0.0978418i
\(573\) −2.04231 + 2.04231i −0.0853187 + 0.0853187i
\(574\) −1.90637 6.59710i −0.0795704 0.275357i
\(575\) 1.81588 3.59855i 0.0757276 0.150070i
\(576\) −2.34574 19.9484i −0.0977393 0.831184i
\(577\) −25.4221 25.4221i −1.05834 1.05834i −0.998190 0.0601462i \(-0.980843\pi\)
−0.0601462 0.998190i \(-0.519157\pi\)
\(578\) −13.5385 7.46820i −0.563129 0.310636i
\(579\) −5.48183 −0.227817
\(580\) −0.527507 + 8.26356i −0.0219036 + 0.343126i
\(581\) 1.29920 0.0538999
\(582\) 5.06815 + 2.79572i 0.210082 + 0.115886i
\(583\) 16.7331 + 16.7331i 0.693014 + 0.693014i
\(584\) 12.8371 14.4351i 0.531203 0.597327i
\(585\) −2.25555 + 0.361762i −0.0932556 + 0.0149570i
\(586\) 8.02363 + 27.7662i 0.331453 + 1.14701i
\(587\) 29.3478 29.3478i 1.21131 1.21131i 0.240717 0.970595i \(-0.422617\pi\)
0.970595 0.240717i \(-0.0773825\pi\)
\(588\) −9.25785 2.09729i −0.381787 0.0864909i
\(589\) 1.12279i 0.0462637i
\(590\) −19.0386 40.4047i −0.783806 1.66344i
\(591\) 5.79788i 0.238493i
\(592\) −21.7768 + 7.69919i −0.895019 + 0.316435i
\(593\) 4.78725 4.78725i 0.196589 0.196589i −0.601947 0.798536i \(-0.705608\pi\)
0.798536 + 0.601947i \(0.205608\pi\)
\(594\) −15.4404 + 4.46184i −0.633529 + 0.183072i
\(595\) −1.49570 + 2.06714i −0.0613178 + 0.0847443i
\(596\) 22.1846 13.9896i 0.908718 0.573038i
\(597\) 7.29404 + 7.29404i 0.298525 + 0.298525i
\(598\) 0.224064 0.406188i 0.00916265 0.0166103i
\(599\) 8.94617 0.365531 0.182765 0.983157i \(-0.441495\pi\)
0.182765 + 0.983157i \(0.441495\pi\)
\(600\) 3.93225 9.07695i 0.160533 0.370565i
\(601\) −31.5967 −1.28886 −0.644429 0.764664i \(-0.722905\pi\)
−0.644429 + 0.764664i \(0.722905\pi\)
\(602\) −3.17634 + 5.75815i −0.129458 + 0.234685i
\(603\) −23.8819 23.8819i −0.972548 0.972548i
\(604\) −3.82325 + 2.41094i −0.155566 + 0.0980998i
\(605\) 3.02438 4.17985i 0.122959 0.169935i
\(606\) −4.37736 + 1.26493i −0.177818 + 0.0513844i
\(607\) −5.75786 + 5.75786i −0.233704 + 0.233704i −0.814237 0.580533i \(-0.802844\pi\)
0.580533 + 0.814237i \(0.302844\pi\)
\(608\) 3.29209 + 4.60023i 0.133512 + 0.186564i
\(609\) 0.599980i 0.0243124i
\(610\) −10.3716 22.0111i −0.419932 0.891202i
\(611\) 1.48158i 0.0599383i
\(612\) 12.0627 + 2.73271i 0.487607 + 0.110463i
\(613\) −24.9646 + 24.9646i −1.00831 + 1.00831i −0.00834470 + 0.999965i \(0.502656\pi\)
−0.999965 + 0.00834470i \(0.997344\pi\)
\(614\) −6.31016 21.8366i −0.254657 0.881255i
\(615\) −16.1870 + 2.59620i −0.652724 + 0.104689i
\(616\) −2.88683 2.56726i −0.116314 0.103438i
\(617\) 27.5683 + 27.5683i 1.10986 + 1.10986i 0.993168 + 0.116689i \(0.0372281\pi\)
0.116689 + 0.993168i \(0.462772\pi\)
\(618\) 13.2574 + 7.31312i 0.533291 + 0.294177i
\(619\) −36.0285 −1.44811 −0.724054 0.689743i \(-0.757723\pi\)
−0.724054 + 0.689743i \(0.757723\pi\)
\(620\) −0.319883 + 5.01107i −0.0128468 + 0.201249i
\(621\) −3.10742 −0.124696
\(622\) 39.1728 + 21.6087i 1.57068 + 0.866429i
\(623\) 0.745448 + 0.745448i 0.0298658 + 0.0298658i
\(624\) 0.490636 1.02731i 0.0196412 0.0411251i
\(625\) −20.1100 + 14.8522i −0.804400 + 0.594088i
\(626\) 2.28308 + 7.90072i 0.0912503 + 0.315776i
\(627\) 1.45826 1.45826i 0.0582374 0.0582374i
\(628\) −7.16188 + 31.6139i −0.285790 + 1.26153i
\(629\) 14.2230i 0.567109i
\(630\) −1.24413 + 3.46134i −0.0495675 + 0.137903i
\(631\) 20.6862i 0.823504i 0.911296 + 0.411752i \(0.135083\pi\)
−0.911296 + 0.411752i \(0.864917\pi\)
\(632\) −0.463424 + 0.0271535i −0.0184340 + 0.00108011i
\(633\) −1.70156 + 1.70156i −0.0676308 + 0.0676308i
\(634\) 41.0594 11.8650i 1.63068 0.471219i
\(635\) 0.179887 + 1.12158i 0.00713859 + 0.0445084i
\(636\) 5.98922 + 9.49766i 0.237488 + 0.376607i
\(637\) 1.95228 + 1.95228i 0.0773522 + 0.0773522i
\(638\) 3.72893 6.75991i 0.147630 0.267627i
\(639\) 23.0923 0.913519
\(640\) −13.3822 21.4690i −0.528976 0.848637i
\(641\) −5.19156 −0.205054 −0.102527 0.994730i \(-0.532693\pi\)
−0.102527 + 0.994730i \(0.532693\pi\)
\(642\) −3.45211 + 6.25808i −0.136244 + 0.246987i
\(643\) −6.88159 6.88159i −0.271384 0.271384i 0.558273 0.829657i \(-0.311464\pi\)
−0.829657 + 0.558273i \(0.811464\pi\)
\(644\) −0.398409 0.631794i −0.0156995 0.0248962i
\(645\) 12.7191 + 9.20309i 0.500815 + 0.362371i
\(646\) −3.34643 + 0.967023i −0.131664 + 0.0380470i
\(647\) −20.2501 + 20.2501i −0.796113 + 0.796113i −0.982480 0.186368i \(-0.940328\pi\)
0.186368 + 0.982480i \(0.440328\pi\)
\(648\) 13.6548 0.800080i 0.536410 0.0314301i
\(649\) 41.6438i 1.63466i
\(650\) −2.37566 + 1.62309i −0.0931810 + 0.0636630i
\(651\) 0.363831i 0.0142597i
\(652\) 6.56062 28.9598i 0.256934 1.13415i
\(653\) 10.5859 10.5859i 0.414257 0.414257i −0.468961 0.883219i \(-0.655372\pi\)
0.883219 + 0.468961i \(0.155372\pi\)
\(654\) −1.43908 4.98000i −0.0562723 0.194733i
\(655\) 12.8188 + 9.27519i 0.500871 + 0.362411i
\(656\) −18.0687 + 37.8328i −0.705466 + 1.47712i
\(657\) 12.1252 + 12.1252i 0.473049 + 0.473049i
\(658\) 2.08881 + 1.15224i 0.0814303 + 0.0449190i
\(659\) 29.9506 1.16671 0.583354 0.812218i \(-0.301740\pi\)
0.583354 + 0.812218i \(0.301740\pi\)
\(660\) −6.92376 + 6.09284i −0.269507 + 0.237164i
\(661\) −42.9876 −1.67202 −0.836012 0.548711i \(-0.815119\pi\)
−0.836012 + 0.548711i \(0.815119\pi\)
\(662\) 35.6811 + 19.6826i 1.38678 + 0.764985i
\(663\) 0.495705 + 0.495705i 0.0192516 + 0.0192516i
\(664\) −5.92738 5.27121i −0.230027 0.204563i
\(665\) −0.164047 1.02282i −0.00636147 0.0396632i
\(666\) −5.69199 19.6974i −0.220560 0.763259i
\(667\) 1.05545 1.05545i 0.0408671 0.0408671i
\(668\) 44.0803 + 9.98603i 1.70552 + 0.386371i
\(669\) 9.85422i 0.380986i
\(670\) −40.0313 14.3887i −1.54654 0.555885i
\(671\) 22.6860i 0.875785i
\(672\) −1.06678 1.49067i −0.0411518 0.0575039i
\(673\) 8.30925 8.30925i 0.320298 0.320298i −0.528583 0.848881i \(-0.677277\pi\)
0.848881 + 0.528583i \(0.177277\pi\)
\(674\) −25.8196 + 7.46113i −0.994535 + 0.287392i
\(675\) 17.2065 + 8.68267i 0.662280 + 0.334196i
\(676\) 21.7123 13.6918i 0.835090 0.526608i
\(677\) 1.65901 + 1.65901i 0.0637610 + 0.0637610i 0.738268 0.674507i \(-0.235644\pi\)
−0.674507 + 0.738268i \(0.735644\pi\)
\(678\) 6.17038 11.1858i 0.236972 0.429589i
\(679\) −2.71067 −0.104026
\(680\) 15.2108 3.36247i 0.583308 0.128945i
\(681\) −8.35673 −0.320230
\(682\) 2.26125 4.09924i 0.0865875 0.156968i
\(683\) −3.72871 3.72871i −0.142675 0.142675i 0.632161 0.774837i \(-0.282168\pi\)
−0.774837 + 0.632161i \(0.782168\pi\)
\(684\) −4.24747 + 2.67846i −0.162406 + 0.102413i
\(685\) 13.5122 2.16718i 0.516273 0.0828036i
\(686\) 8.67655 2.50727i 0.331272 0.0957282i
\(687\) 4.27345 4.27345i 0.163042 0.163042i
\(688\) 37.8539 13.3833i 1.44317 0.510233i
\(689\) 3.26585i 0.124419i
\(690\) −1.61306 + 0.760068i −0.0614080 + 0.0289353i
\(691\) 0.815388i 0.0310188i −0.999880 0.0155094i \(-0.995063\pi\)
0.999880 0.0155094i \(-0.00493700\pi\)
\(692\) 35.1166 + 7.95538i 1.33493 + 0.302418i
\(693\) 2.42489 2.42489i 0.0921139 0.0921139i
\(694\) −10.9377 37.8504i −0.415188 1.43678i
\(695\) −14.9884 + 20.7148i −0.568543 + 0.785756i
\(696\) 2.43429 2.73731i 0.0922714 0.103757i
\(697\) −18.2554 18.2554i −0.691474 0.691474i
\(698\) −9.37955 5.17399i −0.355021 0.195839i
\(699\) 4.49834 0.170143
\(700\) 0.440749 + 4.61163i 0.0166587 + 0.174303i
\(701\) 9.25242 0.349459 0.174730 0.984616i \(-0.444095\pi\)
0.174730 + 0.984616i \(0.444095\pi\)
\(702\) 1.94220 + 1.07136i 0.0733035 + 0.0404360i
\(703\) 4.08314 + 4.08314i 0.153999 + 0.153999i
\(704\) 2.75459 + 23.4253i 0.103818 + 0.882875i
\(705\) 3.33848 4.61396i 0.125735 0.173772i
\(706\) 6.83798 + 23.6632i 0.257351 + 0.890576i
\(707\) 1.50888 1.50888i 0.0567471 0.0567471i
\(708\) −4.36573 + 19.2712i −0.164074 + 0.724255i
\(709\) 25.0837i 0.942038i 0.882123 + 0.471019i \(0.156114\pi\)
−0.882123 + 0.471019i \(0.843886\pi\)
\(710\) 26.3104 12.3974i 0.987411 0.465265i
\(711\) 0.412076i 0.0154541i
\(712\) −0.376490 6.42547i −0.0141096 0.240805i
\(713\) 0.640030 0.640030i 0.0239693 0.0239693i
\(714\) 1.08439 0.313357i 0.0405822 0.0117271i
\(715\) 2.64868 0.424815i 0.0990551 0.0158872i
\(716\) 3.81829 + 6.05501i 0.142696 + 0.226286i
\(717\) 11.4239 + 11.4239i 0.426634 + 0.426634i
\(718\) −16.0220 + 29.0450i −0.597934 + 1.08395i
\(719\) −37.6238 −1.40313 −0.701565 0.712606i \(-0.747515\pi\)
−0.701565 + 0.712606i \(0.747515\pi\)
\(720\) 19.7198 10.7440i 0.734912 0.400404i
\(721\) −7.09065 −0.264070
\(722\) 0.683080 1.23831i 0.0254216 0.0460850i
\(723\) −9.81405 9.81405i −0.364988 0.364988i
\(724\) 7.89954 + 12.5270i 0.293584 + 0.465563i
\(725\) −8.79340 + 2.89517i −0.326579 + 0.107524i
\(726\) −2.19268 + 0.633622i −0.0813780 + 0.0235159i
\(727\) 27.9775 27.9775i 1.03763 1.03763i 0.0383634 0.999264i \(-0.487786\pi\)
0.999264 0.0383634i \(-0.0122145\pi\)
\(728\) 0.0311861 + 0.532246i 0.00115583 + 0.0197263i
\(729\) 4.05317i 0.150117i
\(730\) 20.3245 + 7.30537i 0.752243 + 0.270384i
\(731\) 24.7235i 0.914430i
\(732\) −2.37829 + 10.4982i −0.0879043 + 0.388026i
\(733\) 13.9853 13.9853i 0.516559 0.516559i −0.399970 0.916528i \(-0.630979\pi\)
0.916528 + 0.399970i \(0.130979\pi\)
\(734\) 12.9681 + 44.8767i 0.478661 + 1.65643i
\(735\) −1.68069 10.4789i −0.0619932 0.386522i
\(736\) −0.745687 + 4.49890i −0.0274864 + 0.165832i
\(737\) 28.0444 + 28.0444i 1.03303 + 1.03303i
\(738\) −32.5876 17.9762i −1.19957 0.661711i
\(739\) −40.9090 −1.50486 −0.752431 0.658671i \(-0.771119\pi\)
−0.752431 + 0.658671i \(0.771119\pi\)
\(740\) −17.0600 19.3866i −0.627137 0.712664i
\(741\) −0.284614 −0.0104555
\(742\) −4.60437 2.53988i −0.169032 0.0932421i
\(743\) −4.46740 4.46740i −0.163893 0.163893i 0.620396 0.784289i \(-0.286972\pi\)
−0.784289 + 0.620396i \(0.786972\pi\)
\(744\) 1.47616 1.65992i 0.0541188 0.0608555i
\(745\) 23.7564 + 17.1892i 0.870366 + 0.629764i
\(746\) −3.40105 11.7695i −0.124521 0.430912i
\(747\) 4.97890 4.97890i 0.182168 0.182168i
\(748\) −14.1652 3.20901i −0.517931 0.117333i
\(749\) 3.34710i 0.122300i
\(750\) 11.0557 + 0.298479i 0.403696 + 0.0108989i
\(751\) 37.1200i 1.35453i −0.735740 0.677264i \(-0.763166\pi\)
0.735740 0.677264i \(-0.236834\pi\)
\(752\) −4.85488 13.7318i −0.177039 0.500746i
\(753\) 2.88223 2.88223i 0.105034 0.105034i
\(754\) −1.02357 + 0.295782i −0.0372762 + 0.0107718i
\(755\) −4.09412 2.96235i −0.149000 0.107811i
\(756\) 3.02093 1.90500i 0.109870 0.0692842i
\(757\) 17.9260 + 17.9260i 0.651533 + 0.651533i 0.953362 0.301829i \(-0.0975972\pi\)
−0.301829 + 0.953362i \(0.597597\pi\)
\(758\) 15.6913 28.4456i 0.569934 1.03319i
\(759\) 1.66252 0.0603458
\(760\) −3.40142 + 5.33201i −0.123382 + 0.193412i
\(761\) −31.7582 −1.15123 −0.575617 0.817719i \(-0.695238\pi\)
−0.575617 + 0.817719i \(0.695238\pi\)
\(762\) 0.242719 0.440008i 0.00879279 0.0159398i
\(763\) 1.71660 + 1.71660i 0.0621452 + 0.0621452i
\(764\) −6.98543 + 4.40501i −0.252724 + 0.159368i
\(765\) 2.18989 + 13.6538i 0.0791757 + 0.493653i
\(766\) 35.6503 10.3019i 1.28810 0.372224i
\(767\) 4.06387 4.06387i 0.146738 0.146738i
\(768\) −1.18107 + 11.1291i −0.0426184 + 0.401588i
\(769\) 32.9935i 1.18977i 0.803809 + 0.594887i \(0.202803\pi\)
−0.803809 + 0.594887i \(0.797197\p