Properties

Label 380.2.k.c.267.18
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.18
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.655429 + 1.25316i) q^{2} +(-0.124098 - 0.124098i) q^{3} +(-1.14082 + 1.64272i) q^{4} +(-0.0211435 + 2.23597i) q^{5} +(0.0741774 - 0.236853i) q^{6} +(-2.60801 + 2.60801i) q^{7} +(-2.80632 - 0.352951i) q^{8} -2.96920i q^{9} +O(q^{10})\) \(q+(0.655429 + 1.25316i) q^{2} +(-0.124098 - 0.124098i) q^{3} +(-1.14082 + 1.64272i) q^{4} +(-0.0211435 + 2.23597i) q^{5} +(0.0741774 - 0.236853i) q^{6} +(-2.60801 + 2.60801i) q^{7} +(-2.80632 - 0.352951i) q^{8} -2.96920i q^{9} +(-2.81589 + 1.43902i) q^{10} -1.59093i q^{11} +(0.345433 - 0.0622840i) q^{12} +(-1.95339 + 1.95339i) q^{13} +(-4.97762 - 1.55889i) q^{14} +(0.280104 - 0.274856i) q^{15} +(-1.39704 - 3.74810i) q^{16} +(1.63902 + 1.63902i) q^{17} +(3.72088 - 1.94610i) q^{18} +1.00000 q^{19} +(-3.64894 - 2.58558i) q^{20} +0.647299 q^{21} +(1.99369 - 1.04274i) q^{22} +(3.32388 + 3.32388i) q^{23} +(0.304459 + 0.392060i) q^{24} +(-4.99911 - 0.0945526i) q^{25} +(-3.72823 - 1.16761i) q^{26} +(-0.740767 + 0.740767i) q^{27} +(-1.30894 - 7.25950i) q^{28} +2.83265i q^{29} +(0.528027 + 0.170866i) q^{30} +7.48876i q^{31} +(3.78132 - 4.20733i) q^{32} +(-0.197432 + 0.197432i) q^{33} +(-0.979691 + 3.12821i) q^{34} +(-5.77628 - 5.88657i) q^{35} +(4.87755 + 3.38734i) q^{36} +(-0.620175 - 0.620175i) q^{37} +(0.655429 + 1.25316i) q^{38} +0.484826 q^{39} +(0.848523 - 6.26738i) q^{40} +4.49344 q^{41} +(0.424259 + 0.811169i) q^{42} +(4.87104 + 4.87104i) q^{43} +(2.61345 + 1.81497i) q^{44} +(6.63903 + 0.0627794i) q^{45} +(-1.98679 + 6.34393i) q^{46} +(-9.05522 + 9.05522i) q^{47} +(-0.291763 + 0.638503i) q^{48} -6.60341i q^{49} +(-3.15807 - 6.32666i) q^{50} -0.406798i q^{51} +(-0.980395 - 5.43736i) q^{52} +(4.24526 - 4.24526i) q^{53} +(-1.41382 - 0.442780i) q^{54} +(3.55727 + 0.0336379i) q^{55} +(8.23940 - 6.39840i) q^{56} +(-0.124098 - 0.124098i) q^{57} +(-3.54977 + 1.85660i) q^{58} +0.166096 q^{59} +(0.131961 + 0.773693i) q^{60} +0.0704460 q^{61} +(-9.38462 + 4.90835i) q^{62} +(7.74370 + 7.74370i) q^{63} +(7.75085 + 1.98099i) q^{64} +(-4.32643 - 4.40903i) q^{65} +(-0.376816 - 0.118011i) q^{66} +(6.16238 - 6.16238i) q^{67} +(-4.56227 + 0.822610i) q^{68} -0.824976i q^{69} +(3.59087 - 11.0968i) q^{70} -8.99189i q^{71} +(-1.04798 + 8.33252i) q^{72} +(9.79301 - 9.79301i) q^{73} +(0.370698 - 1.18366i) q^{74} +(0.608647 + 0.632114i) q^{75} +(-1.14082 + 1.64272i) q^{76} +(4.14916 + 4.14916i) q^{77} +(0.317769 + 0.607565i) q^{78} +14.1076 q^{79} +(8.41018 - 3.04449i) q^{80} -8.72374 q^{81} +(2.94513 + 5.63100i) q^{82} +(4.60273 + 4.60273i) q^{83} +(-0.738454 + 1.06333i) q^{84} +(-3.69944 + 3.63013i) q^{85} +(-2.91157 + 9.29682i) q^{86} +(0.351527 - 0.351527i) q^{87} +(-0.561521 + 4.46466i) q^{88} +10.8550i q^{89} +(4.27275 + 8.36093i) q^{90} -10.1889i q^{91} +(-9.25216 + 1.66823i) q^{92} +(0.929342 - 0.929342i) q^{93} +(-17.2827 - 5.41259i) q^{94} +(-0.0211435 + 2.23597i) q^{95} +(-0.991377 + 0.0528679i) q^{96} +(3.24883 + 3.24883i) q^{97} +(8.27514 - 4.32807i) q^{98} -4.72379 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.655429 + 1.25316i 0.463459 + 0.886119i
\(3\) −0.124098 0.124098i −0.0716482 0.0716482i 0.670375 0.742023i \(-0.266133\pi\)
−0.742023 + 0.670375i \(0.766133\pi\)
\(4\) −1.14082 + 1.64272i −0.570412 + 0.821359i
\(5\) −0.0211435 + 2.23597i −0.00945568 + 0.999955i
\(6\) 0.0741774 0.236853i 0.0302828 0.0966947i
\(7\) −2.60801 + 2.60801i −0.985734 + 0.985734i −0.999900 0.0141653i \(-0.995491\pi\)
0.0141653 + 0.999900i \(0.495491\pi\)
\(8\) −2.80632 0.352951i −0.992184 0.124787i
\(9\) 2.96920i 0.989733i
\(10\) −2.81589 + 1.43902i −0.890461 + 0.455059i
\(11\) 1.59093i 0.479684i −0.970812 0.239842i \(-0.922904\pi\)
0.970812 0.239842i \(-0.0770956\pi\)
\(12\) 0.345433 0.0622840i 0.0997178 0.0179798i
\(13\) −1.95339 + 1.95339i −0.541774 + 0.541774i −0.924049 0.382275i \(-0.875141\pi\)
0.382275 + 0.924049i \(0.375141\pi\)
\(14\) −4.97762 1.55889i −1.33032 0.416630i
\(15\) 0.280104 0.274856i 0.0723224 0.0709675i
\(16\) −1.39704 3.74810i −0.349260 0.937026i
\(17\) 1.63902 + 1.63902i 0.397520 + 0.397520i 0.877357 0.479838i \(-0.159304\pi\)
−0.479838 + 0.877357i \(0.659304\pi\)
\(18\) 3.72088 1.94610i 0.877021 0.458700i
\(19\) 1.00000 0.229416
\(20\) −3.64894 2.58558i −0.815928 0.578153i
\(21\) 0.647299 0.141252
\(22\) 1.99369 1.04274i 0.425057 0.222314i
\(23\) 3.32388 + 3.32388i 0.693077 + 0.693077i 0.962908 0.269831i \(-0.0869677\pi\)
−0.269831 + 0.962908i \(0.586968\pi\)
\(24\) 0.304459 + 0.392060i 0.0621474 + 0.0800289i
\(25\) −4.99911 0.0945526i −0.999821 0.0189105i
\(26\) −3.72823 1.16761i −0.731166 0.228986i
\(27\) −0.740767 + 0.740767i −0.142561 + 0.142561i
\(28\) −1.30894 7.25950i −0.247366 1.37192i
\(29\) 2.83265i 0.526010i 0.964794 + 0.263005i \(0.0847136\pi\)
−0.964794 + 0.263005i \(0.915286\pi\)
\(30\) 0.528027 + 0.170866i 0.0964041 + 0.0311958i
\(31\) 7.48876i 1.34502i 0.740088 + 0.672510i \(0.234784\pi\)
−0.740088 + 0.672510i \(0.765216\pi\)
\(32\) 3.78132 4.20733i 0.668449 0.743758i
\(33\) −0.197432 + 0.197432i −0.0343685 + 0.0343685i
\(34\) −0.979691 + 3.12821i −0.168016 + 0.536483i
\(35\) −5.77628 5.88657i −0.976370 0.995011i
\(36\) 4.87755 + 3.38734i 0.812926 + 0.564556i
\(37\) −0.620175 0.620175i −0.101956 0.101956i 0.654289 0.756245i \(-0.272968\pi\)
−0.756245 + 0.654289i \(0.772968\pi\)
\(38\) 0.655429 + 1.25316i 0.106325 + 0.203290i
\(39\) 0.484826 0.0776343
\(40\) 0.848523 6.26738i 0.134163 0.990959i
\(41\) 4.49344 0.701757 0.350879 0.936421i \(-0.385883\pi\)
0.350879 + 0.936421i \(0.385883\pi\)
\(42\) 0.424259 + 0.811169i 0.0654645 + 0.125166i
\(43\) 4.87104 + 4.87104i 0.742826 + 0.742826i 0.973121 0.230295i \(-0.0739690\pi\)
−0.230295 + 0.973121i \(0.573969\pi\)
\(44\) 2.61345 + 1.81497i 0.393992 + 0.273617i
\(45\) 6.63903 + 0.0627794i 0.989689 + 0.00935860i
\(46\) −1.98679 + 6.34393i −0.292936 + 0.935361i
\(47\) −9.05522 + 9.05522i −1.32084 + 1.32084i −0.407744 + 0.913096i \(0.633684\pi\)
−0.913096 + 0.407744i \(0.866316\pi\)
\(48\) −0.291763 + 0.638503i −0.0421124 + 0.0921600i
\(49\) 6.60341i 0.943344i
\(50\) −3.15807 6.32666i −0.446619 0.894724i
\(51\) 0.406798i 0.0569631i
\(52\) −0.980395 5.43736i −0.135956 0.754026i
\(53\) 4.24526 4.24526i 0.583131 0.583131i −0.352631 0.935762i \(-0.614713\pi\)
0.935762 + 0.352631i \(0.114713\pi\)
\(54\) −1.41382 0.442780i −0.192397 0.0602547i
\(55\) 3.55727 + 0.0336379i 0.479662 + 0.00453574i
\(56\) 8.23940 6.39840i 1.10104 0.855022i
\(57\) −0.124098 0.124098i −0.0164372 0.0164372i
\(58\) −3.54977 + 1.85660i −0.466107 + 0.243784i
\(59\) 0.166096 0.0216238 0.0108119 0.999942i \(-0.496558\pi\)
0.0108119 + 0.999942i \(0.496558\pi\)
\(60\) 0.131961 + 0.773693i 0.0170361 + 0.0998834i
\(61\) 0.0704460 0.00901969 0.00450984 0.999990i \(-0.498564\pi\)
0.00450984 + 0.999990i \(0.498564\pi\)
\(62\) −9.38462 + 4.90835i −1.19185 + 0.623361i
\(63\) 7.74370 + 7.74370i 0.975614 + 0.975614i
\(64\) 7.75085 + 1.98099i 0.968856 + 0.247623i
\(65\) −4.32643 4.40903i −0.536627 0.546873i
\(66\) −0.376816 0.118011i −0.0463829 0.0145262i
\(67\) 6.16238 6.16238i 0.752854 0.752854i −0.222157 0.975011i \(-0.571310\pi\)
0.975011 + 0.222157i \(0.0713096\pi\)
\(68\) −4.56227 + 0.822610i −0.553256 + 0.0997561i
\(69\) 0.824976i 0.0993154i
\(70\) 3.59087 11.0968i 0.429191 1.32633i
\(71\) 8.99189i 1.06714i −0.845755 0.533571i \(-0.820850\pi\)
0.845755 0.533571i \(-0.179150\pi\)
\(72\) −1.04798 + 8.33252i −0.123506 + 0.981997i
\(73\) 9.79301 9.79301i 1.14618 1.14618i 0.158888 0.987297i \(-0.449209\pi\)
0.987297 0.158888i \(-0.0507910\pi\)
\(74\) 0.370698 1.18366i 0.0430928 0.137598i
\(75\) 0.608647 + 0.632114i 0.0702804 + 0.0729903i
\(76\) −1.14082 + 1.64272i −0.130862 + 0.188433i
\(77\) 4.14916 + 4.14916i 0.472841 + 0.472841i
\(78\) 0.317769 + 0.607565i 0.0359803 + 0.0687932i
\(79\) 14.1076 1.58723 0.793614 0.608422i \(-0.208197\pi\)
0.793614 + 0.608422i \(0.208197\pi\)
\(80\) 8.41018 3.04449i 0.940287 0.340384i
\(81\) −8.72374 −0.969305
\(82\) 2.94513 + 5.63100i 0.325235 + 0.621840i
\(83\) 4.60273 + 4.60273i 0.505215 + 0.505215i 0.913054 0.407839i \(-0.133717\pi\)
−0.407839 + 0.913054i \(0.633717\pi\)
\(84\) −0.738454 + 1.06333i −0.0805719 + 0.116019i
\(85\) −3.69944 + 3.63013i −0.401261 + 0.393743i
\(86\) −2.91157 + 9.29682i −0.313963 + 1.00250i
\(87\) 0.351527 0.351527i 0.0376877 0.0376877i
\(88\) −0.561521 + 4.46466i −0.0598584 + 0.475934i
\(89\) 10.8550i 1.15063i 0.817932 + 0.575315i \(0.195121\pi\)
−0.817932 + 0.575315i \(0.804879\pi\)
\(90\) 4.27275 + 8.36093i 0.450387 + 0.881319i
\(91\) 10.1889i 1.06809i
\(92\) −9.25216 + 1.66823i −0.964605 + 0.173925i
\(93\) 0.929342 0.929342i 0.0963683 0.0963683i
\(94\) −17.2827 5.41259i −1.78258 0.558266i
\(95\) −0.0211435 + 2.23597i −0.00216928 + 0.229405i
\(96\) −0.991377 + 0.0528679i −0.101182 + 0.00539581i
\(97\) 3.24883 + 3.24883i 0.329869 + 0.329869i 0.852536 0.522668i \(-0.175063\pi\)
−0.522668 + 0.852536i \(0.675063\pi\)
\(98\) 8.27514 4.32807i 0.835915 0.437201i
\(99\) −4.72379 −0.474759
\(100\) 5.85843 8.10425i 0.585843 0.810425i
\(101\) −19.2696 −1.91740 −0.958700 0.284419i \(-0.908199\pi\)
−0.958700 + 0.284419i \(0.908199\pi\)
\(102\) 0.509783 0.266627i 0.0504761 0.0264000i
\(103\) −1.20104 1.20104i −0.118342 0.118342i 0.645456 0.763798i \(-0.276668\pi\)
−0.763798 + 0.645456i \(0.776668\pi\)
\(104\) 6.17130 4.79240i 0.605146 0.469933i
\(105\) −0.0136862 + 1.44734i −0.00133563 + 0.141246i
\(106\) 8.10246 + 2.53752i 0.786980 + 0.246466i
\(107\) −7.40713 + 7.40713i −0.716074 + 0.716074i −0.967799 0.251725i \(-0.919002\pi\)
0.251725 + 0.967799i \(0.419002\pi\)
\(108\) −0.371786 2.06196i −0.0357751 0.198412i
\(109\) 4.29422i 0.411312i −0.978624 0.205656i \(-0.934067\pi\)
0.978624 0.205656i \(-0.0659328\pi\)
\(110\) 2.28939 + 4.47988i 0.218284 + 0.427140i
\(111\) 0.153925i 0.0146099i
\(112\) 13.4186 + 6.13159i 1.26794 + 0.579381i
\(113\) −4.11193 + 4.11193i −0.386818 + 0.386818i −0.873551 0.486733i \(-0.838188\pi\)
0.486733 + 0.873551i \(0.338188\pi\)
\(114\) 0.0741774 0.236853i 0.00694735 0.0221833i
\(115\) −7.50237 + 7.36182i −0.699600 + 0.686493i
\(116\) −4.65325 3.23156i −0.432043 0.300043i
\(117\) 5.80002 + 5.80002i 0.536212 + 0.536212i
\(118\) 0.108864 + 0.208145i 0.0100217 + 0.0191613i
\(119\) −8.54913 −0.783698
\(120\) −0.883071 + 0.672470i −0.0806130 + 0.0613879i
\(121\) 8.46894 0.769904
\(122\) 0.0461724 + 0.0882802i 0.00418025 + 0.00799251i
\(123\) −0.557628 0.557628i −0.0502796 0.0502796i
\(124\) −12.3019 8.54336i −1.10474 0.767216i
\(125\) 0.317115 11.1758i 0.0283637 0.999598i
\(126\) −4.62865 + 14.7795i −0.412353 + 1.31667i
\(127\) −1.43074 + 1.43074i −0.126958 + 0.126958i −0.767731 0.640773i \(-0.778614\pi\)
0.640773 + 0.767731i \(0.278614\pi\)
\(128\) 2.59764 + 11.0115i 0.229601 + 0.973285i
\(129\) 1.20897i 0.106444i
\(130\) 2.68956 8.31152i 0.235890 0.728968i
\(131\) 15.6098i 1.36383i −0.731429 0.681917i \(-0.761146\pi\)
0.731429 0.681917i \(-0.238854\pi\)
\(132\) −0.0990896 0.549559i −0.00862464 0.0478330i
\(133\) −2.60801 + 2.60801i −0.226143 + 0.226143i
\(134\) 11.7615 + 3.68345i 1.01604 + 0.318201i
\(135\) −1.64067 1.67199i −0.141206 0.143902i
\(136\) −4.02111 5.17809i −0.344807 0.444018i
\(137\) 12.4864 + 12.4864i 1.06678 + 1.06678i 0.997604 + 0.0691808i \(0.0220385\pi\)
0.0691808 + 0.997604i \(0.477961\pi\)
\(138\) 1.03383 0.540714i 0.0880053 0.0460286i
\(139\) −1.54135 −0.130736 −0.0653678 0.997861i \(-0.520822\pi\)
−0.0653678 + 0.997861i \(0.520822\pi\)
\(140\) 16.2597 2.77326i 1.37419 0.234383i
\(141\) 2.24747 0.189272
\(142\) 11.2683 5.89355i 0.945614 0.494576i
\(143\) 3.10772 + 3.10772i 0.259880 + 0.259880i
\(144\) −11.1289 + 4.14809i −0.927406 + 0.345674i
\(145\) −6.33372 0.0598923i −0.525987 0.00497379i
\(146\) 18.6908 + 5.85359i 1.54686 + 0.484446i
\(147\) −0.819472 + 0.819472i −0.0675889 + 0.0675889i
\(148\) 1.72628 0.311261i 0.141900 0.0255855i
\(149\) 4.77735i 0.391375i 0.980666 + 0.195688i \(0.0626939\pi\)
−0.980666 + 0.195688i \(0.937306\pi\)
\(150\) −0.393216 + 1.17704i −0.0321059 + 0.0961048i
\(151\) 23.0059i 1.87219i −0.351748 0.936095i \(-0.614412\pi\)
0.351748 0.936095i \(-0.385588\pi\)
\(152\) −2.80632 0.352951i −0.227623 0.0286281i
\(153\) 4.86656 4.86656i 0.393438 0.393438i
\(154\) −2.48008 + 7.91905i −0.199851 + 0.638135i
\(155\) −16.7446 0.158339i −1.34496 0.0127181i
\(156\) −0.553101 + 0.796432i −0.0442835 + 0.0637656i
\(157\) −8.05734 8.05734i −0.643046 0.643046i 0.308257 0.951303i \(-0.400254\pi\)
−0.951303 + 0.308257i \(0.900254\pi\)
\(158\) 9.24653 + 17.6791i 0.735614 + 1.40647i
\(159\) −1.05366 −0.0835605
\(160\) 9.32751 + 8.54386i 0.737404 + 0.675451i
\(161\) −17.3374 −1.36638
\(162\) −5.71780 10.9323i −0.449233 0.858919i
\(163\) −8.76560 8.76560i −0.686575 0.686575i 0.274898 0.961473i \(-0.411356\pi\)
−0.961473 + 0.274898i \(0.911356\pi\)
\(164\) −5.12623 + 7.38145i −0.400291 + 0.576394i
\(165\) −0.437277 0.445625i −0.0340419 0.0346919i
\(166\) −2.75120 + 8.78473i −0.213534 + 0.681827i
\(167\) 6.17041 6.17041i 0.477481 0.477481i −0.426844 0.904325i \(-0.640375\pi\)
0.904325 + 0.426844i \(0.140375\pi\)
\(168\) −1.81653 0.228465i −0.140148 0.0176264i
\(169\) 5.36850i 0.412961i
\(170\) −6.97386 2.25670i −0.534871 0.173081i
\(171\) 2.96920i 0.227060i
\(172\) −13.5587 + 2.44474i −1.03384 + 0.186410i
\(173\) 13.7767 13.7767i 1.04742 1.04742i 0.0486014 0.998818i \(-0.484524\pi\)
0.998818 0.0486014i \(-0.0154764\pi\)
\(174\) 0.670921 + 0.210119i 0.0508624 + 0.0159291i
\(175\) 13.2843 12.7911i 1.00420 0.966917i
\(176\) −5.96297 + 2.22259i −0.449476 + 0.167534i
\(177\) −0.0206122 0.0206122i −0.00154931 0.00154931i
\(178\) −13.6031 + 7.11470i −1.01959 + 0.533269i
\(179\) −5.62503 −0.420435 −0.210217 0.977655i \(-0.567417\pi\)
−0.210217 + 0.977655i \(0.567417\pi\)
\(180\) −7.67710 + 10.8344i −0.572217 + 0.807551i
\(181\) −2.11678 −0.157339 −0.0786696 0.996901i \(-0.525067\pi\)
−0.0786696 + 0.996901i \(0.525067\pi\)
\(182\) 12.7684 6.67813i 0.946455 0.495016i
\(183\) −0.00874223 0.00874223i −0.000646244 0.000646244i
\(184\) −8.15470 10.5010i −0.601173 0.774147i
\(185\) 1.39980 1.37358i 0.102916 0.100988i
\(186\) 1.77373 + 0.555497i 0.130056 + 0.0407310i
\(187\) 2.60756 2.60756i 0.190684 0.190684i
\(188\) −4.54475 25.2056i −0.331460 1.83831i
\(189\) 3.86385i 0.281054i
\(190\) −2.81589 + 1.43902i −0.204286 + 0.104398i
\(191\) 6.21119i 0.449426i −0.974425 0.224713i \(-0.927856\pi\)
0.974425 0.224713i \(-0.0721445\pi\)
\(192\) −0.716030 1.20770i −0.0516750 0.0871585i
\(193\) −9.39582 + 9.39582i −0.676326 + 0.676326i −0.959167 0.282841i \(-0.908723\pi\)
0.282841 + 0.959167i \(0.408723\pi\)
\(194\) −1.94193 + 6.20068i −0.139422 + 0.445183i
\(195\) −0.0102509 + 1.08406i −0.000734085 + 0.0776308i
\(196\) 10.8475 + 7.53333i 0.774824 + 0.538095i
\(197\) −13.0636 13.0636i −0.930744 0.930744i 0.0670085 0.997752i \(-0.478655\pi\)
−0.997752 + 0.0670085i \(0.978655\pi\)
\(198\) −3.09611 5.91967i −0.220031 0.420693i
\(199\) 14.4750 1.02610 0.513052 0.858358i \(-0.328515\pi\)
0.513052 + 0.858358i \(0.328515\pi\)
\(200\) 13.9957 + 2.02979i 0.989646 + 0.143528i
\(201\) −1.52948 −0.107881
\(202\) −12.6299 24.1480i −0.888636 1.69904i
\(203\) −7.38758 7.38758i −0.518506 0.518506i
\(204\) 0.668254 + 0.464085i 0.0467871 + 0.0324925i
\(205\) −0.0950072 + 10.0472i −0.00663559 + 0.701726i
\(206\) 0.717900 2.29229i 0.0500185 0.159712i
\(207\) 9.86927 9.86927i 0.685962 0.685962i
\(208\) 10.0505 + 4.59256i 0.696877 + 0.318437i
\(209\) 1.59093i 0.110047i
\(210\) −1.82272 + 0.931477i −0.125780 + 0.0642781i
\(211\) 14.2643i 0.981993i −0.871162 0.490996i \(-0.836633\pi\)
0.871162 0.490996i \(-0.163367\pi\)
\(212\) 2.13066 + 11.8169i 0.146335 + 0.811585i
\(213\) −1.11588 + 1.11588i −0.0764587 + 0.0764587i
\(214\) −14.1372 4.42747i −0.966397 0.302656i
\(215\) −10.9945 + 10.7885i −0.749817 + 0.735769i
\(216\) 2.34028 1.81737i 0.159236 0.123657i
\(217\) −19.5307 19.5307i −1.32583 1.32583i
\(218\) 5.38135 2.81456i 0.364471 0.190626i
\(219\) −2.43059 −0.164244
\(220\) −4.11348 + 5.80521i −0.277331 + 0.391387i
\(221\) −6.40329 −0.430732
\(222\) −0.192893 + 0.100887i −0.0129461 + 0.00677111i
\(223\) 15.3529 + 15.3529i 1.02810 + 1.02810i 0.999593 + 0.0285110i \(0.00907656\pi\)
0.0285110 + 0.999593i \(0.490923\pi\)
\(224\) 1.11105 + 20.8345i 0.0742354 + 1.39206i
\(225\) −0.280745 + 14.8433i −0.0187164 + 0.989556i
\(226\) −7.84798 2.45783i −0.522040 0.163492i
\(227\) −16.9471 + 16.9471i −1.12482 + 1.12482i −0.133814 + 0.991006i \(0.542722\pi\)
−0.991006 + 0.133814i \(0.957278\pi\)
\(228\) 0.345433 0.0622840i 0.0228768 0.00412486i
\(229\) 14.1088i 0.932333i 0.884697 + 0.466166i \(0.154365\pi\)
−0.884697 + 0.466166i \(0.845635\pi\)
\(230\) −14.1428 4.57653i −0.932550 0.301767i
\(231\) 1.02981i 0.0677563i
\(232\) 0.999788 7.94933i 0.0656393 0.521899i
\(233\) −15.3804 + 15.3804i −1.00760 + 1.00760i −0.00763101 + 0.999971i \(0.502429\pi\)
−0.999971 + 0.00763101i \(0.997571\pi\)
\(234\) −3.46685 + 11.0699i −0.226635 + 0.723659i
\(235\) −20.0557 20.4386i −1.30829 1.33327i
\(236\) −0.189486 + 0.272848i −0.0123345 + 0.0177609i
\(237\) −1.75073 1.75073i −0.113722 0.113722i
\(238\) −5.60335 10.7134i −0.363211 0.694449i
\(239\) −1.34233 −0.0868279 −0.0434140 0.999057i \(-0.513823\pi\)
−0.0434140 + 0.999057i \(0.513823\pi\)
\(240\) −1.42150 0.665873i −0.0917577 0.0429819i
\(241\) 23.6295 1.52211 0.761055 0.648688i \(-0.224682\pi\)
0.761055 + 0.648688i \(0.224682\pi\)
\(242\) 5.55079 + 10.6129i 0.356818 + 0.682226i
\(243\) 3.30490 + 3.30490i 0.212010 + 0.212010i
\(244\) −0.0803665 + 0.115723i −0.00514494 + 0.00740840i
\(245\) 14.7650 + 0.139620i 0.943302 + 0.00891996i
\(246\) 0.333312 1.06428i 0.0212512 0.0678562i
\(247\) −1.95339 + 1.95339i −0.124292 + 0.124292i
\(248\) 2.64317 21.0158i 0.167841 1.33451i
\(249\) 1.14238i 0.0723955i
\(250\) 14.2130 6.92758i 0.898907 0.438139i
\(251\) 2.12114i 0.133885i 0.997757 + 0.0669427i \(0.0213245\pi\)
−0.997757 + 0.0669427i \(0.978676\pi\)
\(252\) −21.5549 + 3.88650i −1.35783 + 0.244827i
\(253\) 5.28807 5.28807i 0.332458 0.332458i
\(254\) −2.73070 0.855200i −0.171339 0.0536600i
\(255\) 0.909587 + 0.00860115i 0.0569606 + 0.000538625i
\(256\) −12.0966 + 10.4725i −0.756035 + 0.654531i
\(257\) 13.4566 + 13.4566i 0.839398 + 0.839398i 0.988780 0.149382i \(-0.0477283\pi\)
−0.149382 + 0.988780i \(0.547728\pi\)
\(258\) 1.51504 0.792398i 0.0943223 0.0493325i
\(259\) 3.23484 0.201003
\(260\) 12.1785 2.07717i 0.755277 0.128820i
\(261\) 8.41071 0.520610
\(262\) 19.5616 10.2311i 1.20852 0.632081i
\(263\) 4.28561 + 4.28561i 0.264262 + 0.264262i 0.826783 0.562521i \(-0.190168\pi\)
−0.562521 + 0.826783i \(0.690168\pi\)
\(264\) 0.623740 0.484373i 0.0383886 0.0298111i
\(265\) 9.40250 + 9.58202i 0.577591 + 0.588619i
\(266\) −4.97762 1.55889i −0.305197 0.0955816i
\(267\) 1.34709 1.34709i 0.0824405 0.0824405i
\(268\) 3.09285 + 17.1532i 0.188926 + 1.04780i
\(269\) 30.1647i 1.83917i 0.392887 + 0.919587i \(0.371476\pi\)
−0.392887 + 0.919587i \(0.628524\pi\)
\(270\) 1.01993 3.15190i 0.0620713 0.191818i
\(271\) 9.29213i 0.564457i 0.959347 + 0.282228i \(0.0910736\pi\)
−0.959347 + 0.282228i \(0.908926\pi\)
\(272\) 3.85343 8.43297i 0.233649 0.511324i
\(273\) −1.26443 + 1.26443i −0.0765268 + 0.0765268i
\(274\) −7.46351 + 23.8314i −0.450887 + 1.43971i
\(275\) −0.150427 + 7.95323i −0.00907107 + 0.479598i
\(276\) 1.35520 + 0.941153i 0.0815736 + 0.0566507i
\(277\) −20.2079 20.2079i −1.21418 1.21418i −0.969640 0.244535i \(-0.921365\pi\)
−0.244535 0.969640i \(-0.578635\pi\)
\(278\) −1.01025 1.93156i −0.0605906 0.115847i
\(279\) 22.2356 1.33121
\(280\) 14.1324 + 18.5583i 0.844573 + 1.10907i
\(281\) 10.1316 0.604402 0.302201 0.953244i \(-0.402279\pi\)
0.302201 + 0.953244i \(0.402279\pi\)
\(282\) 1.47306 + 2.81645i 0.0877195 + 0.167717i
\(283\) −9.78286 9.78286i −0.581530 0.581530i 0.353793 0.935324i \(-0.384892\pi\)
−0.935324 + 0.353793i \(0.884892\pi\)
\(284\) 14.7711 + 10.2582i 0.876506 + 0.608711i
\(285\) 0.280104 0.274856i 0.0165919 0.0162811i
\(286\) −1.85758 + 5.93136i −0.109841 + 0.350728i
\(287\) −11.7189 + 11.7189i −0.691746 + 0.691746i
\(288\) −12.4924 11.2275i −0.736122 0.661586i
\(289\) 11.6273i 0.683956i
\(290\) −4.07625 7.97642i −0.239366 0.468392i
\(291\) 0.806348i 0.0472690i
\(292\) 4.91504 + 27.2592i 0.287631 + 1.59523i
\(293\) 0.409549 0.409549i 0.0239261 0.0239261i −0.695043 0.718969i \(-0.744614\pi\)
0.718969 + 0.695043i \(0.244614\pi\)
\(294\) −1.56404 0.489824i −0.0912164 0.0285671i
\(295\) −0.00351185 + 0.371385i −0.000204468 + 0.0216229i
\(296\) 1.52152 + 1.95930i 0.0884364 + 0.113882i
\(297\) 1.17851 + 1.17851i 0.0683841 + 0.0683841i
\(298\) −5.98678 + 3.13121i −0.346805 + 0.181386i
\(299\) −12.9857 −0.750983
\(300\) −1.73274 + 0.278703i −0.100040 + 0.0160909i
\(301\) −25.4074 −1.46446
\(302\) 28.8300 15.0787i 1.65898 0.867682i
\(303\) 2.39133 + 2.39133i 0.137378 + 0.137378i
\(304\) −1.39704 3.74810i −0.0801257 0.214968i
\(305\) −0.00148948 + 0.157515i −8.52873e−5 + 0.00901928i
\(306\) 9.28828 + 2.90890i 0.530975 + 0.166291i
\(307\) 22.5342 22.5342i 1.28609 1.28609i 0.348952 0.937141i \(-0.386538\pi\)
0.937141 0.348952i \(-0.113462\pi\)
\(308\) −11.5494 + 2.08243i −0.658086 + 0.118658i
\(309\) 0.298094i 0.0169580i
\(310\) −10.7765 21.0875i −0.612064 1.19769i
\(311\) 3.85212i 0.218434i 0.994018 + 0.109217i \(0.0348343\pi\)
−0.994018 + 0.109217i \(0.965166\pi\)
\(312\) −1.36058 0.171120i −0.0770274 0.00968776i
\(313\) 8.59110 8.59110i 0.485598 0.485598i −0.421316 0.906914i \(-0.638432\pi\)
0.906914 + 0.421316i \(0.138432\pi\)
\(314\) 4.81612 15.3782i 0.271790 0.867840i
\(315\) −17.4784 + 17.1509i −0.984795 + 0.966345i
\(316\) −16.0943 + 23.1748i −0.905374 + 1.30368i
\(317\) 14.2260 + 14.2260i 0.799013 + 0.799013i 0.982940 0.183927i \(-0.0588811\pi\)
−0.183927 + 0.982940i \(0.558881\pi\)
\(318\) −0.690599 1.32040i −0.0387269 0.0740446i
\(319\) 4.50655 0.252319
\(320\) −4.59331 + 17.2888i −0.256774 + 0.966472i
\(321\) 1.83842 0.102611
\(322\) −11.3635 21.7266i −0.633261 1.21077i
\(323\) 1.63902 + 1.63902i 0.0911973 + 0.0911973i
\(324\) 9.95226 14.3306i 0.552903 0.796147i
\(325\) 9.94993 9.58053i 0.551923 0.531432i
\(326\) 5.23948 16.7299i 0.290188 0.926586i
\(327\) −0.532905 + 0.532905i −0.0294697 + 0.0294697i
\(328\) −12.6100 1.58597i −0.696272 0.0875703i
\(329\) 47.2322i 2.60399i
\(330\) 0.271836 0.840054i 0.0149641 0.0462435i
\(331\) 30.6620i 1.68534i 0.538431 + 0.842669i \(0.319017\pi\)
−0.538431 + 0.842669i \(0.680983\pi\)
\(332\) −12.8119 + 2.31008i −0.703144 + 0.126782i
\(333\) −1.84142 + 1.84142i −0.100909 + 0.100909i
\(334\) 11.7768 + 3.68825i 0.644397 + 0.201812i
\(335\) 13.6486 + 13.9092i 0.745702 + 0.759939i
\(336\) −0.904301 2.42614i −0.0493337 0.132357i
\(337\) 1.70014 + 1.70014i 0.0926123 + 0.0926123i 0.751895 0.659283i \(-0.229140\pi\)
−0.659283 + 0.751895i \(0.729140\pi\)
\(338\) −6.72759 + 3.51867i −0.365933 + 0.191390i
\(339\) 1.02057 0.0554295
\(340\) −1.74287 10.2185i −0.0945202 0.554175i
\(341\) 11.9141 0.645185
\(342\) 3.72088 1.94610i 0.201202 0.105233i
\(343\) −1.03431 1.03431i −0.0558473 0.0558473i
\(344\) −11.9504 15.3889i −0.644325 0.829715i
\(345\) 1.84462 + 0.0174429i 0.0993110 + 0.000939095i
\(346\) 26.2940 + 8.23474i 1.41357 + 0.442702i
\(347\) −3.07907 + 3.07907i −0.165293 + 0.165293i −0.784907 0.619614i \(-0.787289\pi\)
0.619614 + 0.784907i \(0.287289\pi\)
\(348\) 0.176429 + 0.978491i 0.00945758 + 0.0524526i
\(349\) 29.1925i 1.56264i −0.624133 0.781318i \(-0.714548\pi\)
0.624133 0.781318i \(-0.285452\pi\)
\(350\) 24.7362 + 8.26369i 1.32221 + 0.441713i
\(351\) 2.89402i 0.154471i
\(352\) −6.69357 6.01581i −0.356769 0.320644i
\(353\) 3.98871 3.98871i 0.212298 0.212298i −0.592945 0.805243i \(-0.702035\pi\)
0.805243 + 0.592945i \(0.202035\pi\)
\(354\) 0.0123206 0.0393402i 0.000654830 0.00209091i
\(355\) 20.1056 + 0.190121i 1.06709 + 0.0100905i
\(356\) −17.8317 12.3837i −0.945080 0.656333i
\(357\) 1.06093 + 1.06093i 0.0561505 + 0.0561505i
\(358\) −3.68681 7.04907i −0.194854 0.372555i
\(359\) −15.7000 −0.828613 −0.414306 0.910138i \(-0.635976\pi\)
−0.414306 + 0.910138i \(0.635976\pi\)
\(360\) −18.6091 2.51944i −0.980785 0.132786i
\(361\) 1.00000 0.0526316
\(362\) −1.38740 2.65267i −0.0729202 0.139421i
\(363\) −1.05098 1.05098i −0.0551622 0.0551622i
\(364\) 16.7375 + 11.6238i 0.877286 + 0.609252i
\(365\) 21.6898 + 22.1039i 1.13530 + 1.15697i
\(366\) 0.00522550 0.0166853i 0.000273141 0.000872156i
\(367\) −12.9309 + 12.9309i −0.674985 + 0.674985i −0.958861 0.283876i \(-0.908380\pi\)
0.283876 + 0.958861i \(0.408380\pi\)
\(368\) 7.81466 17.1018i 0.407367 0.891495i
\(369\) 13.3419i 0.694552i
\(370\) 2.63879 + 0.853896i 0.137184 + 0.0443919i
\(371\) 22.1433i 1.14962i
\(372\) 0.466430 + 2.58686i 0.0241833 + 0.134123i
\(373\) −16.0080 + 16.0080i −0.828865 + 0.828865i −0.987360 0.158495i \(-0.949336\pi\)
0.158495 + 0.987360i \(0.449336\pi\)
\(374\) 4.97676 + 1.55862i 0.257342 + 0.0805944i
\(375\) −1.42626 + 1.34755i −0.0736515 + 0.0695871i
\(376\) 28.6079 22.2158i 1.47534 1.14569i
\(377\) −5.53329 5.53329i −0.284979 0.284979i
\(378\) 4.84203 2.53248i 0.249047 0.130257i
\(379\) 26.0486 1.33803 0.669014 0.743250i \(-0.266717\pi\)
0.669014 + 0.743250i \(0.266717\pi\)
\(380\) −3.64894 2.58558i −0.187187 0.132637i
\(381\) 0.355105 0.0181926
\(382\) 7.78363 4.07100i 0.398245 0.208290i
\(383\) 19.9273 + 19.9273i 1.01824 + 1.01824i 0.999831 + 0.0184082i \(0.00585984\pi\)
0.0184082 + 0.999831i \(0.494140\pi\)
\(384\) 1.04414 1.68887i 0.0532836 0.0861846i
\(385\) −9.36512 + 9.18966i −0.477291 + 0.468349i
\(386\) −17.9328 5.61618i −0.912754 0.285856i
\(387\) 14.4631 14.4631i 0.735200 0.735200i
\(388\) −9.04325 + 1.63056i −0.459101 + 0.0827793i
\(389\) 15.8400i 0.803120i −0.915833 0.401560i \(-0.868468\pi\)
0.915833 0.401560i \(-0.131532\pi\)
\(390\) −1.36521 + 0.697676i −0.0691303 + 0.0353282i
\(391\) 10.8958i 0.551024i
\(392\) −2.33068 + 18.5313i −0.117717 + 0.935971i
\(393\) −1.93715 + 1.93715i −0.0977162 + 0.0977162i
\(394\) 7.80853 24.9331i 0.393388 1.25611i
\(395\) −0.298284 + 31.5441i −0.0150083 + 1.58716i
\(396\) 5.38902 7.75985i 0.270808 0.389947i
\(397\) 10.7488 + 10.7488i 0.539467 + 0.539467i 0.923372 0.383905i \(-0.125421\pi\)
−0.383905 + 0.923372i \(0.625421\pi\)
\(398\) 9.48733 + 18.1395i 0.475557 + 0.909250i
\(399\) 0.647299 0.0324055
\(400\) 6.62955 + 18.8693i 0.331478 + 0.943463i
\(401\) −17.4770 −0.872760 −0.436380 0.899763i \(-0.643740\pi\)
−0.436380 + 0.899763i \(0.643740\pi\)
\(402\) −1.00247 1.91669i −0.0499985 0.0955956i
\(403\) −14.6285 14.6285i −0.728698 0.728698i
\(404\) 21.9833 31.6546i 1.09371 1.57487i
\(405\) 0.184451 19.5060i 0.00916543 0.969261i
\(406\) 4.41579 14.0999i 0.219152 0.699764i
\(407\) −0.986656 + 0.986656i −0.0489067 + 0.0489067i
\(408\) −0.143580 + 1.14160i −0.00710826 + 0.0565179i
\(409\) 30.6758i 1.51682i 0.651776 + 0.758411i \(0.274024\pi\)
−0.651776 + 0.758411i \(0.725976\pi\)
\(410\) −12.6530 + 6.46616i −0.624888 + 0.319341i
\(411\) 3.09908i 0.152866i
\(412\) 3.34315 0.602794i 0.164705 0.0296975i
\(413\) −0.433179 + 0.433179i −0.0213153 + 0.0213153i
\(414\) 18.8364 + 5.89917i 0.925758 + 0.289928i
\(415\) −10.3889 + 10.1942i −0.509970 + 0.500416i
\(416\) 0.832178 + 15.6050i 0.0408009 + 0.765097i
\(417\) 0.191279 + 0.191279i 0.00936697 + 0.00936697i
\(418\) 1.99369 1.04274i 0.0975147 0.0510022i
\(419\) 31.7353 1.55037 0.775184 0.631735i \(-0.217657\pi\)
0.775184 + 0.631735i \(0.217657\pi\)
\(420\) −2.36195 1.67364i −0.115252 0.0816654i
\(421\) 27.0814 1.31987 0.659933 0.751324i \(-0.270585\pi\)
0.659933 + 0.751324i \(0.270585\pi\)
\(422\) 17.8754 9.34922i 0.870162 0.455113i
\(423\) 26.8868 + 26.8868i 1.30728 + 1.30728i
\(424\) −13.4119 + 10.4152i −0.651340 + 0.505806i
\(425\) −8.03864 8.34858i −0.389931 0.404966i
\(426\) −2.12975 0.666996i −0.103187 0.0323160i
\(427\) −0.183724 + 0.183724i −0.00889101 + 0.00889101i
\(428\) −3.71758 20.6180i −0.179696 0.996611i
\(429\) 0.771324i 0.0372399i
\(430\) −20.7258 6.70675i −0.999488 0.323428i
\(431\) 34.5665i 1.66501i −0.554017 0.832506i \(-0.686906\pi\)
0.554017 0.832506i \(-0.313094\pi\)
\(432\) 3.81135 + 1.74159i 0.183374 + 0.0837924i
\(433\) 12.1303 12.1303i 0.582943 0.582943i −0.352768 0.935711i \(-0.614759\pi\)
0.935711 + 0.352768i \(0.114759\pi\)
\(434\) 11.6741 37.2762i 0.560377 1.78931i
\(435\) 0.778571 + 0.793436i 0.0373296 + 0.0380424i
\(436\) 7.05419 + 4.89895i 0.337834 + 0.234617i
\(437\) 3.32388 + 3.32388i 0.159003 + 0.159003i
\(438\) −1.59308 3.04592i −0.0761203 0.145540i
\(439\) 13.6473 0.651351 0.325676 0.945482i \(-0.394408\pi\)
0.325676 + 0.945482i \(0.394408\pi\)
\(440\) −9.97096 1.34994i −0.475347 0.0643560i
\(441\) −19.6068 −0.933659
\(442\) −4.19690 8.02435i −0.199626 0.381679i
\(443\) −26.9614 26.9614i −1.28097 1.28097i −0.940114 0.340859i \(-0.889282\pi\)
−0.340859 0.940114i \(-0.610718\pi\)
\(444\) −0.252856 0.175602i −0.0120000 0.00833369i
\(445\) −24.2715 0.229514i −1.15058 0.0108800i
\(446\) −9.17689 + 29.3023i −0.434539 + 1.38751i
\(447\) 0.592860 0.592860i 0.0280413 0.0280413i
\(448\) −25.3807 + 15.0478i −1.19913 + 0.710944i
\(449\) 16.7867i 0.792214i −0.918204 0.396107i \(-0.870361\pi\)
0.918204 0.396107i \(-0.129639\pi\)
\(450\) −18.7851 + 9.37694i −0.885538 + 0.442033i
\(451\) 7.14875i 0.336622i
\(452\) −2.06375 11.4457i −0.0970705 0.538361i
\(453\) −2.85499 + 2.85499i −0.134139 + 0.134139i
\(454\) −32.3451 10.1298i −1.51803 0.475417i
\(455\) 22.7821 + 0.215430i 1.06804 + 0.0100995i
\(456\) 0.304459 + 0.392060i 0.0142576 + 0.0183599i
\(457\) −6.50673 6.50673i −0.304372 0.304372i 0.538350 0.842722i \(-0.319048\pi\)
−0.842722 + 0.538350i \(0.819048\pi\)
\(458\) −17.6805 + 9.24729i −0.826157 + 0.432098i
\(459\) −2.42826 −0.113341
\(460\) −3.53449 20.7228i −0.164796 0.966206i
\(461\) 22.0700 1.02790 0.513951 0.857820i \(-0.328181\pi\)
0.513951 + 0.857820i \(0.328181\pi\)
\(462\) 1.29051 0.674966i 0.0600401 0.0314023i
\(463\) 11.3477 + 11.3477i 0.527372 + 0.527372i 0.919788 0.392416i \(-0.128361\pi\)
−0.392416 + 0.919788i \(0.628361\pi\)
\(464\) 10.6171 3.95733i 0.492885 0.183714i
\(465\) 2.05833 + 2.09763i 0.0954527 + 0.0972752i
\(466\) −29.3548 9.19333i −1.35984 0.425873i
\(467\) −9.63569 + 9.63569i −0.445887 + 0.445887i −0.893985 0.448098i \(-0.852102\pi\)
0.448098 + 0.893985i \(0.352102\pi\)
\(468\) −16.1446 + 2.91099i −0.746284 + 0.134560i
\(469\) 32.1431i 1.48423i
\(470\) 12.4678 38.5291i 0.575097 1.77722i
\(471\) 1.99980i 0.0921461i
\(472\) −0.466118 0.0586237i −0.0214548 0.00269837i
\(473\) 7.74948 7.74948i 0.356322 0.356322i
\(474\) 1.04646 3.34142i 0.0480657 0.153476i
\(475\) −4.99911 0.0945526i −0.229375 0.00433837i
\(476\) 9.75306 14.0438i 0.447031 0.643697i
\(477\) −12.6050 12.6050i −0.577144 0.577144i
\(478\) −0.879801 1.68215i −0.0402412 0.0769398i
\(479\) 3.41138 0.155870 0.0779350 0.996958i \(-0.475167\pi\)
0.0779350 + 0.996958i \(0.475167\pi\)
\(480\) −0.0972497 2.21781i −0.00443882 0.101229i
\(481\) 2.42289 0.110474
\(482\) 15.4875 + 29.6116i 0.705435 + 1.34877i
\(483\) 2.15154 + 2.15154i 0.0978986 + 0.0978986i
\(484\) −9.66157 + 13.9121i −0.439162 + 0.632367i
\(485\) −7.33297 + 7.19559i −0.332973 + 0.326735i
\(486\) −1.97544 + 6.30771i −0.0896080 + 0.286123i
\(487\) 17.2633 17.2633i 0.782276 0.782276i −0.197939 0.980214i \(-0.563425\pi\)
0.980214 + 0.197939i \(0.0634247\pi\)
\(488\) −0.197694 0.0248640i −0.00894918 0.00112554i
\(489\) 2.17559i 0.0983837i
\(490\) 9.50246 + 18.5945i 0.429277 + 0.840012i
\(491\) 33.3803i 1.50643i 0.657773 + 0.753216i \(0.271499\pi\)
−0.657773 + 0.753216i \(0.728501\pi\)
\(492\) 1.55218 0.279869i 0.0699777 0.0126175i
\(493\) −4.64276 + 4.64276i −0.209099 + 0.209099i
\(494\) −3.72823 1.16761i −0.167741 0.0525331i
\(495\) 0.0998777 10.5622i 0.00448917 0.474738i
\(496\) 28.0686 10.4621i 1.26032 0.469762i
\(497\) 23.4509 + 23.4509i 1.05192 + 1.05192i
\(498\) 1.43159 0.748751i 0.0641510 0.0335523i
\(499\) −15.4619 −0.692169 −0.346084 0.938203i \(-0.612489\pi\)
−0.346084 + 0.938203i \(0.612489\pi\)
\(500\) 17.9970 + 13.2706i 0.804849 + 0.593479i
\(501\) −1.53147 −0.0684212
\(502\) −2.65813 + 1.39026i −0.118638 + 0.0620503i
\(503\) −27.4515 27.4515i −1.22400 1.22400i −0.966197 0.257805i \(-0.917001\pi\)
−0.257805 0.966197i \(-0.582999\pi\)
\(504\) −18.9981 24.4644i −0.846244 1.08973i
\(505\) 0.407428 43.0863i 0.0181303 1.91731i
\(506\) 10.0928 + 3.16084i 0.448678 + 0.140517i
\(507\) 0.666221 0.666221i 0.0295879 0.0295879i
\(508\) −0.718079 3.98253i −0.0318596 0.176696i
\(509\) 20.0213i 0.887429i −0.896168 0.443714i \(-0.853660\pi\)
0.896168 0.443714i \(-0.146340\pi\)
\(510\) 0.585392 + 1.14550i 0.0259216 + 0.0507234i
\(511\) 51.0805i 2.25967i
\(512\) −21.0522 8.29496i −0.930383 0.366589i
\(513\) −0.740767 + 0.740767i −0.0327057 + 0.0327057i
\(514\) −8.04342 + 25.6831i −0.354780 + 1.13283i
\(515\) 2.71088 2.66009i 0.119456 0.117218i
\(516\) 1.98600 + 1.37923i 0.0874289 + 0.0607171i
\(517\) 14.4062 + 14.4062i 0.633585 + 0.633585i
\(518\) 2.12021 + 4.05378i 0.0931568 + 0.178113i
\(519\) −3.41932 −0.150091
\(520\) 10.5852 + 13.9002i 0.464190 + 0.609562i
\(521\) 21.3299 0.934479 0.467239 0.884131i \(-0.345249\pi\)
0.467239 + 0.884131i \(0.345249\pi\)
\(522\) 5.51263 + 10.5400i 0.241281 + 0.461322i
\(523\) −14.2835 14.2835i −0.624575 0.624575i 0.322123 0.946698i \(-0.395604\pi\)
−0.946698 + 0.322123i \(0.895604\pi\)
\(524\) 25.6425 + 17.8080i 1.12020 + 0.777948i
\(525\) −3.23591 0.0612037i −0.141227 0.00267115i
\(526\) −2.56164 + 8.17948i −0.111693 + 0.356642i
\(527\) −12.2742 + 12.2742i −0.534672 + 0.534672i
\(528\) 1.01581 + 0.464175i 0.0442077 + 0.0202006i
\(529\) 0.903616i 0.0392877i
\(530\) −5.84514 + 18.0632i −0.253897 + 0.784615i
\(531\) 0.493171i 0.0214018i
\(532\) −1.30894 7.25950i −0.0567498 0.314739i
\(533\) −8.77746 + 8.77746i −0.380194 + 0.380194i
\(534\) 2.57104 + 0.805198i 0.111260 + 0.0348443i
\(535\) −16.4055 16.7187i −0.709271 0.722813i
\(536\) −19.4686 + 15.1186i −0.840916 + 0.653023i
\(537\) 0.698057 + 0.698057i 0.0301234 + 0.0301234i
\(538\) −37.8012 + 19.7708i −1.62973 + 0.852381i
\(539\) −10.5056 −0.452507
\(540\) 4.61833 0.787704i 0.198741 0.0338974i
\(541\) 13.5259 0.581526 0.290763 0.956795i \(-0.406091\pi\)
0.290763 + 0.956795i \(0.406091\pi\)
\(542\) −11.6445 + 6.09033i −0.500175 + 0.261602i
\(543\) 0.262689 + 0.262689i 0.0112731 + 0.0112731i
\(544\) 13.0935 0.698247i 0.561380 0.0299371i
\(545\) 9.60174 + 0.0907951i 0.411293 + 0.00388923i
\(546\) −2.41328 0.755789i −0.103279 0.0323448i
\(547\) −3.98128 + 3.98128i −0.170227 + 0.170227i −0.787079 0.616852i \(-0.788408\pi\)
0.616852 + 0.787079i \(0.288408\pi\)
\(548\) −34.7564 + 6.26683i −1.48472 + 0.267706i
\(549\) 0.209168i 0.00892708i
\(550\) −10.0653 + 5.02427i −0.429185 + 0.214236i
\(551\) 2.83265i 0.120675i
\(552\) −0.291176 + 2.31515i −0.0123933 + 0.0985391i
\(553\) −36.7927 + 36.7927i −1.56458 + 1.56458i
\(554\) 12.0789 38.5686i 0.513183 1.63862i
\(555\) −0.344172 0.00325453i −0.0146093 0.000138147i
\(556\) 1.75841 2.53200i 0.0745732 0.107381i
\(557\) 7.53148 + 7.53148i 0.319119 + 0.319119i 0.848429 0.529310i \(-0.177549\pi\)
−0.529310 + 0.848429i \(0.677549\pi\)
\(558\) 14.5739 + 27.8648i 0.616961 + 1.17961i
\(559\) −19.0301 −0.804888
\(560\) −13.9938 + 29.8739i −0.591345 + 1.26240i
\(561\) −0.647187 −0.0273243
\(562\) 6.64057 + 12.6966i 0.280115 + 0.535572i
\(563\) −17.0950 17.0950i −0.720470 0.720470i 0.248231 0.968701i \(-0.420151\pi\)
−0.968701 + 0.248231i \(0.920151\pi\)
\(564\) −2.56397 + 3.69197i −0.107963 + 0.155460i
\(565\) −9.10720 9.28108i −0.383143 0.390458i
\(566\) 5.84752 18.6715i 0.245790 0.784820i
\(567\) 22.7516 22.7516i 0.955477 0.955477i
\(568\) −3.17370 + 25.2341i −0.133166 + 1.05880i
\(569\) 41.8061i 1.75260i 0.481762 + 0.876302i \(0.339997\pi\)
−0.481762 + 0.876302i \(0.660003\pi\)
\(570\) 0.528027 + 0.170866i 0.0221166 + 0.00715680i
\(571\) 4.87808i 0.204141i −0.994777 0.102071i \(-0.967453\pi\)
0.994777 0.102071i \(-0.0325468\pi\)
\(572\) −8.65046 + 1.55974i −0.361694 + 0.0652160i
\(573\) −0.770798 + 0.770798i −0.0322006 + 0.0322006i
\(574\) −22.3666 7.00477i −0.933565 0.292373i
\(575\) −16.3022 16.9307i −0.679847 0.706060i
\(576\) 5.88195 23.0138i 0.245081 0.958909i
\(577\) −8.43373 8.43373i −0.351101 0.351101i 0.509418 0.860519i \(-0.329861\pi\)
−0.860519 + 0.509418i \(0.829861\pi\)
\(578\) 14.5708 7.62085i 0.606066 0.316985i
\(579\) 2.33201 0.0969150
\(580\) 7.32405 10.3362i 0.304115 0.429187i
\(581\) −24.0079 −0.996016
\(582\) 1.01048 0.528504i 0.0418859 0.0219072i
\(583\) −6.75391 6.75391i −0.279718 0.279718i
\(584\) −30.9388 + 24.0258i −1.28025 + 0.994197i
\(585\) −13.0913 + 12.8460i −0.541258 + 0.531118i
\(586\) 0.781661 + 0.244800i 0.0322901 + 0.0101126i
\(587\) −3.58279 + 3.58279i −0.147878 + 0.147878i −0.777169 0.629292i \(-0.783345\pi\)
0.629292 + 0.777169i \(0.283345\pi\)
\(588\) −0.411287 2.28103i −0.0169612 0.0940683i
\(589\) 7.48876i 0.308569i
\(590\) −0.467707 + 0.239016i −0.0192552 + 0.00984012i
\(591\) 3.24234i 0.133372i
\(592\) −1.45807 + 3.19089i −0.0599264 + 0.131145i
\(593\) 0.629048 0.629048i 0.0258319 0.0258319i −0.694073 0.719905i \(-0.744185\pi\)
0.719905 + 0.694073i \(0.244185\pi\)
\(594\) −0.704432 + 2.24929i −0.0289032 + 0.0922896i
\(595\) 0.180759 19.1156i 0.00741039 0.783662i
\(596\) −7.84783 5.45011i −0.321460 0.223245i
\(597\) −1.79632 1.79632i −0.0735185 0.0735185i
\(598\) −8.51122 16.2732i −0.348050 0.665460i
\(599\) 14.8776 0.607883 0.303941 0.952691i \(-0.401697\pi\)
0.303941 + 0.952691i \(0.401697\pi\)
\(600\) −1.48495 1.98874i −0.0606229 0.0811898i
\(601\) 4.49789 0.183473 0.0917364 0.995783i \(-0.470758\pi\)
0.0917364 + 0.995783i \(0.470758\pi\)
\(602\) −16.6528 31.8396i −0.678716 1.29768i
\(603\) −18.2973 18.2973i −0.745125 0.745125i
\(604\) 37.7921 + 26.2456i 1.53774 + 1.06792i
\(605\) −0.179063 + 18.9363i −0.00727996 + 0.769869i
\(606\) −1.42937 + 4.56407i −0.0580643 + 0.185402i
\(607\) −30.8289 + 30.8289i −1.25131 + 1.25131i −0.296174 + 0.955134i \(0.595711\pi\)
−0.955134 + 0.296174i \(0.904289\pi\)
\(608\) 3.78132 4.20733i 0.153353 0.170630i
\(609\) 1.83357i 0.0743001i
\(610\) −0.198368 + 0.101373i −0.00803168 + 0.00410449i
\(611\) 35.3769i 1.43119i
\(612\) 2.44249 + 13.5463i 0.0987319 + 0.547576i
\(613\) 8.34078 8.34078i 0.336881 0.336881i −0.518311 0.855192i \(-0.673439\pi\)
0.855192 + 0.518311i \(0.173439\pi\)
\(614\) 43.0085 + 13.4694i 1.73568 + 0.543580i
\(615\) 1.25863 1.23505i 0.0507528 0.0498019i
\(616\) −10.1794 13.1083i −0.410140 0.528149i
\(617\) −12.8874 12.8874i −0.518827 0.518827i 0.398389 0.917216i \(-0.369569\pi\)
−0.917216 + 0.398389i \(0.869569\pi\)
\(618\) −0.373560 + 0.195380i −0.0150268 + 0.00785932i
\(619\) 8.36882 0.336371 0.168186 0.985755i \(-0.446209\pi\)
0.168186 + 0.985755i \(0.446209\pi\)
\(620\) 19.3628 27.3260i 0.777628 1.09744i
\(621\) −4.92445 −0.197611
\(622\) −4.82733 + 2.52479i −0.193558 + 0.101235i
\(623\) −28.3100 28.3100i −1.13422 1.13422i
\(624\) −0.677321 1.81718i −0.0271145 0.0727453i
\(625\) 24.9821 + 0.945357i 0.999285 + 0.0378143i
\(626\) 16.3969 + 5.13517i 0.655351 + 0.205243i
\(627\) −0.197432 + 0.197432i −0.00788466 + 0.00788466i
\(628\) 22.4279 4.04392i 0.894972 0.161370i
\(629\) 2.03295i 0.0810592i
\(630\) −32.9487 10.6620i −1.31271 0.424784i
\(631\) 31.5443i 1.25576i 0.778311 + 0.627879i \(0.216077\pi\)
−0.778311 + 0.627879i \(0.783923\pi\)
\(632\) −39.5904 4.97929i −1.57482 0.198066i
\(633\) −1.77017 + 1.77017i −0.0703580 + 0.0703580i
\(634\) −8.50334 + 27.1516i −0.337711 + 1.07833i
\(635\) −3.16884 3.22935i −0.125752 0.128153i
\(636\) 1.20204 1.73086i 0.0476640 0.0686332i
\(637\) 12.8991 + 12.8991i 0.511080 + 0.511080i
\(638\) 2.95373 + 5.64744i 0.116939 + 0.223584i
\(639\) −26.6987 −1.05619
\(640\) −24.6762 + 5.57542i −0.975412 + 0.220388i
\(641\) −22.5738 −0.891612 −0.445806 0.895130i \(-0.647083\pi\)
−0.445806 + 0.895130i \(0.647083\pi\)
\(642\) 1.20496 + 2.30384i 0.0475559 + 0.0909253i
\(643\) −5.75048 5.75048i −0.226777 0.226777i 0.584568 0.811345i \(-0.301264\pi\)
−0.811345 + 0.584568i \(0.801264\pi\)
\(644\) 19.7790 28.4805i 0.779400 1.12229i
\(645\) 2.70323 + 0.0255620i 0.106440 + 0.00100650i
\(646\) −0.979691 + 3.12821i −0.0385454 + 0.123078i
\(647\) 10.6270 10.6270i 0.417789 0.417789i −0.466652 0.884441i \(-0.654540\pi\)
0.884441 + 0.466652i \(0.154540\pi\)
\(648\) 24.4816 + 3.07906i 0.961728 + 0.120957i
\(649\) 0.264247i 0.0103726i
\(650\) 18.5274 + 6.18950i 0.726705 + 0.242772i
\(651\) 4.84746i 0.189987i
\(652\) 24.3994 4.39939i 0.955555 0.172293i
\(653\) −0.939598 + 0.939598i −0.0367693 + 0.0367693i −0.725252 0.688483i \(-0.758277\pi\)
0.688483 + 0.725252i \(0.258277\pi\)
\(654\) −1.01710 0.318534i −0.0397717 0.0124557i
\(655\) 34.9030 + 0.330046i 1.36377 + 0.0128960i
\(656\) −6.27751 16.8419i −0.245096 0.657565i
\(657\) −29.0774 29.0774i −1.13442 1.13442i
\(658\) 59.1895 30.9574i 2.30745 1.20684i
\(659\) −0.526274 −0.0205007 −0.0102504 0.999947i \(-0.503263\pi\)
−0.0102504 + 0.999947i \(0.503263\pi\)
\(660\) 1.23089 0.209941i 0.0479124 0.00817196i
\(661\) 24.1930 0.940998 0.470499 0.882400i \(-0.344074\pi\)
0.470499 + 0.882400i \(0.344074\pi\)
\(662\) −38.4245 + 20.0968i −1.49341 + 0.781085i
\(663\) 0.794637 + 0.794637i 0.0308611 + 0.0308611i
\(664\) −11.2922 14.5413i −0.438222 0.564311i
\(665\) −5.77628 5.88657i −0.223995 0.228271i
\(666\) −3.51452 1.10068i −0.136185 0.0426504i
\(667\) −9.41540 + 9.41540i −0.364566 + 0.364566i
\(668\) 3.09688 + 17.1756i 0.119822 + 0.664544i
\(669\) 3.81053i 0.147324i
\(670\) −8.48475 + 26.2204i −0.327794 + 1.01298i
\(671\) 0.112075i 0.00432660i
\(672\) 2.44764 2.72340i 0.0944198 0.105057i
\(673\) 14.4954 14.4954i 0.558758 0.558758i −0.370196 0.928954i \(-0.620709\pi\)
0.928954 + 0.370196i \(0.120709\pi\)
\(674\) −1.01623 + 3.24486i −0.0391435 + 0.124988i
\(675\) 3.77322 3.63313i 0.145231 0.139839i
\(676\) −8.81892 6.12451i −0.339189 0.235558i
\(677\) 11.5440 + 11.5440i 0.443674 + 0.443674i 0.893245 0.449571i \(-0.148423\pi\)
−0.449571 + 0.893245i \(0.648423\pi\)
\(678\) 0.668909 + 1.27893i 0.0256893 + 0.0491171i
\(679\) −16.9459 −0.650326
\(680\) 11.6631 8.88158i 0.447258 0.340593i
\(681\) 4.20622 0.161183
\(682\) 7.80885 + 14.9303i 0.299016 + 0.571710i
\(683\) 0.806416 + 0.806416i 0.0308567 + 0.0308567i 0.722367 0.691510i \(-0.243054\pi\)
−0.691510 + 0.722367i \(0.743054\pi\)
\(684\) 4.87755 + 3.38734i 0.186498 + 0.129518i
\(685\) −28.1832 + 27.6552i −1.07682 + 1.05665i
\(686\) 0.618237 1.97407i 0.0236044 0.0753702i
\(687\) 1.75087 1.75087i 0.0667999 0.0667999i
\(688\) 11.4521 25.0622i 0.436608 0.955487i
\(689\) 16.5853i 0.631851i
\(690\) 1.18716 + 2.32304i 0.0451944 + 0.0884365i
\(691\) 8.43610i 0.320924i 0.987042 + 0.160462i \(0.0512985\pi\)
−0.987042 + 0.160462i \(0.948702\pi\)
\(692\) 6.91440 + 38.3479i 0.262846 + 1.45777i
\(693\) 12.3197 12.3197i 0.467986 0.467986i
\(694\) −5.87668 1.84045i −0.223076 0.0698627i
\(695\) 0.0325896 3.44641i 0.00123619 0.130730i
\(696\) −1.11057 + 0.862425i −0.0420960 + 0.0326902i
\(697\) 7.36482 + 7.36482i 0.278962 + 0.278962i
\(698\) 36.5829 19.1336i 1.38468 0.724217i
\(699\) 3.81736 0.144386
\(700\) 5.85713 + 36.4148i 0.221379 + 1.37635i
\(701\) −48.1260 −1.81769 −0.908847 0.417130i \(-0.863036\pi\)
−0.908847 + 0.417130i \(0.863036\pi\)
\(702\) 3.62668 1.89683i 0.136880 0.0715911i
\(703\) −0.620175 0.620175i −0.0233904 0.0233904i
\(704\) 3.15161 12.3311i 0.118781 0.464745i
\(705\) −0.0475196 + 5.02528i −0.00178969 + 0.189263i
\(706\) 7.61282 + 2.38418i 0.286512 + 0.0897297i
\(707\) 50.2554 50.2554i 1.89005 1.89005i
\(708\) 0.0573749 0.0103451i 0.00215628 0.000388793i
\(709\) 26.2454i 0.985666i −0.870124 0.492833i \(-0.835961\pi\)
0.870124 0.492833i \(-0.164039\pi\)
\(710\) 12.9395 + 25.3201i 0.485612 + 0.950248i
\(711\) 41.8882i 1.57093i
\(712\) 3.83129 30.4627i 0.143584 1.14164i
\(713\) −24.8918 + 24.8918i −0.932203 + 0.932203i
\(714\) −0.634153 + 2.02489i −0.0237326 + 0.0757794i
\(715\) −7.01446 + 6.88305i −0.262326 + 0.257411i
\(716\) 6.41718 9.24034i 0.239821 0.345328i
\(717\) 0.166580 + 0.166580i 0.00622106 + 0.00622106i
\(718\) −10.2902 19.6746i −0.384028 0.734249i
\(719\) −20.3968 −0.760673 −0.380336 0.924848i \(-0.624192\pi\)
−0.380336 + 0.924848i \(0.624192\pi\)
\(720\) −9.03969 24.9715i −0.336889 0.930633i
\(721\) 6.26465 0.233308
\(722\) 0.655429 + 1.25316i 0.0243926 + 0.0466378i
\(723\) −2.93238 2.93238i −0.109056 0.109056i
\(724\) 2.41488 3.47727i 0.0897482 0.129232i
\(725\) 0.267835 14.1607i 0.00994713 0.525916i
\(726\) 0.628204 2.00589i 0.0233148 0.0744456i
\(727\) 25.9245 25.9245i 0.961488 0.961488i −0.0377979 0.999285i \(-0.512034\pi\)
0.999285 + 0.0377979i \(0.0120343\pi\)
\(728\) −3.59620 + 28.5934i −0.133284 + 1.05974i
\(729\) 25.3510i 0.938924i
\(730\) −13.4836 + 41.6684i −0.499051 + 1.54222i
\(731\) 15.9674i 0.590576i
\(732\) 0.0243343 0.00438766i 0.000899423 0.000162173i
\(733\) 16.2770 16.2770i 0.601204 0.601204i −0.339428 0.940632i \(-0.610234\pi\)
0.940632 + 0.339428i \(0.110234\pi\)
\(734\) −24.6797 7.72918i −0.910945 0.285289i
\(735\) −1.81499 1.84964i −0.0669468 0.0682250i
\(736\) 26.5533 1.41603i 0.978769 0.0521955i
\(737\) −9.80392 9.80392i −0.361132 0.361132i
\(738\) 16.7196 8.74469i 0.615456 0.321896i
\(739\) 32.9152 1.21080 0.605402 0.795920i \(-0.293012\pi\)
0.605402 + 0.795920i \(0.293012\pi\)
\(740\) 0.659471 + 3.86650i 0.0242426 + 0.142135i
\(741\) 0.484826 0.0178105
\(742\) −27.7492 + 14.5134i −1.01870 + 0.532804i
\(743\) 30.7223 + 30.7223i 1.12709 + 1.12709i 0.990648 + 0.136443i \(0.0435670\pi\)
0.136443 + 0.990648i \(0.456433\pi\)
\(744\) −2.93604 + 2.28002i −0.107641 + 0.0835895i
\(745\) −10.6820 0.101010i −0.391358 0.00370072i
\(746\) −30.5528 9.56851i −1.11862 0.350328i
\(747\) 13.6664 13.6664i 0.500028 0.500028i
\(748\) 1.30872 + 7.25825i 0.0478514 + 0.265388i
\(749\) 38.6357i 1.41172i
\(750\) −2.62351 0.904105i −0.0957969 0.0330132i
\(751\) 15.8179i 0.577202i 0.957449 + 0.288601i \(0.0931902\pi\)
−0.957449 + 0.288601i \(0.906810\pi\)
\(752\) 46.5904 + 21.2894i 1.69898 + 0.776345i
\(753\) 0.263230 0.263230i 0.00959264 0.00959264i
\(754\) 3.30742 10.5608i 0.120449 0.384601i
\(755\) 51.4404 + 0.486425i 1.87211 + 0.0177028i
\(756\) 6.34722 + 4.40798i 0.230846 + 0.160317i
\(757\) −11.8403 11.8403i −0.430342 0.430342i 0.458403 0.888745i \(-0.348422\pi\)
−0.888745 + 0.458403i \(0.848422\pi\)
\(758\) 17.0730 + 32.6431i 0.620121 + 1.18565i
\(759\) −1.31248 −0.0476400
\(760\) 0.848523 6.26738i 0.0307792 0.227342i
\(761\) 31.9316 1.15752 0.578759 0.815498i \(-0.303537\pi\)
0.578759 + 0.815498i \(0.303537\pi\)
\(762\) 0.232747 + 0.445004i 0.00843152 + 0.0161208i
\(763\) 11.1994 + 11.1994i 0.405444 + 0.405444i
\(764\) 10.2032 + 7.08588i 0.369140 + 0.256358i
\(765\) 10.7786 + 10.9844i 0.389701 + 0.397141i
\(766\) −11.9112 + 38.0331i −0.430369 + 1.37419i
\(767\) −0.324451 + 0.324451i −0.0117152 + 0.0117152i
\(768\) 2.80078 + 0.201544i 0.101064 + 0.00727259i
\(769\) 2.26915i 0.0818278i 0.999163 + 0.0409139i \(0.0130269\pi\)
−0.999163 + 0.0409139i