Properties

Label 380.2.k.c.267.15
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.15
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0413255 + 1.41361i) q^{2} +(0.135093 + 0.135093i) q^{3} +(-1.99658 + 0.116836i) q^{4} +(-0.869041 - 2.06028i) q^{5} +(-0.185386 + 0.196551i) q^{6} +(-0.485902 + 0.485902i) q^{7} +(-0.247670 - 2.81756i) q^{8} -2.96350i q^{9} +O(q^{10})\) \(q+(0.0413255 + 1.41361i) q^{2} +(0.135093 + 0.135093i) q^{3} +(-1.99658 + 0.116836i) q^{4} +(-0.869041 - 2.06028i) q^{5} +(-0.185386 + 0.196551i) q^{6} +(-0.485902 + 0.485902i) q^{7} +(-0.247670 - 2.81756i) q^{8} -2.96350i q^{9} +(2.87652 - 1.31363i) q^{10} -2.63838i q^{11} +(-0.285508 - 0.253940i) q^{12} +(1.08906 - 1.08906i) q^{13} +(-0.706956 - 0.666795i) q^{14} +(0.160928 - 0.395730i) q^{15} +(3.97270 - 0.466546i) q^{16} +(0.183281 + 0.183281i) q^{17} +(4.18923 - 0.122468i) q^{18} +1.00000 q^{19} +(1.97583 + 4.01199i) q^{20} -0.131284 q^{21} +(3.72964 - 0.109032i) q^{22} +(-1.67171 - 1.67171i) q^{23} +(0.347174 - 0.414091i) q^{24} +(-3.48953 + 3.58094i) q^{25} +(1.58451 + 1.49450i) q^{26} +(0.805626 - 0.805626i) q^{27} +(0.913373 - 1.02691i) q^{28} -2.28013i q^{29} +(0.566059 + 0.211136i) q^{30} -8.70538i q^{31} +(0.823688 + 5.59656i) q^{32} +(0.356426 - 0.356426i) q^{33} +(-0.251514 + 0.266662i) q^{34} +(1.42336 + 0.578827i) q^{35} +(0.346244 + 5.91688i) q^{36} +(2.41122 + 2.41122i) q^{37} +(0.0413255 + 1.41361i) q^{38} +0.294249 q^{39} +(-5.58974 + 2.95885i) q^{40} -6.45944 q^{41} +(-0.00542536 - 0.185584i) q^{42} +(1.57328 + 1.57328i) q^{43} +(0.308259 + 5.26775i) q^{44} +(-6.10565 + 2.57540i) q^{45} +(2.29406 - 2.43223i) q^{46} +(1.50600 - 1.50600i) q^{47} +(0.599710 + 0.473656i) q^{48} +6.52780i q^{49} +(-5.20626 - 4.78486i) q^{50} +0.0495200i q^{51} +(-2.04716 + 2.30165i) q^{52} +(2.01091 - 2.01091i) q^{53} +(1.17213 + 1.10555i) q^{54} +(-5.43582 + 2.29286i) q^{55} +(1.48940 + 1.24872i) q^{56} +(0.135093 + 0.135093i) q^{57} +(3.22322 - 0.0942276i) q^{58} +7.70848 q^{59} +(-0.275071 + 0.808912i) q^{60} -5.31413 q^{61} +(12.3060 - 0.359754i) q^{62} +(1.43997 + 1.43997i) q^{63} +(-7.87732 + 1.39565i) q^{64} +(-3.19022 - 1.29734i) q^{65} +(0.518577 + 0.489118i) q^{66} +(-2.32819 + 2.32819i) q^{67} +(-0.387351 - 0.344523i) q^{68} -0.451671i q^{69} +(-0.759414 + 2.03600i) q^{70} -8.57269i q^{71} +(-8.34985 + 0.733971i) q^{72} +(3.37737 - 3.37737i) q^{73} +(-3.30888 + 3.50817i) q^{74} +(-0.955170 + 0.0123486i) q^{75} +(-1.99658 + 0.116836i) q^{76} +(1.28200 + 1.28200i) q^{77} +(0.0121600 + 0.415953i) q^{78} -8.20882 q^{79} +(-4.41366 - 7.77944i) q^{80} -8.67283 q^{81} +(-0.266939 - 9.13112i) q^{82} +(7.64499 + 7.64499i) q^{83} +(0.262119 - 0.0153387i) q^{84} +(0.218332 - 0.536890i) q^{85} +(-2.15898 + 2.28902i) q^{86} +(0.308029 - 0.308029i) q^{87} +(-7.43381 + 0.653450i) q^{88} -7.85651i q^{89} +(-3.89293 - 8.52457i) q^{90} +1.05835i q^{91} +(3.53302 + 3.14239i) q^{92} +(1.17603 - 1.17603i) q^{93} +(2.19113 + 2.06666i) q^{94} +(-0.869041 - 2.06028i) q^{95} +(-0.644781 + 0.867330i) q^{96} +(10.0401 + 10.0401i) q^{97} +(-9.22776 + 0.269764i) q^{98} -7.81885 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0413255 + 1.41361i 0.0292215 + 0.999573i
\(3\) 0.135093 + 0.135093i 0.0779958 + 0.0779958i 0.745028 0.667033i \(-0.232436\pi\)
−0.667033 + 0.745028i \(0.732436\pi\)
\(4\) −1.99658 + 0.116836i −0.998292 + 0.0584181i
\(5\) −0.869041 2.06028i −0.388647 0.921387i
\(6\) −0.185386 + 0.196551i −0.0756834 + 0.0802417i
\(7\) −0.485902 + 0.485902i −0.183654 + 0.183654i −0.792946 0.609292i \(-0.791454\pi\)
0.609292 + 0.792946i \(0.291454\pi\)
\(8\) −0.247670 2.81756i −0.0875647 0.996159i
\(9\) 2.96350i 0.987833i
\(10\) 2.87652 1.31363i 0.909636 0.415405i
\(11\) 2.63838i 0.795502i −0.917493 0.397751i \(-0.869791\pi\)
0.917493 0.397751i \(-0.130209\pi\)
\(12\) −0.285508 0.253940i −0.0824190 0.0733063i
\(13\) 1.08906 1.08906i 0.302051 0.302051i −0.539765 0.841816i \(-0.681487\pi\)
0.841816 + 0.539765i \(0.181487\pi\)
\(14\) −0.706956 0.666795i −0.188942 0.178209i
\(15\) 0.160928 0.395730i 0.0415515 0.102177i
\(16\) 3.97270 0.466546i 0.993175 0.116637i
\(17\) 0.183281 + 0.183281i 0.0444522 + 0.0444522i 0.728984 0.684531i \(-0.239993\pi\)
−0.684531 + 0.728984i \(0.739993\pi\)
\(18\) 4.18923 0.122468i 0.987411 0.0288660i
\(19\) 1.00000 0.229416
\(20\) 1.97583 + 4.01199i 0.441809 + 0.897109i
\(21\) −0.131284 −0.0286484
\(22\) 3.72964 0.109032i 0.795163 0.0232458i
\(23\) −1.67171 1.67171i −0.348575 0.348575i 0.511003 0.859579i \(-0.329274\pi\)
−0.859579 + 0.511003i \(0.829274\pi\)
\(24\) 0.347174 0.414091i 0.0708666 0.0845259i
\(25\) −3.48953 + 3.58094i −0.697907 + 0.716189i
\(26\) 1.58451 + 1.49450i 0.310749 + 0.293096i
\(27\) 0.805626 0.805626i 0.155043 0.155043i
\(28\) 0.913373 1.02691i 0.172611 0.194069i
\(29\) 2.28013i 0.423410i −0.977334 0.211705i \(-0.932098\pi\)
0.977334 0.211705i \(-0.0679016\pi\)
\(30\) 0.566059 + 0.211136i 0.103348 + 0.0385479i
\(31\) 8.70538i 1.56353i −0.623572 0.781766i \(-0.714319\pi\)
0.623572 0.781766i \(-0.285681\pi\)
\(32\) 0.823688 + 5.59656i 0.145609 + 0.989342i
\(33\) 0.356426 0.356426i 0.0620459 0.0620459i
\(34\) −0.251514 + 0.266662i −0.0431343 + 0.0457322i
\(35\) 1.42336 + 0.578827i 0.240592 + 0.0978396i
\(36\) 0.346244 + 5.91688i 0.0577073 + 0.986146i
\(37\) 2.41122 + 2.41122i 0.396402 + 0.396402i 0.876962 0.480560i \(-0.159566\pi\)
−0.480560 + 0.876962i \(0.659566\pi\)
\(38\) 0.0413255 + 1.41361i 0.00670388 + 0.229318i
\(39\) 0.294249 0.0471175
\(40\) −5.58974 + 2.95885i −0.883816 + 0.467835i
\(41\) −6.45944 −1.00879 −0.504397 0.863472i \(-0.668285\pi\)
−0.504397 + 0.863472i \(0.668285\pi\)
\(42\) −0.00542536 0.185584i −0.000837151 0.0286362i
\(43\) 1.57328 + 1.57328i 0.239922 + 0.239922i 0.816818 0.576895i \(-0.195736\pi\)
−0.576895 + 0.816818i \(0.695736\pi\)
\(44\) 0.308259 + 5.26775i 0.0464717 + 0.794144i
\(45\) −6.10565 + 2.57540i −0.910176 + 0.383919i
\(46\) 2.29406 2.43223i 0.338241 0.358612i
\(47\) 1.50600 1.50600i 0.219673 0.219673i −0.588688 0.808360i \(-0.700355\pi\)
0.808360 + 0.588688i \(0.200355\pi\)
\(48\) 0.599710 + 0.473656i 0.0865607 + 0.0683663i
\(49\) 6.52780i 0.932543i
\(50\) −5.20626 4.78486i −0.736277 0.676681i
\(51\) 0.0495200i 0.00693418i
\(52\) −2.04716 + 2.30165i −0.283890 + 0.319181i
\(53\) 2.01091 2.01091i 0.276220 0.276220i −0.555378 0.831598i \(-0.687427\pi\)
0.831598 + 0.555378i \(0.187427\pi\)
\(54\) 1.17213 + 1.10555i 0.159507 + 0.150446i
\(55\) −5.43582 + 2.29286i −0.732965 + 0.309170i
\(56\) 1.48940 + 1.24872i 0.199030 + 0.166867i
\(57\) 0.135093 + 0.135093i 0.0178935 + 0.0178935i
\(58\) 3.22322 0.0942276i 0.423229 0.0123727i
\(59\) 7.70848 1.00356 0.501779 0.864996i \(-0.332679\pi\)
0.501779 + 0.864996i \(0.332679\pi\)
\(60\) −0.275071 + 0.808912i −0.0355115 + 0.104430i
\(61\) −5.31413 −0.680405 −0.340203 0.940352i \(-0.610496\pi\)
−0.340203 + 0.940352i \(0.610496\pi\)
\(62\) 12.3060 0.359754i 1.56286 0.0456888i
\(63\) 1.43997 + 1.43997i 0.181419 + 0.181419i
\(64\) −7.87732 + 1.39565i −0.984665 + 0.174457i
\(65\) −3.19022 1.29734i −0.395698 0.160915i
\(66\) 0.518577 + 0.489118i 0.0638325 + 0.0602063i
\(67\) −2.32819 + 2.32819i −0.284433 + 0.284433i −0.834874 0.550441i \(-0.814460\pi\)
0.550441 + 0.834874i \(0.314460\pi\)
\(68\) −0.387351 0.344523i −0.0469731 0.0417795i
\(69\) 0.451671i 0.0543748i
\(70\) −0.759414 + 2.03600i −0.0907673 + 0.243349i
\(71\) 8.57269i 1.01739i −0.860946 0.508696i \(-0.830128\pi\)
0.860946 0.508696i \(-0.169872\pi\)
\(72\) −8.34985 + 0.733971i −0.984039 + 0.0864994i
\(73\) 3.37737 3.37737i 0.395291 0.395291i −0.481277 0.876568i \(-0.659827\pi\)
0.876568 + 0.481277i \(0.159827\pi\)
\(74\) −3.30888 + 3.50817i −0.384649 + 0.407816i
\(75\) −0.955170 + 0.0123486i −0.110294 + 0.00142590i
\(76\) −1.99658 + 0.116836i −0.229024 + 0.0134020i
\(77\) 1.28200 + 1.28200i 0.146097 + 0.146097i
\(78\) 0.0121600 + 0.415953i 0.00137685 + 0.0470974i
\(79\) −8.20882 −0.923565 −0.461782 0.886993i \(-0.652790\pi\)
−0.461782 + 0.886993i \(0.652790\pi\)
\(80\) −4.41366 7.77944i −0.493462 0.869767i
\(81\) −8.67283 −0.963648
\(82\) −0.266939 9.13112i −0.0294785 1.00836i
\(83\) 7.64499 + 7.64499i 0.839147 + 0.839147i 0.988747 0.149600i \(-0.0477985\pi\)
−0.149600 + 0.988747i \(0.547798\pi\)
\(84\) 0.262119 0.0153387i 0.0285995 0.00167359i
\(85\) 0.218332 0.536890i 0.0236815 0.0582339i
\(86\) −2.15898 + 2.28902i −0.232809 + 0.246831i
\(87\) 0.308029 0.308029i 0.0330242 0.0330242i
\(88\) −7.43381 + 0.653450i −0.792447 + 0.0696580i
\(89\) 7.85651i 0.832788i −0.909184 0.416394i \(-0.863294\pi\)
0.909184 0.416394i \(-0.136706\pi\)
\(90\) −3.89293 8.52457i −0.410351 0.898569i
\(91\) 1.05835i 0.110946i
\(92\) 3.53302 + 3.14239i 0.368343 + 0.327617i
\(93\) 1.17603 1.17603i 0.121949 0.121949i
\(94\) 2.19113 + 2.06666i 0.225998 + 0.213160i
\(95\) −0.869041 2.06028i −0.0891618 0.211381i
\(96\) −0.644781 + 0.867330i −0.0658077 + 0.0885215i
\(97\) 10.0401 + 10.0401i 1.01942 + 1.01942i 0.999808 + 0.0196098i \(0.00624238\pi\)
0.0196098 + 0.999808i \(0.493758\pi\)
\(98\) −9.22776 + 0.269764i −0.932144 + 0.0272503i
\(99\) −7.81885 −0.785824
\(100\) 6.54877 7.55736i 0.654877 0.755736i
\(101\) −12.1092 −1.20491 −0.602456 0.798152i \(-0.705811\pi\)
−0.602456 + 0.798152i \(0.705811\pi\)
\(102\) −0.0700019 + 0.00204644i −0.00693122 + 0.000202627i
\(103\) −0.820343 0.820343i −0.0808308 0.0808308i 0.665535 0.746366i \(-0.268203\pi\)
−0.746366 + 0.665535i \(0.768203\pi\)
\(104\) −3.33823 2.79877i −0.327340 0.274442i
\(105\) 0.114091 + 0.270481i 0.0111341 + 0.0263963i
\(106\) 2.92574 + 2.75954i 0.284173 + 0.268030i
\(107\) 12.7076 12.7076i 1.22849 1.22849i 0.263960 0.964534i \(-0.414971\pi\)
0.964534 0.263960i \(-0.0850286\pi\)
\(108\) −1.51437 + 1.70263i −0.145721 + 0.163835i
\(109\) 11.5196i 1.10338i 0.834050 + 0.551689i \(0.186016\pi\)
−0.834050 + 0.551689i \(0.813984\pi\)
\(110\) −3.46585 7.58937i −0.330456 0.723618i
\(111\) 0.651477i 0.0618354i
\(112\) −1.70365 + 2.15704i −0.160979 + 0.203821i
\(113\) 11.5846 11.5846i 1.08979 1.08979i 0.0942420 0.995549i \(-0.469957\pi\)
0.995549 0.0942420i \(-0.0300427\pi\)
\(114\) −0.185386 + 0.196551i −0.0173630 + 0.0184087i
\(115\) −1.99141 + 4.89698i −0.185700 + 0.456645i
\(116\) 0.266402 + 4.55248i 0.0247348 + 0.422687i
\(117\) −3.22744 3.22744i −0.298377 0.298377i
\(118\) 0.318556 + 10.8968i 0.0293255 + 1.00313i
\(119\) −0.178113 −0.0163276
\(120\) −1.15485 0.355414i −0.105423 0.0324447i
\(121\) 4.03893 0.367176
\(122\) −0.219609 7.51211i −0.0198825 0.680115i
\(123\) −0.872623 0.872623i −0.0786818 0.0786818i
\(124\) 1.01710 + 17.3810i 0.0913385 + 1.56086i
\(125\) 10.4103 + 4.07744i 0.931126 + 0.364697i
\(126\) −1.97605 + 2.09506i −0.176040 + 0.186643i
\(127\) −15.8432 + 15.8432i −1.40585 + 1.40585i −0.626155 + 0.779698i \(0.715372\pi\)
−0.779698 + 0.626155i \(0.784628\pi\)
\(128\) −2.29844 11.0778i −0.203156 0.979146i
\(129\) 0.425077i 0.0374259i
\(130\) 1.70209 4.56333i 0.149283 0.400231i
\(131\) 17.7278i 1.54888i 0.632647 + 0.774441i \(0.281969\pi\)
−0.632647 + 0.774441i \(0.718031\pi\)
\(132\) −0.669992 + 0.753279i −0.0583153 + 0.0655645i
\(133\) −0.485902 + 0.485902i −0.0421330 + 0.0421330i
\(134\) −3.38736 3.19493i −0.292623 0.276000i
\(135\) −2.35994 0.959695i −0.203111 0.0825974i
\(136\) 0.471013 0.561800i 0.0403891 0.0481739i
\(137\) 4.70836 + 4.70836i 0.402263 + 0.402263i 0.879030 0.476767i \(-0.158191\pi\)
−0.476767 + 0.879030i \(0.658191\pi\)
\(138\) 0.638487 0.0186655i 0.0543516 0.00158892i
\(139\) 5.95711 0.505276 0.252638 0.967561i \(-0.418702\pi\)
0.252638 + 0.967561i \(0.418702\pi\)
\(140\) −2.90949 0.989376i −0.245897 0.0836175i
\(141\) 0.406899 0.0342671
\(142\) 12.1184 0.354271i 1.01696 0.0297297i
\(143\) −2.87336 2.87336i −0.240283 0.240283i
\(144\) −1.38261 11.7731i −0.115218 0.981091i
\(145\) −4.69772 + 1.98153i −0.390124 + 0.164557i
\(146\) 4.91385 + 4.63471i 0.406673 + 0.383571i
\(147\) −0.881858 + 0.881858i −0.0727344 + 0.0727344i
\(148\) −5.09592 4.53249i −0.418882 0.372568i
\(149\) 2.79263i 0.228781i −0.993436 0.114390i \(-0.963508\pi\)
0.993436 0.114390i \(-0.0364915\pi\)
\(150\) −0.0569290 1.34973i −0.00464823 0.110205i
\(151\) 3.85424i 0.313653i −0.987626 0.156827i \(-0.949874\pi\)
0.987626 0.156827i \(-0.0501264\pi\)
\(152\) −0.247670 2.81756i −0.0200887 0.228535i
\(153\) 0.543154 0.543154i 0.0439114 0.0439114i
\(154\) −1.75926 + 1.86522i −0.141765 + 0.150304i
\(155\) −17.9355 + 7.56533i −1.44062 + 0.607662i
\(156\) −0.587493 + 0.0343789i −0.0470370 + 0.00275251i
\(157\) −2.77482 2.77482i −0.221455 0.221455i 0.587656 0.809111i \(-0.300051\pi\)
−0.809111 + 0.587656i \(0.800051\pi\)
\(158\) −0.339233 11.6041i −0.0269880 0.923170i
\(159\) 0.543318 0.0430879
\(160\) 10.8147 6.56068i 0.854976 0.518667i
\(161\) 1.62457 0.128034
\(162\) −0.358409 12.2600i −0.0281593 0.963236i
\(163\) 14.8871 + 14.8871i 1.16605 + 1.16605i 0.983128 + 0.182919i \(0.0585546\pi\)
0.182919 + 0.983128i \(0.441445\pi\)
\(164\) 12.8968 0.754696i 1.00707 0.0589319i
\(165\) −1.04409 0.424590i −0.0812822 0.0330543i
\(166\) −10.4911 + 11.1230i −0.814268 + 0.863310i
\(167\) −7.33358 + 7.33358i −0.567489 + 0.567489i −0.931424 0.363935i \(-0.881433\pi\)
0.363935 + 0.931424i \(0.381433\pi\)
\(168\) 0.0325151 + 0.369900i 0.00250859 + 0.0285384i
\(169\) 10.6279i 0.817530i
\(170\) 0.767976 + 0.286450i 0.0589011 + 0.0219697i
\(171\) 2.96350i 0.226625i
\(172\) −3.32500 2.95736i −0.253529 0.225497i
\(173\) 9.11721 9.11721i 0.693169 0.693169i −0.269759 0.962928i \(-0.586944\pi\)
0.962928 + 0.269759i \(0.0869440\pi\)
\(174\) 0.448163 + 0.422704i 0.0339751 + 0.0320451i
\(175\) −0.0444155 3.43556i −0.00335750 0.259704i
\(176\) −1.23093 10.4815i −0.0927847 0.790073i
\(177\) 1.04136 + 1.04136i 0.0782734 + 0.0782734i
\(178\) 11.1060 0.324674i 0.832433 0.0243353i
\(179\) 23.2941 1.74108 0.870541 0.492096i \(-0.163769\pi\)
0.870541 + 0.492096i \(0.163769\pi\)
\(180\) 11.8895 5.85537i 0.886194 0.436434i
\(181\) 14.7396 1.09559 0.547795 0.836613i \(-0.315467\pi\)
0.547795 + 0.836613i \(0.315467\pi\)
\(182\) −1.49610 + 0.0437370i −0.110898 + 0.00324200i
\(183\) −0.717901 0.717901i −0.0530688 0.0530688i
\(184\) −4.29611 + 5.12418i −0.316714 + 0.377759i
\(185\) 2.87235 7.06325i 0.211179 0.519300i
\(186\) 1.71105 + 1.61385i 0.125460 + 0.118333i
\(187\) 0.483566 0.483566i 0.0353619 0.0353619i
\(188\) −2.83090 + 3.18281i −0.206465 + 0.232130i
\(189\) 0.782910i 0.0569483i
\(190\) 2.87652 1.31363i 0.208685 0.0953005i
\(191\) 16.1272i 1.16692i −0.812141 0.583461i \(-0.801698\pi\)
0.812141 0.583461i \(-0.198302\pi\)
\(192\) −1.25271 0.875626i −0.0904067 0.0631928i
\(193\) 5.30300 5.30300i 0.381718 0.381718i −0.490003 0.871721i \(-0.663004\pi\)
0.871721 + 0.490003i \(0.163004\pi\)
\(194\) −13.7779 + 14.6077i −0.989193 + 1.04877i
\(195\) −0.255714 0.606236i −0.0183121 0.0434135i
\(196\) −0.762683 13.0333i −0.0544774 0.930950i
\(197\) 8.92796 + 8.92796i 0.636091 + 0.636091i 0.949589 0.313498i \(-0.101501\pi\)
−0.313498 + 0.949589i \(0.601501\pi\)
\(198\) −0.323118 11.0528i −0.0229630 0.785488i
\(199\) 8.21890 0.582622 0.291311 0.956628i \(-0.405909\pi\)
0.291311 + 0.956628i \(0.405909\pi\)
\(200\) 10.9538 + 8.94509i 0.774550 + 0.632513i
\(201\) −0.629042 −0.0443692
\(202\) −0.500419 17.1177i −0.0352094 1.20440i
\(203\) 1.10792 + 1.10792i 0.0777608 + 0.0777608i
\(204\) −0.00578572 0.0988708i −0.000405081 0.00692234i
\(205\) 5.61352 + 13.3083i 0.392065 + 0.929490i
\(206\) 1.12574 1.19355i 0.0784343 0.0831582i
\(207\) −4.95411 + 4.95411i −0.344334 + 0.344334i
\(208\) 3.81842 4.83461i 0.264760 0.335220i
\(209\) 2.63838i 0.182501i
\(210\) −0.377640 + 0.172458i −0.0260597 + 0.0119007i
\(211\) 2.58502i 0.177960i 0.996033 + 0.0889800i \(0.0283607\pi\)
−0.996033 + 0.0889800i \(0.971639\pi\)
\(212\) −3.78000 + 4.24990i −0.259612 + 0.291884i
\(213\) 1.15811 1.15811i 0.0793523 0.0793523i
\(214\) 18.4888 + 17.4385i 1.26387 + 1.19207i
\(215\) 1.87415 4.60864i 0.127816 0.314307i
\(216\) −2.46943 2.07037i −0.168023 0.140871i
\(217\) 4.22996 + 4.22996i 0.287148 + 0.287148i
\(218\) −16.2842 + 0.476053i −1.10291 + 0.0322424i
\(219\) 0.912515 0.0616621
\(220\) 10.5852 5.21300i 0.713653 0.351460i
\(221\) 0.399209 0.0268537
\(222\) −0.920934 + 0.0269226i −0.0618090 + 0.00180693i
\(223\) 6.48391 + 6.48391i 0.434195 + 0.434195i 0.890053 0.455858i \(-0.150667\pi\)
−0.455858 + 0.890053i \(0.650667\pi\)
\(224\) −3.11961 2.31915i −0.208438 0.154955i
\(225\) 10.6121 + 10.3412i 0.707475 + 0.689416i
\(226\) 16.8549 + 15.8974i 1.12117 + 1.05748i
\(227\) −17.0086 + 17.0086i −1.12890 + 1.12890i −0.138544 + 0.990356i \(0.544242\pi\)
−0.990356 + 0.138544i \(0.955758\pi\)
\(228\) −0.285508 0.253940i −0.0189082 0.0168176i
\(229\) 14.2292i 0.940289i −0.882589 0.470145i \(-0.844202\pi\)
0.882589 0.470145i \(-0.155798\pi\)
\(230\) −7.00471 2.61271i −0.461877 0.172277i
\(231\) 0.346377i 0.0227899i
\(232\) −6.42442 + 0.564722i −0.421784 + 0.0370758i
\(233\) 15.1181 15.1181i 0.990418 0.990418i −0.00953698 0.999955i \(-0.503036\pi\)
0.999955 + 0.00953698i \(0.00303576\pi\)
\(234\) 4.42896 4.69571i 0.289530 0.306968i
\(235\) −4.41156 1.79401i −0.287778 0.117028i
\(236\) −15.3906 + 0.900629i −1.00184 + 0.0586259i
\(237\) −1.10895 1.10895i −0.0720342 0.0720342i
\(238\) −0.00736062 0.251783i −0.000477118 0.0163207i
\(239\) 26.9067 1.74045 0.870226 0.492653i \(-0.163973\pi\)
0.870226 + 0.492653i \(0.163973\pi\)
\(240\) 0.454692 1.64720i 0.0293503 0.106326i
\(241\) −0.431710 −0.0278089 −0.0139044 0.999903i \(-0.504426\pi\)
−0.0139044 + 0.999903i \(0.504426\pi\)
\(242\) 0.166911 + 5.70948i 0.0107294 + 0.367019i
\(243\) −3.58851 3.58851i −0.230203 0.230203i
\(244\) 10.6101 0.620883i 0.679243 0.0397480i
\(245\) 13.4491 5.67293i 0.859232 0.362430i
\(246\) 1.19749 1.26961i 0.0763490 0.0809474i
\(247\) 1.08906 1.08906i 0.0692954 0.0692954i
\(248\) −24.5279 + 2.15606i −1.55753 + 0.136910i
\(249\) 2.06557i 0.130900i
\(250\) −5.33370 + 14.8846i −0.337333 + 0.941385i
\(251\) 19.5407i 1.23340i 0.787198 + 0.616700i \(0.211531\pi\)
−0.787198 + 0.616700i \(0.788469\pi\)
\(252\) −3.04326 2.70678i −0.191708 0.170511i
\(253\) −4.41061 + 4.41061i −0.277293 + 0.277293i
\(254\) −23.0508 21.7413i −1.44633 1.36417i
\(255\) 0.102025 0.0430349i 0.00638906 0.00269495i
\(256\) 15.5647 3.70690i 0.972792 0.231681i
\(257\) −14.9960 14.9960i −0.935424 0.935424i 0.0626141 0.998038i \(-0.480056\pi\)
−0.998038 + 0.0626141i \(0.980056\pi\)
\(258\) −0.600892 + 0.0175665i −0.0374099 + 0.00109364i
\(259\) −2.34323 −0.145601
\(260\) 6.52111 + 2.21751i 0.404422 + 0.137524i
\(261\) −6.75717 −0.418259
\(262\) −25.0601 + 0.732608i −1.54822 + 0.0452607i
\(263\) −1.23448 1.23448i −0.0761213 0.0761213i 0.668021 0.744142i \(-0.267142\pi\)
−0.744142 + 0.668021i \(0.767142\pi\)
\(264\) −1.09253 0.915977i −0.0672406 0.0563745i
\(265\) −5.89060 2.39548i −0.361857 0.147153i
\(266\) −0.706956 0.666795i −0.0433462 0.0408839i
\(267\) 1.06136 1.06136i 0.0649540 0.0649540i
\(268\) 4.37640 4.92044i 0.267331 0.300563i
\(269\) 20.8614i 1.27194i −0.771714 0.635970i \(-0.780600\pi\)
0.771714 0.635970i \(-0.219400\pi\)
\(270\) 1.25911 3.37569i 0.0766269 0.205438i
\(271\) 22.4665i 1.36474i −0.731005 0.682372i \(-0.760948\pi\)
0.731005 0.682372i \(-0.239052\pi\)
\(272\) 0.813631 + 0.642612i 0.0493336 + 0.0389641i
\(273\) −0.142976 + 0.142976i −0.00865330 + 0.00865330i
\(274\) −6.46121 + 6.85036i −0.390336 + 0.413845i
\(275\) 9.44790 + 9.20673i 0.569730 + 0.555187i
\(276\) 0.0527716 + 0.901800i 0.00317647 + 0.0542820i
\(277\) 4.10859 + 4.10859i 0.246861 + 0.246861i 0.819681 0.572820i \(-0.194151\pi\)
−0.572820 + 0.819681i \(0.694151\pi\)
\(278\) 0.246180 + 8.42103i 0.0147649 + 0.505060i
\(279\) −25.7984 −1.54451
\(280\) 1.27836 4.15378i 0.0763963 0.248236i
\(281\) −19.4229 −1.15868 −0.579338 0.815088i \(-0.696689\pi\)
−0.579338 + 0.815088i \(0.696689\pi\)
\(282\) 0.0168153 + 0.575197i 0.00100134 + 0.0342525i
\(283\) −7.92962 7.92962i −0.471367 0.471367i 0.430990 0.902357i \(-0.358164\pi\)
−0.902357 + 0.430990i \(0.858164\pi\)
\(284\) 1.00160 + 17.1161i 0.0594341 + 1.01565i
\(285\) 0.160928 0.395730i 0.00953256 0.0234411i
\(286\) 3.94307 4.18056i 0.233159 0.247202i
\(287\) 3.13865 3.13865i 0.185269 0.185269i
\(288\) 16.5854 2.44100i 0.977305 0.143837i
\(289\) 16.9328i 0.996048i
\(290\) −2.99524 6.55885i −0.175887 0.385149i
\(291\) 2.71269i 0.159021i
\(292\) −6.34860 + 7.13780i −0.371524 + 0.417708i
\(293\) −16.0107 + 16.0107i −0.935358 + 0.935358i −0.998034 0.0626762i \(-0.980036\pi\)
0.0626762 + 0.998034i \(0.480036\pi\)
\(294\) −1.28305 1.21016i −0.0748288 0.0705780i
\(295\) −6.69899 15.8816i −0.390030 0.924665i
\(296\) 6.19658 7.39095i 0.360169 0.429590i
\(297\) −2.12555 2.12555i −0.123337 0.123337i
\(298\) 3.94769 0.115407i 0.228683 0.00668533i
\(299\) −3.64119 −0.210575
\(300\) 1.90563 0.136253i 0.110022 0.00786660i
\(301\) −1.52892 −0.0881253
\(302\) 5.44839 0.159278i 0.313519 0.00916543i
\(303\) −1.63587 1.63587i −0.0939782 0.0939782i
\(304\) 3.97270 0.466546i 0.227850 0.0267583i
\(305\) 4.61820 + 10.9486i 0.264438 + 0.626916i
\(306\) 0.790254 + 0.745362i 0.0451758 + 0.0426095i
\(307\) −15.2684 + 15.2684i −0.871412 + 0.871412i −0.992626 0.121215i \(-0.961321\pi\)
0.121215 + 0.992626i \(0.461321\pi\)
\(308\) −2.70940 2.40983i −0.154382 0.137313i
\(309\) 0.221645i 0.0126089i
\(310\) −11.4356 25.0412i −0.649500 1.42225i
\(311\) 8.56240i 0.485529i −0.970085 0.242765i \(-0.921946\pi\)
0.970085 0.242765i \(-0.0780543\pi\)
\(312\) −0.0728767 0.829064i −0.00412583 0.0469365i
\(313\) −22.1457 + 22.1457i −1.25175 + 1.25175i −0.296817 + 0.954934i \(0.595925\pi\)
−0.954934 + 0.296817i \(0.904075\pi\)
\(314\) 3.80784 4.03718i 0.214889 0.227831i
\(315\) 1.71535 4.21814i 0.0966492 0.237665i
\(316\) 16.3896 0.959087i 0.921987 0.0539529i
\(317\) −7.86201 7.86201i −0.441574 0.441574i 0.450966 0.892541i \(-0.351079\pi\)
−0.892541 + 0.450966i \(0.851079\pi\)
\(318\) 0.0224529 + 0.768040i 0.00125910 + 0.0430695i
\(319\) −6.01586 −0.336824
\(320\) 9.72116 + 15.0166i 0.543429 + 0.839455i
\(321\) 3.43342 0.191635
\(322\) 0.0671362 + 2.29651i 0.00374136 + 0.127980i
\(323\) 0.183281 + 0.183281i 0.0101980 + 0.0101980i
\(324\) 17.3160 1.01330i 0.962002 0.0562945i
\(325\) 0.0995494 + 7.70019i 0.00552201 + 0.427130i
\(326\) −20.4293 + 21.6598i −1.13148 + 1.19962i
\(327\) −1.55621 + 1.55621i −0.0860588 + 0.0860588i
\(328\) 1.59981 + 18.1999i 0.0883349 + 1.00492i
\(329\) 1.46354i 0.0806873i
\(330\) 0.557057 1.49348i 0.0306650 0.0822134i
\(331\) 20.2013i 1.11036i −0.831729 0.555182i \(-0.812648\pi\)
0.831729 0.555182i \(-0.187352\pi\)
\(332\) −16.1571 14.3707i −0.886735 0.788693i
\(333\) 7.14565 7.14565i 0.391579 0.391579i
\(334\) −10.6699 10.0638i −0.583830 0.550664i
\(335\) 6.82001 + 2.77343i 0.372617 + 0.151529i
\(336\) −0.521550 + 0.0612499i −0.0284529 + 0.00334146i
\(337\) 2.32919 + 2.32919i 0.126879 + 0.126879i 0.767695 0.640816i \(-0.221404\pi\)
−0.640816 + 0.767695i \(0.721404\pi\)
\(338\) −15.0237 + 0.439202i −0.817181 + 0.0238895i
\(339\) 3.13000 0.169998
\(340\) −0.373191 + 1.09746i −0.0202391 + 0.0595179i
\(341\) −22.9681 −1.24379
\(342\) 4.18923 0.122468i 0.226528 0.00662231i
\(343\) −6.57318 6.57318i −0.354919 0.354919i
\(344\) 4.04315 4.82246i 0.217992 0.260010i
\(345\) −0.930571 + 0.392521i −0.0501003 + 0.0211326i
\(346\) 13.2650 + 12.5114i 0.713128 + 0.672617i
\(347\) 19.4806 19.4806i 1.04577 1.04577i 0.0468727 0.998901i \(-0.485075\pi\)
0.998901 0.0468727i \(-0.0149255\pi\)
\(348\) −0.579018 + 0.650996i −0.0310386 + 0.0348970i
\(349\) 22.7324i 1.21684i 0.793616 + 0.608419i \(0.208196\pi\)
−0.793616 + 0.608419i \(0.791804\pi\)
\(350\) 4.85470 0.204762i 0.259495 0.0109450i
\(351\) 1.75475i 0.0936618i
\(352\) 14.7659 2.17321i 0.787024 0.115832i
\(353\) −21.3915 + 21.3915i −1.13855 + 1.13855i −0.149842 + 0.988710i \(0.547877\pi\)
−0.988710 + 0.149842i \(0.952123\pi\)
\(354\) −1.42904 + 1.51511i −0.0759527 + 0.0805272i
\(355\) −17.6622 + 7.45002i −0.937411 + 0.395406i
\(356\) 0.917924 + 15.6862i 0.0486499 + 0.831366i
\(357\) −0.0240618 0.0240618i −0.00127349 0.00127349i
\(358\) 0.962639 + 32.9287i 0.0508770 + 1.74034i
\(359\) −11.4796 −0.605870 −0.302935 0.953011i \(-0.597967\pi\)
−0.302935 + 0.953011i \(0.597967\pi\)
\(360\) 8.76855 + 16.5652i 0.462143 + 0.873063i
\(361\) 1.00000 0.0526316
\(362\) 0.609123 + 20.8361i 0.0320148 + 1.09512i
\(363\) 0.545631 + 0.545631i 0.0286382 + 0.0286382i
\(364\) −0.123654 2.11309i −0.00648124 0.110756i
\(365\) −9.89340 4.02326i −0.517844 0.210587i
\(366\) 0.985164 1.04450i 0.0514954 0.0545969i
\(367\) 26.5578 26.5578i 1.38630 1.38630i 0.553365 0.832939i \(-0.313343\pi\)
0.832939 0.553365i \(-0.186657\pi\)
\(368\) −7.42112 5.86126i −0.386853 0.305540i
\(369\) 19.1425i 0.996521i
\(370\) 10.1034 + 3.76849i 0.525250 + 0.195914i
\(371\) 1.95421i 0.101457i
\(372\) −2.21065 + 2.48545i −0.114617 + 0.128865i
\(373\) −2.41353 + 2.41353i −0.124968 + 0.124968i −0.766824 0.641857i \(-0.778164\pi\)
0.641857 + 0.766824i \(0.278164\pi\)
\(374\) 0.703558 + 0.663590i 0.0363801 + 0.0343134i
\(375\) 0.855524 + 1.95719i 0.0441791 + 0.101069i
\(376\) −4.61624 3.87026i −0.238064 0.199593i
\(377\) −2.48321 2.48321i −0.127892 0.127892i
\(378\) −1.10673 + 0.0323541i −0.0569240 + 0.00166412i
\(379\) 22.1568 1.13812 0.569060 0.822296i \(-0.307307\pi\)
0.569060 + 0.822296i \(0.307307\pi\)
\(380\) 1.97583 + 4.01199i 0.101358 + 0.205811i
\(381\) −4.28059 −0.219301
\(382\) 22.7976 0.666464i 1.16642 0.0340993i
\(383\) 4.98701 + 4.98701i 0.254824 + 0.254824i 0.822945 0.568121i \(-0.192329\pi\)
−0.568121 + 0.822945i \(0.692329\pi\)
\(384\) 1.18602 1.80703i 0.0605240 0.0922146i
\(385\) 1.52717 3.75538i 0.0778316 0.191392i
\(386\) 7.71552 + 7.27722i 0.392709 + 0.370401i
\(387\) 4.66241 4.66241i 0.237003 0.237003i
\(388\) −21.2189 18.8729i −1.07723 0.958124i
\(389\) 4.50599i 0.228463i −0.993454 0.114231i \(-0.963559\pi\)
0.993454 0.114231i \(-0.0364405\pi\)
\(390\) 0.846413 0.386533i 0.0428598 0.0195729i
\(391\) 0.612786i 0.0309899i
\(392\) 18.3925 1.61674i 0.928961 0.0816579i
\(393\) −2.39489 + 2.39489i −0.120806 + 0.120806i
\(394\) −12.2517 + 12.9896i −0.617232 + 0.654407i
\(395\) 7.13381 + 16.9125i 0.358941 + 0.850960i
\(396\) 15.6110 0.913524i 0.784482 0.0459063i
\(397\) −18.3752 18.3752i −0.922224 0.922224i 0.0749623 0.997186i \(-0.476116\pi\)
−0.997186 + 0.0749623i \(0.976116\pi\)
\(398\) 0.339650 + 11.6183i 0.0170251 + 0.582373i
\(399\) −0.131284 −0.00657240
\(400\) −12.1922 + 15.8540i −0.609610 + 0.792702i
\(401\) −20.6659 −1.03201 −0.516003 0.856587i \(-0.672581\pi\)
−0.516003 + 0.856587i \(0.672581\pi\)
\(402\) −0.0259955 0.889220i −0.00129654 0.0443503i
\(403\) −9.48070 9.48070i −0.472267 0.472267i
\(404\) 24.1771 1.41480i 1.20285 0.0703887i
\(405\) 7.53705 + 17.8685i 0.374519 + 0.887892i
\(406\) −1.52038 + 1.61195i −0.0754553 + 0.0799999i
\(407\) 6.36172 6.36172i 0.315339 0.315339i
\(408\) 0.139526 0.0122646i 0.00690754 0.000607190i
\(409\) 20.0903i 0.993401i −0.867922 0.496701i \(-0.834545\pi\)
0.867922 0.496701i \(-0.165455\pi\)
\(410\) −18.5807 + 8.48530i −0.917636 + 0.419059i
\(411\) 1.27213i 0.0627496i
\(412\) 1.73373 + 1.54204i 0.0854147 + 0.0759707i
\(413\) −3.74556 + 3.74556i −0.184307 + 0.184307i
\(414\) −7.20791 6.79844i −0.354249 0.334125i
\(415\) 9.10704 22.3947i 0.447047 1.09931i
\(416\) 6.99205 + 5.19796i 0.342814 + 0.254851i
\(417\) 0.804762 + 0.804762i 0.0394094 + 0.0394094i
\(418\) 3.72964 0.109032i 0.182423 0.00533295i
\(419\) −13.7944 −0.673900 −0.336950 0.941523i \(-0.609395\pi\)
−0.336950 + 0.941523i \(0.609395\pi\)
\(420\) −0.259394 0.526709i −0.0126571 0.0257008i
\(421\) 21.9806 1.07127 0.535635 0.844450i \(-0.320072\pi\)
0.535635 + 0.844450i \(0.320072\pi\)
\(422\) −3.65421 + 0.106827i −0.177884 + 0.00520026i
\(423\) −4.46303 4.46303i −0.217000 0.217000i
\(424\) −6.16390 5.16782i −0.299346 0.250971i
\(425\) −1.29589 + 0.0167535i −0.0628597 + 0.000812662i
\(426\) 1.68497 + 1.58925i 0.0816372 + 0.0769996i
\(427\) 2.58215 2.58215i 0.124959 0.124959i
\(428\) −23.8872 + 26.8566i −1.15463 + 1.29816i
\(429\) 0.776341i 0.0374821i
\(430\) 6.59227 + 2.45887i 0.317907 + 0.118577i
\(431\) 11.7671i 0.566800i −0.959002 0.283400i \(-0.908538\pi\)
0.959002 0.283400i \(-0.0914625\pi\)
\(432\) 2.82465 3.57637i 0.135901 0.172068i
\(433\) −17.3388 + 17.3388i −0.833247 + 0.833247i −0.987960 0.154712i \(-0.950555\pi\)
0.154712 + 0.987960i \(0.450555\pi\)
\(434\) −5.80471 + 6.15432i −0.278635 + 0.295417i
\(435\) −0.902318 0.366938i −0.0432628 0.0175933i
\(436\) −1.34591 22.9998i −0.0644572 1.10149i
\(437\) −1.67171 1.67171i −0.0799687 0.0799687i
\(438\) 0.0377101 + 1.28994i 0.00180186 + 0.0616357i
\(439\) 2.79407 0.133354 0.0666768 0.997775i \(-0.478760\pi\)
0.0666768 + 0.997775i \(0.478760\pi\)
\(440\) 7.80658 + 14.7479i 0.372164 + 0.703078i
\(441\) 19.3451 0.921197
\(442\) 0.0164975 + 0.564326i 0.000784707 + 0.0268423i
\(443\) 22.1914 + 22.1914i 1.05435 + 1.05435i 0.998436 + 0.0559099i \(0.0178060\pi\)
0.0559099 + 0.998436i \(0.482194\pi\)
\(444\) −0.0761160 1.30073i −0.00361231 0.0617298i
\(445\) −16.1866 + 6.82763i −0.767320 + 0.323661i
\(446\) −8.89777 + 9.43367i −0.421322 + 0.446697i
\(447\) 0.377264 0.377264i 0.0178440 0.0178440i
\(448\) 3.14945 4.50575i 0.148798 0.212877i
\(449\) 28.4081i 1.34066i −0.742062 0.670331i \(-0.766152\pi\)
0.742062 0.670331i \(-0.233848\pi\)
\(450\) −14.1799 + 15.4288i −0.668448 + 0.727319i
\(451\) 17.0425i 0.802499i
\(452\) −21.7762 + 24.4832i −1.02427 + 1.15159i
\(453\) 0.520679 0.520679i 0.0244637 0.0244637i
\(454\) −24.7464 23.3406i −1.16141 1.09543i
\(455\) 2.18051 0.919754i 0.102224 0.0431187i
\(456\) 0.347174 0.414091i 0.0162579 0.0193916i
\(457\) −13.0042 13.0042i −0.608311 0.608311i 0.334194 0.942504i \(-0.391536\pi\)
−0.942504 + 0.334194i \(0.891536\pi\)
\(458\) 20.1145 0.588027i 0.939888 0.0274767i
\(459\) 0.295312 0.0137840
\(460\) 3.40387 10.0099i 0.158706 0.466714i
\(461\) 1.89730 0.0883659 0.0441830 0.999023i \(-0.485932\pi\)
0.0441830 + 0.999023i \(0.485932\pi\)
\(462\) −0.489641 + 0.0143142i −0.0227802 + 0.000665956i
\(463\) 12.4901 + 12.4901i 0.580465 + 0.580465i 0.935031 0.354566i \(-0.115371\pi\)
−0.354566 + 0.935031i \(0.615371\pi\)
\(464\) −1.06379 9.05828i −0.0493851 0.420520i
\(465\) −3.44498 1.40094i −0.159757 0.0649670i
\(466\) 21.9958 + 20.7463i 1.01894 + 0.961053i
\(467\) 17.8780 17.8780i 0.827293 0.827293i −0.159848 0.987142i \(-0.551100\pi\)
0.987142 + 0.159848i \(0.0511005\pi\)
\(468\) 6.82093 + 6.06677i 0.315298 + 0.280436i
\(469\) 2.26254i 0.104474i
\(470\) 2.35372 6.31036i 0.108569 0.291075i
\(471\) 0.749716i 0.0345451i
\(472\) −1.90916 21.7191i −0.0878763 0.999704i
\(473\) 4.15091 4.15091i 0.190859 0.190859i
\(474\) 1.52180 1.61345i 0.0698985 0.0741084i
\(475\) −3.48953 + 3.58094i −0.160111 + 0.164305i
\(476\) 0.355619 0.0208101i 0.0162998 0.000953829i
\(477\) −5.95933 5.95933i −0.272859 0.272859i
\(478\) 1.11193 + 38.0356i 0.0508586 + 1.73971i
\(479\) −36.4803 −1.66683 −0.833414 0.552649i \(-0.813617\pi\)
−0.833414 + 0.552649i \(0.813617\pi\)
\(480\) 2.34729 + 0.574686i 0.107138 + 0.0262307i
\(481\) 5.25194 0.239468
\(482\) −0.0178406 0.610269i −0.000812617 0.0277970i
\(483\) 0.219468 + 0.219468i 0.00998614 + 0.00998614i
\(484\) −8.06407 + 0.471894i −0.366549 + 0.0214497i
\(485\) 11.9602 29.4107i 0.543084 1.33547i
\(486\) 4.92446 5.22105i 0.223378 0.236832i
\(487\) −1.03220 + 1.03220i −0.0467735 + 0.0467735i −0.730107 0.683333i \(-0.760530\pi\)
0.683333 + 0.730107i \(0.260530\pi\)
\(488\) 1.31615 + 14.9729i 0.0595795 + 0.677792i
\(489\) 4.02228i 0.181894i
\(490\) 8.57510 + 18.7774i 0.387383 + 0.848275i
\(491\) 14.3337i 0.646870i 0.946250 + 0.323435i \(0.104838\pi\)
−0.946250 + 0.323435i \(0.895162\pi\)
\(492\) 1.84422 + 1.64031i 0.0831439 + 0.0739510i
\(493\) 0.417906 0.417906i 0.0188215 0.0188215i
\(494\) 1.58451 + 1.49450i 0.0712907 + 0.0672409i
\(495\) 6.79490 + 16.1090i 0.305408 + 0.724048i
\(496\) −4.06146 34.5838i −0.182365 1.55286i
\(497\) 4.16549 + 4.16549i 0.186848 + 0.186848i
\(498\) −2.91990 + 0.0853605i −0.130844 + 0.00382510i
\(499\) −6.43642 −0.288134 −0.144067 0.989568i \(-0.546018\pi\)
−0.144067 + 0.989568i \(0.546018\pi\)
\(500\) −21.2614 6.92466i −0.950841 0.309680i
\(501\) −1.98143 −0.0885236
\(502\) −27.6230 + 0.807530i −1.23287 + 0.0360418i
\(503\) −8.34217 8.34217i −0.371959 0.371959i 0.496231 0.868190i \(-0.334717\pi\)
−0.868190 + 0.496231i \(0.834717\pi\)
\(504\) 3.70057 4.41384i 0.164836 0.196608i
\(505\) 10.5234 + 24.9484i 0.468286 + 1.11019i
\(506\) −6.41715 6.05261i −0.285277 0.269071i
\(507\) −1.43575 + 1.43575i −0.0637639 + 0.0637639i
\(508\) 29.7812 33.4833i 1.32133 1.48558i
\(509\) 5.64713i 0.250305i −0.992138 0.125152i \(-0.960058\pi\)
0.992138 0.125152i \(-0.0399419\pi\)
\(510\) 0.0650508 + 0.142445i 0.00288050 + 0.00630758i
\(511\) 3.28214i 0.145193i
\(512\) 5.88332 + 21.8492i 0.260009 + 0.965606i
\(513\) 0.805626 0.805626i 0.0355692 0.0355692i
\(514\) 20.5787 21.8182i 0.907690 0.962359i
\(515\) −0.977227 + 2.40305i −0.0430618 + 0.105891i
\(516\) −0.0496643 0.848701i −0.00218635 0.0373620i
\(517\) −3.97340 3.97340i −0.174750 0.174750i
\(518\) −0.0968352 3.31242i −0.00425469 0.145539i
\(519\) 2.46334 0.108129
\(520\) −2.86520 + 9.30995i −0.125648 + 0.408268i
\(521\) 23.8080 1.04305 0.521524 0.853236i \(-0.325364\pi\)
0.521524 + 0.853236i \(0.325364\pi\)
\(522\) −0.279243 9.55201i −0.0122221 0.418080i
\(523\) −15.1073 15.1073i −0.660598 0.660598i 0.294923 0.955521i \(-0.404706\pi\)
−0.955521 + 0.294923i \(0.904706\pi\)
\(524\) −2.07124 35.3950i −0.0904827 1.54624i
\(525\) 0.458119 0.470119i 0.0199939 0.0205177i
\(526\) 1.69406 1.79609i 0.0738644 0.0783132i
\(527\) 1.59553 1.59553i 0.0695025 0.0695025i
\(528\) 1.24969 1.58226i 0.0543856 0.0688592i
\(529\) 17.4108i 0.756990i
\(530\) 3.14284 8.42601i 0.136516 0.366002i
\(531\) 22.8441i 0.991348i
\(532\) 0.913373 1.02691i 0.0395997 0.0445224i
\(533\) −7.03473 + 7.03473i −0.304708 + 0.304708i
\(534\) 1.54421 + 1.45648i 0.0668243 + 0.0630282i
\(535\) −37.2248 15.1379i −1.60937 0.654467i
\(536\) 7.13643 + 5.98319i 0.308247 + 0.258434i
\(537\) 3.14686 + 3.14686i 0.135797 + 0.135797i
\(538\) 29.4898 0.862106i 1.27140 0.0371680i
\(539\) 17.2228 0.741840
\(540\) 4.82394 + 1.64039i 0.207589 + 0.0705910i
\(541\) 35.7869 1.53860 0.769299 0.638889i \(-0.220606\pi\)
0.769299 + 0.638889i \(0.220606\pi\)
\(542\) 31.7589 0.928440i 1.36416 0.0398799i
\(543\) 1.99122 + 1.99122i 0.0854514 + 0.0854514i
\(544\) −0.874779 + 1.17671i −0.0375058 + 0.0504511i
\(545\) 23.7336 10.0110i 1.01664 0.428824i
\(546\) −0.208021 0.196204i −0.00890247 0.00839675i
\(547\) −13.6967 + 13.6967i −0.585630 + 0.585630i −0.936445 0.350815i \(-0.885905\pi\)
0.350815 + 0.936445i \(0.385905\pi\)
\(548\) −9.95075 8.85054i −0.425075 0.378076i
\(549\) 15.7484i 0.672127i
\(550\) −12.6243 + 13.7361i −0.538301 + 0.585710i
\(551\) 2.28013i 0.0971369i
\(552\) −1.27261 + 0.111866i −0.0541660 + 0.00476132i
\(553\) 3.98868 3.98868i 0.169616 0.169616i
\(554\) −5.63815 + 5.97773i −0.239542 + 0.253970i
\(555\) 1.34223 0.566160i 0.0569744 0.0240322i
\(556\) −11.8939 + 0.696006i −0.504413 + 0.0295172i
\(557\) 26.1018 + 26.1018i 1.10597 + 1.10597i 0.993675 + 0.112296i \(0.0358204\pi\)
0.112296 + 0.993675i \(0.464180\pi\)
\(558\) −1.06613 36.4688i −0.0451329 1.54385i
\(559\) 3.42679 0.144938
\(560\) 5.92465 + 1.63544i 0.250362 + 0.0691099i
\(561\) 0.130653 0.00551616
\(562\) −0.802662 27.4565i −0.0338583 1.15818i
\(563\) 4.63217 + 4.63217i 0.195223 + 0.195223i 0.797948 0.602726i \(-0.205919\pi\)
−0.602726 + 0.797948i \(0.705919\pi\)
\(564\) −0.812408 + 0.0475405i −0.0342086 + 0.00200182i
\(565\) −33.9352 13.8001i −1.42766 0.580575i
\(566\) 10.8817 11.5371i 0.457392 0.484940i
\(567\) 4.21414 4.21414i 0.176977 0.176977i
\(568\) −24.1541 + 2.12320i −1.01348 + 0.0890876i
\(569\) 1.44805i 0.0607054i −0.999539 0.0303527i \(-0.990337\pi\)
0.999539 0.0303527i \(-0.00966304\pi\)
\(570\) 0.566059 + 0.211136i 0.0237096 + 0.00884351i
\(571\) 2.15432i 0.0901555i −0.998983 0.0450777i \(-0.985646\pi\)
0.998983 0.0450777i \(-0.0143536\pi\)
\(572\) 6.07262 + 5.40120i 0.253909 + 0.225835i
\(573\) 2.17867 2.17867i 0.0910151 0.0910151i
\(574\) 4.56654 + 4.30712i 0.190604 + 0.179776i
\(575\) 11.8198 0.152808i 0.492919 0.00637254i
\(576\) 4.13602 + 23.3444i 0.172334 + 0.972685i
\(577\) −3.41127 3.41127i −0.142013 0.142013i 0.632526 0.774539i \(-0.282018\pi\)
−0.774539 + 0.632526i \(0.782018\pi\)
\(578\) 23.9364 0.699757i 0.995623 0.0291060i
\(579\) 1.43279 0.0595448
\(580\) 9.14788 4.50515i 0.379845 0.187066i
\(581\) −7.42943 −0.308225
\(582\) −3.83468 + 0.112103i −0.158953 + 0.00464682i
\(583\) −5.30555 5.30555i −0.219733 0.219733i
\(584\) −10.3524 8.67947i −0.428386 0.359159i
\(585\) −3.84466 + 9.45421i −0.158957 + 0.390883i
\(586\) −23.2946 21.9713i −0.962291 0.907626i
\(587\) 9.73946 9.73946i 0.401991 0.401991i −0.476943 0.878934i \(-0.658255\pi\)
0.878934 + 0.476943i \(0.158255\pi\)
\(588\) 1.65767 1.86374i 0.0683612 0.0768592i
\(589\) 8.70538i 0.358699i
\(590\) 22.1736 10.1261i 0.912873 0.416884i
\(591\) 2.41221i 0.0992249i
\(592\) 10.7040 + 8.45411i 0.439932 + 0.347462i
\(593\) −0.472701 + 0.472701i −0.0194115 + 0.0194115i −0.716746 0.697334i \(-0.754369\pi\)
0.697334 + 0.716746i \(0.254369\pi\)
\(594\) 2.91686 3.09254i 0.119680 0.126888i
\(595\) 0.154788 + 0.366964i 0.00634569 + 0.0150441i
\(596\) 0.326280 + 5.57572i 0.0133649 + 0.228390i
\(597\) 1.11031 + 1.11031i 0.0454421 + 0.0454421i
\(598\) −0.150474 5.14722i −0.00615333 0.210485i
\(599\) −42.6749 −1.74365 −0.871825 0.489817i \(-0.837064\pi\)
−0.871825 + 0.489817i \(0.837064\pi\)
\(600\) 0.271360 + 2.68819i 0.0110782 + 0.109745i
\(601\) 6.15824 0.251200 0.125600 0.992081i \(-0.459914\pi\)
0.125600 + 0.992081i \(0.459914\pi\)
\(602\) −0.0631832 2.16129i −0.00257515 0.0880876i
\(603\) 6.89958 + 6.89958i 0.280973 + 0.280973i
\(604\) 0.450314 + 7.69531i 0.0183230 + 0.313118i
\(605\) −3.51000 8.32135i −0.142702 0.338311i
\(606\) 2.24488 2.38008i 0.0911919 0.0966842i
\(607\) −18.8925 + 18.8925i −0.766823 + 0.766823i −0.977546 0.210723i \(-0.932418\pi\)
0.210723 + 0.977546i \(0.432418\pi\)
\(608\) 0.823688 + 5.59656i 0.0334050 + 0.226971i
\(609\) 0.299344i 0.0121300i
\(610\) −15.2862 + 6.98079i −0.618921 + 0.282644i
\(611\) 3.28025i 0.132705i
\(612\) −1.02099 + 1.14791i −0.0412712 + 0.0464016i
\(613\) 11.0000 11.0000i 0.444286 0.444286i −0.449164 0.893450i \(-0.648278\pi\)
0.893450 + 0.449164i \(0.148278\pi\)
\(614\) −22.2145 20.9525i −0.896503 0.845575i
\(615\) −1.03951 + 2.55620i −0.0419169 + 0.103076i
\(616\) 3.29459 3.92961i 0.132743 0.158329i
\(617\) 1.05266 + 1.05266i 0.0423784 + 0.0423784i 0.727978 0.685600i \(-0.240460\pi\)
−0.685600 + 0.727978i \(0.740460\pi\)
\(618\) 0.313319 0.00915957i 0.0126035 0.000368452i
\(619\) 46.3802 1.86418 0.932090 0.362228i \(-0.117984\pi\)
0.932090 + 0.362228i \(0.117984\pi\)
\(620\) 34.9259 17.2003i 1.40266 0.690782i
\(621\) −2.69354 −0.108088
\(622\) 12.1039 0.353845i 0.485322 0.0141879i
\(623\) 3.81749 + 3.81749i 0.152945 + 0.152945i
\(624\) 1.16896 0.137281i 0.0467959 0.00549563i
\(625\) −0.646301 24.9916i −0.0258520 0.999666i
\(626\) −32.2206 30.3902i −1.28779 1.21464i
\(627\) 0.356426 0.356426i 0.0142343 0.0142343i
\(628\) 5.86436 + 5.21596i 0.234013 + 0.208139i
\(629\) 0.883863i 0.0352419i
\(630\) 6.03369 + 2.25052i 0.240388 + 0.0896630i
\(631\) 36.0808i 1.43635i 0.695860 + 0.718177i \(0.255023\pi\)
−0.695860 + 0.718177i \(0.744977\pi\)
\(632\) 2.03308 + 23.1289i 0.0808717 + 0.920017i
\(633\) −0.349217 + 0.349217i −0.0138801 + 0.0138801i
\(634\) 10.7889 11.4387i 0.428482 0.454289i
\(635\) 46.4098 + 18.8730i 1.84172 + 0.748954i
\(636\) −1.08478 + 0.0634792i −0.0430144 + 0.00251712i
\(637\) 7.10918 + 7.10918i 0.281676 + 0.281676i
\(638\) −0.248608 8.50408i −0.00984250 0.336680i
\(639\) −25.4052 −1.00501
\(640\) −20.8259 + 14.3625i −0.823217 + 0.567727i
\(641\) 38.3093 1.51313 0.756564 0.653920i \(-0.226877\pi\)
0.756564 + 0.653920i \(0.226877\pi\)
\(642\) 0.141888 + 4.85351i 0.00559986 + 0.191553i
\(643\) −28.1228 28.1228i −1.10906 1.10906i −0.993275 0.115781i \(-0.963063\pi\)
−0.115781 0.993275i \(-0.536937\pi\)
\(644\) −3.24360 + 0.189809i −0.127816 + 0.00747952i
\(645\) 0.875778 0.369409i 0.0344837 0.0145455i
\(646\) −0.251514 + 0.266662i −0.00989569 + 0.0104917i
\(647\) −30.7982 + 30.7982i −1.21080 + 1.21080i −0.240039 + 0.970763i \(0.577160\pi\)
−0.970763 + 0.240039i \(0.922840\pi\)
\(648\) 2.14800 + 24.4362i 0.0843816 + 0.959946i
\(649\) 20.3379i 0.798333i
\(650\) −10.8809 + 0.458938i −0.426786 + 0.0180010i
\(651\) 1.14287i 0.0447927i
\(652\) −31.4627 27.9840i −1.23217 1.09594i
\(653\) −11.1336 + 11.1336i −0.435691 + 0.435691i −0.890559 0.454868i \(-0.849687\pi\)
0.454868 + 0.890559i \(0.349687\pi\)
\(654\) −2.26419 2.13557i −0.0885368 0.0835073i
\(655\) 36.5242 15.4062i 1.42712 0.601968i
\(656\) −25.6614 + 3.01363i −1.00191 + 0.117662i
\(657\) −10.0088 10.0088i −0.390481 0.390481i
\(658\) −2.06887 + 0.0604813i −0.0806529 + 0.00235781i
\(659\) 14.4709 0.563707 0.281854 0.959457i \(-0.409051\pi\)
0.281854 + 0.959457i \(0.409051\pi\)
\(660\) 2.13422 + 0.725743i 0.0830743 + 0.0282495i
\(661\) 34.3741 1.33700 0.668498 0.743714i \(-0.266938\pi\)
0.668498 + 0.743714i \(0.266938\pi\)
\(662\) 28.5568 0.834829i 1.10989 0.0324466i
\(663\) 0.0539303 + 0.0539303i 0.00209448 + 0.00209448i
\(664\) 19.6468 23.4337i 0.762444 0.909403i
\(665\) 1.42336 + 0.578827i 0.0551957 + 0.0224459i
\(666\) 10.3965 + 9.80587i 0.402855 + 0.379970i
\(667\) −3.81172 + 3.81172i −0.147590 + 0.147590i
\(668\) 13.7853 15.4989i 0.533369 0.599672i
\(669\) 1.75186i 0.0677308i
\(670\) −3.63871 + 9.75545i −0.140576 + 0.376886i
\(671\) 14.0207i 0.541264i
\(672\) −0.108137 0.734737i −0.00417147 0.0283431i
\(673\) 2.58146 2.58146i 0.0995079 0.0995079i −0.655600 0.755108i \(-0.727584\pi\)
0.755108 + 0.655600i \(0.227584\pi\)
\(674\) −3.19631 + 3.38882i −0.123117 + 0.130533i
\(675\) 0.0736410 + 5.69616i 0.00283444 + 0.219245i
\(676\) −1.24172 21.2195i −0.0477585 0.816134i
\(677\) 21.3377 + 21.3377i 0.820073 + 0.820073i 0.986118 0.166045i \(-0.0530996\pi\)
−0.166045 + 0.986118i \(0.553100\pi\)
\(678\) 0.129349 + 4.42460i 0.00496761 + 0.169926i
\(679\) −9.75700 −0.374439
\(680\) −1.56680 0.482193i −0.0600839 0.0184913i
\(681\) −4.59547 −0.176099
\(682\) −0.949168 32.4680i −0.0363455 1.24326i
\(683\) −33.6361 33.6361i −1.28705 1.28705i −0.936571 0.350477i \(-0.886020\pi\)
−0.350477 0.936571i \(-0.613980\pi\)
\(684\) 0.346244 + 5.91688i 0.0132390 + 0.226237i
\(685\) 5.60880 13.7923i 0.214301 0.526978i
\(686\) 9.02027 9.56355i 0.344396 0.365138i
\(687\) 1.92226 1.92226i 0.0733386 0.0733386i
\(688\) 6.98416 + 5.51615i 0.266269 + 0.210301i
\(689\) 4.38001i 0.166865i
\(690\) −0.593328 1.29924i −0.0225876 0.0494613i
\(691\) 42.9240i 1.63291i 0.577412 + 0.816453i \(0.304063\pi\)
−0.577412 + 0.816453i \(0.695937\pi\)
\(692\) −17.1381 + 19.2685i −0.651491 + 0.732479i
\(693\) 3.79919 3.79919i 0.144319 0.144319i
\(694\) 28.3430 + 26.7329i 1.07589 + 1.01477i
\(695\) −5.17698 12.2733i −0.196374 0.465554i
\(696\) −0.944182 0.791602i −0.0357891 0.0300056i
\(697\) −1.18389 1.18389i −0.0448432 0.0448432i
\(698\) −32.1348 + 0.939428i −1.21632 + 0.0355579i
\(699\) 4.08468 0.154497
\(700\) 0.490077 + 6.85419i 0.0185232 + 0.259064i
\(701\) −0.769855 −0.0290770 −0.0145385 0.999894i \(-0.504628\pi\)
−0.0145385 + 0.999894i \(0.504628\pi\)
\(702\) 2.48054 0.0725160i 0.0936218 0.00273694i
\(703\) 2.41122 + 2.41122i 0.0909409 + 0.0909409i
\(704\) 3.68227 + 20.7834i 0.138781 + 0.783303i
\(705\) −0.353612 0.838327i −0.0133178 0.0315732i
\(706\) −31.1232 29.3552i −1.17134 1.10480i
\(707\) 5.88389 5.88389i 0.221287 0.221287i
\(708\) −2.20083 1.95749i −0.0827123 0.0735671i
\(709\) 24.5314i 0.921295i 0.887583 + 0.460648i \(0.152383\pi\)
−0.887583 + 0.460648i \(0.847617\pi\)
\(710\) −11.2613 24.6595i −0.422630 0.925456i
\(711\) 24.3268i 0.912328i
\(712\) −22.1362 + 1.94583i −0.829590 + 0.0729229i
\(713\) −14.5529 + 14.5529i −0.545009 + 0.545009i
\(714\) 0.0330197 0.0350084i 0.00123573 0.00131016i
\(715\) −3.42287 + 8.41701i −0.128008 + 0.314778i
\(716\) −46.5086 + 2.72159i −1.73811 + 0.101711i
\(717\) 3.63490 + 3.63490i 0.135748 + 0.135748i
\(718\) −0.474400 16.2277i −0.0177044 0.605611i
\(719\) 7.99563 0.298187 0.149093 0.988823i \(-0.452365\pi\)
0.149093 + 0.988823i \(0.452365\pi\)
\(720\) −23.0544 + 13.0799i −0.859185 + 0.487458i
\(721\) 0.797212 0.0296897
\(722\) 0.0413255 + 1.41361i 0.00153797 + 0.0526091i
\(723\) −0.0583208 0.0583208i −0.00216897 0.00216897i
\(724\) −29.4290 + 1.72212i −1.09372 + 0.0640022i
\(725\) 8.16502 + 7.95660i 0.303241 + 0.295501i
\(726\) −0.748760 + 0.793857i −0.0277891 + 0.0294628i
\(727\) −17.8600 + 17.8600i −0.662391 + 0.662391i −0.955943 0.293552i \(-0.905162\pi\)
0.293552 + 0.955943i \(0.405162\pi\)
\(728\) 2.98198 0.262123i 0.110520 0.00971493i
\(729\) 25.0489i 0.927738i
\(730\) 5.27847 14.1517i 0.195365 0.523777i
\(731\) 0.576705i 0.0213302i
\(732\) 1.51723 + 1.34947i 0.0560783 + 0.0498780i
\(733\) −2.29031 + 2.29031i −0.0845943 + 0.0845943i −0.748138 0.663543i \(-0.769052\pi\)
0.663543 + 0.748138i \(0.269052\pi\)
\(734\) 38.6398 + 36.4448i 1.42622 + 1.34520i
\(735\) 2.58325 + 1.05051i 0.0952846 + 0.0387485i
\(736\) 7.97886 10.7328i 0.294105 0.395616i
\(737\) 6.14265 + 6.14265i 0.226267 + 0.226267i
\(738\) −27.0601 + 0.791075i −0.996096 + 0.0291199i
\(739\) −7.42763 −0.273230 −0.136615 0.990624i \(-0.543622\pi\)
−0.136615 + 0.990624i \(0.543622\pi\)
\(740\) −4.90964 + 14.4380i −0.180482 + 0.530750i
\(741\) 0.294249 0.0108095
\(742\) −2.76249 + 0.0807586i −0.101414 + 0.00296474i
\(743\) 18.9190 + 18.9190i 0.694070 + 0.694070i 0.963125 0.269055i \(-0.0867114\pi\)
−0.269055 + 0.963125i \(0.586711\pi\)
\(744\) −3.60482 3.02228i −0.132159 0.110802i
\(745\) −5.75360 + 2.42691i −0.210796 + 0.0889151i
\(746\) −3.51152 3.31204i −0.128566 0.121262i
\(747\) 22.6559 22.6559i 0.828937 0.828937i
\(748\) −0.908983 + 1.02198i −0.0332357 + 0.0373673i
\(749\) 12.3493i 0.451235i
\(750\) −2.73135 + 1.29026i −0.0997347 + 0.0471136i
\(751\) 23.2353i 0.847870i 0.905693 + 0.423935i \(0.139351\pi\)
−0.905693 + 0.423935i \(0.860649\pi\)
\(752\) 5.28026 6.68550i 0.192551 0.243795i
\(753\) −2.63981 + 2.63981i −0.0962001 + 0.0962001i
\(754\) 3.40766 3.61290i 0.124100 0.131574i
\(755\) −7.94082 + 3.34949i −0.288996 + 0.121900i
\(756\) −0.0914722 1.56315i −0.00332681 0.0568511i
\(757\) −27.4367 27.4367i −0.997202 0.997202i 0.00279376 0.999996i \(-0.499111\pi\)
−0.999996 + 0.00279376i \(0.999111\pi\)
\(758\) 0.915642 + 31.3211i 0.0332576 + 1.13763i
\(759\) −1.19168 −0.0432553
\(760\) −5.58974 + 2.95885i −0.202761 + 0.107329i
\(761\) 15.9889 0.579597 0.289798 0.957088i \(-0.406412\pi\)
0.289798 + 0.957088i \(0.406412\pi\)
\(762\) −0.176898 6.05109i −0.00640832 0.219208i
\(763\) −5.59739 5.59739i −0.202639 0.202639i
\(764\) 1.88424 + 32.1993i 0.0681694 + 1.16493i
\(765\) −1.59107 0.647028i −0.0575254 0.0233933i
\(766\) −6.84359 + 7.25577i −0.247269 + 0.262162i
\(767\) 8.39501 8.39501i 0.303126 0.303126i
\(768\) 2.60345 + 1.60190i 0.0939439 + 0.0578035i
\(769\) 48.8096i 1.76012i 0.474863 + 0.880060i \(0.342497\pi\)
−0.474863