Properties

Label 380.2.k.c.267.12
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.12
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.378581 - 1.36260i) q^{2} +(-1.58108 - 1.58108i) q^{3} +(-1.71335 + 1.03171i) q^{4} +(-1.74843 - 1.39392i) q^{5} +(-1.55581 + 2.75294i) q^{6} +(-1.94368 + 1.94368i) q^{7} +(2.05445 + 1.94403i) q^{8} +1.99961i q^{9} +O(q^{10})\) \(q+(-0.378581 - 1.36260i) q^{2} +(-1.58108 - 1.58108i) q^{3} +(-1.71335 + 1.03171i) q^{4} +(-1.74843 - 1.39392i) q^{5} +(-1.55581 + 2.75294i) q^{6} +(-1.94368 + 1.94368i) q^{7} +(2.05445 + 1.94403i) q^{8} +1.99961i q^{9} +(-1.23743 + 2.91012i) q^{10} +4.18087i q^{11} +(4.34015 + 1.07773i) q^{12} +(3.14596 - 3.14596i) q^{13} +(3.38430 + 1.91262i) q^{14} +(0.560510 + 4.96829i) q^{15} +(1.87116 - 3.53536i) q^{16} +(-2.53996 - 2.53996i) q^{17} +(2.72467 - 0.757015i) q^{18} +1.00000 q^{19} +(4.43379 + 0.584402i) q^{20} +6.14621 q^{21} +(5.69685 - 1.58280i) q^{22} +(-3.70046 - 3.70046i) q^{23} +(-0.174583 - 6.32190i) q^{24} +(1.11400 + 4.87432i) q^{25} +(-5.47768 - 3.09568i) q^{26} +(-1.58169 + 1.58169i) q^{27} +(1.32490 - 5.33552i) q^{28} +10.0179i q^{29} +(6.55759 - 2.64465i) q^{30} +0.276086i q^{31} +(-5.52566 - 1.21121i) q^{32} +(6.61028 - 6.61028i) q^{33} +(-2.49937 + 4.42254i) q^{34} +(6.10771 - 0.689057i) q^{35} +(-2.06301 - 3.42604i) q^{36} +(5.28359 + 5.28359i) q^{37} +(-0.378581 - 1.36260i) q^{38} -9.94801 q^{39} +(-0.882243 - 6.26272i) q^{40} -5.13494 q^{41} +(-2.32684 - 8.37482i) q^{42} +(7.75925 + 7.75925i) q^{43} +(-4.31344 - 7.16331i) q^{44} +(2.78729 - 3.49617i) q^{45} +(-3.64132 + 6.44317i) q^{46} +(-3.74512 + 3.74512i) q^{47} +(-8.54812 + 2.63124i) q^{48} -0.555776i q^{49} +(6.22001 - 3.36326i) q^{50} +8.03176i q^{51} +(-2.14443 + 8.63585i) q^{52} +(6.04899 - 6.04899i) q^{53} +(2.75401 + 1.55641i) q^{54} +(5.82778 - 7.30995i) q^{55} +(-7.77175 + 0.214622i) q^{56} +(-1.58108 - 1.58108i) q^{57} +(13.6504 - 3.79259i) q^{58} -2.19430 q^{59} +(-6.08618 - 7.93415i) q^{60} -6.42875 q^{61} +(0.376195 - 0.104521i) q^{62} +(-3.88660 - 3.88660i) q^{63} +(0.441514 + 7.98781i) q^{64} +(-9.88569 + 1.11528i) q^{65} +(-11.5097 - 6.50463i) q^{66} +(-5.17620 + 5.17620i) q^{67} +(6.97236 + 1.73135i) q^{68} +11.7014i q^{69} +(-3.25117 - 8.06149i) q^{70} -3.20361i q^{71} +(-3.88730 + 4.10810i) q^{72} +(-6.83955 + 6.83955i) q^{73} +(5.19914 - 9.19968i) q^{74} +(5.94536 - 9.46799i) q^{75} +(-1.71335 + 1.03171i) q^{76} +(-8.12627 - 8.12627i) q^{77} +(3.76613 + 13.5552i) q^{78} -3.37793 q^{79} +(-8.19957 + 3.57309i) q^{80} +11.0004 q^{81} +(1.94399 + 6.99687i) q^{82} +(-4.21641 - 4.21641i) q^{83} +(-10.5306 + 6.34110i) q^{84} +(0.900447 + 7.98144i) q^{85} +(7.63525 - 13.5103i) q^{86} +(15.8391 - 15.8391i) q^{87} +(-8.12773 + 8.58938i) q^{88} +12.4531i q^{89} +(-5.81910 - 2.47437i) q^{90} +12.2295i q^{91} +(10.1580 + 2.52240i) q^{92} +(0.436513 - 0.436513i) q^{93} +(6.52093 + 3.68527i) q^{94} +(-1.74843 - 1.39392i) q^{95} +(6.82148 + 10.6515i) q^{96} +(-8.49786 - 8.49786i) q^{97} +(-0.757299 + 0.210406i) q^{98} -8.36011 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.378581 1.36260i −0.267697 0.963503i
\(3\) −1.58108 1.58108i −0.912835 0.912835i 0.0836591 0.996494i \(-0.473339\pi\)
−0.996494 + 0.0836591i \(0.973339\pi\)
\(4\) −1.71335 + 1.03171i −0.856676 + 0.515854i
\(5\) −1.74843 1.39392i −0.781921 0.623378i
\(6\) −1.55581 + 2.75294i −0.635156 + 1.12388i
\(7\) −1.94368 + 1.94368i −0.734642 + 0.734642i −0.971536 0.236894i \(-0.923871\pi\)
0.236894 + 0.971536i \(0.423871\pi\)
\(8\) 2.05445 + 1.94403i 0.726357 + 0.687318i
\(9\) 1.99961i 0.666537i
\(10\) −1.23743 + 2.91012i −0.391309 + 0.920259i
\(11\) 4.18087i 1.26058i 0.776360 + 0.630290i \(0.217064\pi\)
−0.776360 + 0.630290i \(0.782936\pi\)
\(12\) 4.34015 + 1.07773i 1.25289 + 0.311114i
\(13\) 3.14596 3.14596i 0.872532 0.872532i −0.120216 0.992748i \(-0.538359\pi\)
0.992748 + 0.120216i \(0.0383586\pi\)
\(14\) 3.38430 + 1.91262i 0.904491 + 0.511168i
\(15\) 0.560510 + 4.96829i 0.144723 + 1.28281i
\(16\) 1.87116 3.53536i 0.467789 0.883840i
\(17\) −2.53996 2.53996i −0.616032 0.616032i 0.328479 0.944511i \(-0.393464\pi\)
−0.944511 + 0.328479i \(0.893464\pi\)
\(18\) 2.72467 0.757015i 0.642210 0.178430i
\(19\) 1.00000 0.229416
\(20\) 4.43379 + 0.584402i 0.991425 + 0.130676i
\(21\) 6.14621 1.34121
\(22\) 5.69685 1.58280i 1.21457 0.337454i
\(23\) −3.70046 3.70046i −0.771599 0.771599i 0.206787 0.978386i \(-0.433699\pi\)
−0.978386 + 0.206787i \(0.933699\pi\)
\(24\) −0.174583 6.32190i −0.0356367 1.29045i
\(25\) 1.11400 + 4.87432i 0.222800 + 0.974864i
\(26\) −5.47768 3.09568i −1.07426 0.607113i
\(27\) −1.58169 + 1.58169i −0.304397 + 0.304397i
\(28\) 1.32490 5.33552i 0.250382 1.00832i
\(29\) 10.0179i 1.86028i 0.367209 + 0.930139i \(0.380313\pi\)
−0.367209 + 0.930139i \(0.619687\pi\)
\(30\) 6.55759 2.64465i 1.19725 0.482845i
\(31\) 0.276086i 0.0495865i 0.999693 + 0.0247933i \(0.00789275\pi\)
−0.999693 + 0.0247933i \(0.992107\pi\)
\(32\) −5.52566 1.21121i −0.976809 0.214114i
\(33\) 6.61028 6.61028i 1.15070 1.15070i
\(34\) −2.49937 + 4.42254i −0.428639 + 0.758459i
\(35\) 6.10771 0.689057i 1.03239 0.116472i
\(36\) −2.06301 3.42604i −0.343836 0.571006i
\(37\) 5.28359 + 5.28359i 0.868616 + 0.868616i 0.992319 0.123703i \(-0.0394770\pi\)
−0.123703 + 0.992319i \(0.539477\pi\)
\(38\) −0.378581 1.36260i −0.0614140 0.221043i
\(39\) −9.94801 −1.59296
\(40\) −0.882243 6.26272i −0.139495 0.990223i
\(41\) −5.13494 −0.801943 −0.400971 0.916091i \(-0.631327\pi\)
−0.400971 + 0.916091i \(0.631327\pi\)
\(42\) −2.32684 8.37482i −0.359039 1.29226i
\(43\) 7.75925 + 7.75925i 1.18328 + 1.18328i 0.978891 + 0.204384i \(0.0655192\pi\)
0.204384 + 0.978891i \(0.434481\pi\)
\(44\) −4.31344 7.16331i −0.650275 1.07991i
\(45\) 2.78729 3.49617i 0.415504 0.521179i
\(46\) −3.64132 + 6.44317i −0.536883 + 0.949993i
\(47\) −3.74512 + 3.74512i −0.546282 + 0.546282i −0.925363 0.379081i \(-0.876240\pi\)
0.379081 + 0.925363i \(0.376240\pi\)
\(48\) −8.54812 + 2.63124i −1.23381 + 0.379787i
\(49\) 0.555776i 0.0793965i
\(50\) 6.22001 3.36326i 0.879642 0.475637i
\(51\) 8.03176i 1.12467i
\(52\) −2.14443 + 8.63585i −0.297378 + 1.19758i
\(53\) 6.04899 6.04899i 0.830893 0.830893i −0.156746 0.987639i \(-0.550100\pi\)
0.987639 + 0.156746i \(0.0501004\pi\)
\(54\) 2.75401 + 1.55641i 0.374774 + 0.211801i
\(55\) 5.82778 7.30995i 0.785818 0.985673i
\(56\) −7.77175 + 0.214622i −1.03854 + 0.0286801i
\(57\) −1.58108 1.58108i −0.209419 0.209419i
\(58\) 13.6504 3.79259i 1.79238 0.497991i
\(59\) −2.19430 −0.285674 −0.142837 0.989746i \(-0.545622\pi\)
−0.142837 + 0.989746i \(0.545622\pi\)
\(60\) −6.08618 7.93415i −0.785722 1.02429i
\(61\) −6.42875 −0.823117 −0.411558 0.911383i \(-0.635015\pi\)
−0.411558 + 0.911383i \(0.635015\pi\)
\(62\) 0.376195 0.104521i 0.0477768 0.0132742i
\(63\) −3.88660 3.88660i −0.489666 0.489666i
\(64\) 0.441514 + 7.98781i 0.0551892 + 0.998476i
\(65\) −9.88569 + 1.11528i −1.22617 + 0.138333i
\(66\) −11.5097 6.50463i −1.41674 0.800665i
\(67\) −5.17620 + 5.17620i −0.632373 + 0.632373i −0.948663 0.316290i \(-0.897563\pi\)
0.316290 + 0.948663i \(0.397563\pi\)
\(68\) 6.97236 + 1.73135i 0.845523 + 0.209957i
\(69\) 11.7014i 1.40869i
\(70\) −3.25117 8.06149i −0.388589 0.963533i
\(71\) 3.20361i 0.380199i −0.981765 0.190099i \(-0.939119\pi\)
0.981765 0.190099i \(-0.0608810\pi\)
\(72\) −3.88730 + 4.10810i −0.458122 + 0.484144i
\(73\) −6.83955 + 6.83955i −0.800509 + 0.800509i −0.983175 0.182666i \(-0.941527\pi\)
0.182666 + 0.983175i \(0.441527\pi\)
\(74\) 5.19914 9.19968i 0.604388 1.06944i
\(75\) 5.94536 9.46799i 0.686511 1.09327i
\(76\) −1.71335 + 1.03171i −0.196535 + 0.118345i
\(77\) −8.12627 8.12627i −0.926074 0.926074i
\(78\) 3.76613 + 13.5552i 0.426430 + 1.53482i
\(79\) −3.37793 −0.380046 −0.190023 0.981780i \(-0.560856\pi\)
−0.190023 + 0.981780i \(0.560856\pi\)
\(80\) −8.19957 + 3.57309i −0.916740 + 0.399484i
\(81\) 11.0004 1.22227
\(82\) 1.94399 + 6.99687i 0.214678 + 0.772675i
\(83\) −4.21641 4.21641i −0.462811 0.462811i 0.436765 0.899576i \(-0.356124\pi\)
−0.899576 + 0.436765i \(0.856124\pi\)
\(84\) −10.5306 + 6.34110i −1.14899 + 0.691871i
\(85\) 0.900447 + 7.98144i 0.0976672 + 0.865709i
\(86\) 7.63525 13.5103i 0.823330 1.45685i
\(87\) 15.8391 15.8391i 1.69813 1.69813i
\(88\) −8.12773 + 8.58938i −0.866419 + 0.915631i
\(89\) 12.4531i 1.32003i 0.751254 + 0.660013i \(0.229449\pi\)
−0.751254 + 0.660013i \(0.770551\pi\)
\(90\) −5.81910 2.47437i −0.613387 0.260822i
\(91\) 12.2295i 1.28200i
\(92\) 10.1580 + 2.52240i 1.05904 + 0.262978i
\(93\) 0.436513 0.436513i 0.0452643 0.0452643i
\(94\) 6.52093 + 3.68527i 0.672582 + 0.380106i
\(95\) −1.74843 1.39392i −0.179385 0.143013i
\(96\) 6.82148 + 10.6515i 0.696214 + 1.08712i
\(97\) −8.49786 8.49786i −0.862827 0.862827i 0.128839 0.991666i \(-0.458875\pi\)
−0.991666 + 0.128839i \(0.958875\pi\)
\(98\) −0.757299 + 0.210406i −0.0764988 + 0.0212542i
\(99\) −8.36011 −0.840223
\(100\) −6.93755 7.20211i −0.693755 0.720211i
\(101\) −6.59302 −0.656030 −0.328015 0.944673i \(-0.606380\pi\)
−0.328015 + 0.944673i \(0.606380\pi\)
\(102\) 10.9441 3.04067i 1.08362 0.301071i
\(103\) −7.06562 7.06562i −0.696196 0.696196i 0.267392 0.963588i \(-0.413838\pi\)
−0.963588 + 0.267392i \(0.913838\pi\)
\(104\) 12.5790 0.347378i 1.23348 0.0340633i
\(105\) −10.7462 8.56730i −1.04872 0.836083i
\(106\) −10.5324 5.95232i −1.02300 0.578140i
\(107\) −3.61126 + 3.61126i −0.349114 + 0.349114i −0.859779 0.510666i \(-0.829399\pi\)
0.510666 + 0.859779i \(0.329399\pi\)
\(108\) 1.07815 4.34185i 0.103745 0.417794i
\(109\) 0.396878i 0.0380140i 0.999819 + 0.0190070i \(0.00605049\pi\)
−0.999819 + 0.0190070i \(0.993950\pi\)
\(110\) −12.1668 5.17352i −1.16006 0.493276i
\(111\) 16.7075i 1.58581i
\(112\) 3.23468 + 10.5085i 0.305649 + 0.992963i
\(113\) −10.6308 + 10.6308i −1.00006 + 1.00006i −5.96926e−5 1.00000i \(0.500019\pi\)
−1.00000 5.96926e-5i \(0.999981\pi\)
\(114\) −1.55581 + 2.75294i −0.145715 + 0.257836i
\(115\) 1.31186 + 11.6281i 0.122331 + 1.08433i
\(116\) −10.3356 17.1642i −0.959632 1.59366i
\(117\) 6.29069 + 6.29069i 0.581575 + 0.581575i
\(118\) 0.830721 + 2.98995i 0.0764741 + 0.275248i
\(119\) 9.87375 0.905125
\(120\) −8.50695 + 11.2967i −0.776575 + 1.03125i
\(121\) −6.47968 −0.589061
\(122\) 2.43380 + 8.75981i 0.220346 + 0.793076i
\(123\) 8.11874 + 8.11874i 0.732042 + 0.732042i
\(124\) −0.284840 0.473033i −0.0255794 0.0424796i
\(125\) 4.84665 10.0752i 0.433497 0.901155i
\(126\) −3.82448 + 6.76727i −0.340712 + 0.602876i
\(127\) 6.64721 6.64721i 0.589844 0.589844i −0.347745 0.937589i \(-0.613053\pi\)
0.937589 + 0.347745i \(0.113053\pi\)
\(128\) 10.7170 3.62564i 0.947261 0.320464i
\(129\) 24.5360i 2.16027i
\(130\) 5.26221 + 13.0480i 0.461527 + 1.14439i
\(131\) 11.2454i 0.982519i −0.871013 0.491259i \(-0.836537\pi\)
0.871013 0.491259i \(-0.163463\pi\)
\(132\) −4.50586 + 18.1456i −0.392185 + 1.57937i
\(133\) −1.94368 + 1.94368i −0.168538 + 0.168538i
\(134\) 9.01269 + 5.09347i 0.778578 + 0.440009i
\(135\) 4.97022 0.560729i 0.427769 0.0482599i
\(136\) −0.280464 10.1560i −0.0240496 0.870869i
\(137\) −3.10805 3.10805i −0.265539 0.265539i 0.561761 0.827300i \(-0.310124\pi\)
−0.827300 + 0.561761i \(0.810124\pi\)
\(138\) 15.9444 4.42994i 1.35727 0.377101i
\(139\) 3.47485 0.294733 0.147366 0.989082i \(-0.452920\pi\)
0.147366 + 0.989082i \(0.452920\pi\)
\(140\) −9.75375 + 7.48197i −0.824342 + 0.632342i
\(141\) 11.8426 0.997331
\(142\) −4.36524 + 1.21283i −0.366322 + 0.101778i
\(143\) 13.1528 + 13.1528i 1.09990 + 1.09990i
\(144\) 7.06934 + 3.74158i 0.589112 + 0.311798i
\(145\) 13.9641 17.5156i 1.15966 1.45459i
\(146\) 11.9089 + 6.73024i 0.985587 + 0.556999i
\(147\) −0.878724 + 0.878724i −0.0724759 + 0.0724759i
\(148\) −14.5038 3.60153i −1.19220 0.296044i
\(149\) 3.49270i 0.286133i −0.989713 0.143067i \(-0.954304\pi\)
0.989713 0.143067i \(-0.0456963\pi\)
\(150\) −15.1519 4.51674i −1.23715 0.368790i
\(151\) 0.0282485i 0.00229883i −0.999999 0.00114942i \(-0.999634\pi\)
0.999999 0.00114942i \(-0.000365871\pi\)
\(152\) 2.05445 + 1.94403i 0.166638 + 0.157681i
\(153\) 5.07894 5.07894i 0.410608 0.410608i
\(154\) −7.99640 + 14.1493i −0.644368 + 1.14018i
\(155\) 0.384841 0.482716i 0.0309111 0.0387727i
\(156\) 17.0445 10.2634i 1.36465 0.821733i
\(157\) 5.82895 + 5.82895i 0.465201 + 0.465201i 0.900356 0.435155i \(-0.143306\pi\)
−0.435155 + 0.900356i \(0.643306\pi\)
\(158\) 1.27882 + 4.60276i 0.101737 + 0.366176i
\(159\) −19.1278 −1.51694
\(160\) 7.97289 + 9.82003i 0.630313 + 0.776341i
\(161\) 14.3850 1.13370
\(162\) −4.16454 14.9891i −0.327197 1.17766i
\(163\) −11.5447 11.5447i −0.904248 0.904248i 0.0915524 0.995800i \(-0.470817\pi\)
−0.995800 + 0.0915524i \(0.970817\pi\)
\(164\) 8.79796 5.29776i 0.687006 0.413686i
\(165\) −20.7718 + 2.34342i −1.61708 + 0.182435i
\(166\) −4.14902 + 7.34153i −0.322027 + 0.569813i
\(167\) −13.0076 + 13.0076i −1.00656 + 1.00656i −0.00657976 + 0.999978i \(0.502094\pi\)
−0.999978 + 0.00657976i \(0.997906\pi\)
\(168\) 12.6271 + 11.9484i 0.974200 + 0.921840i
\(169\) 6.79413i 0.522625i
\(170\) 10.5346 4.24857i 0.807968 0.325851i
\(171\) 1.99961i 0.152914i
\(172\) −21.2996 5.28905i −1.62408 0.403286i
\(173\) 9.93804 9.93804i 0.755576 0.755576i −0.219938 0.975514i \(-0.570586\pi\)
0.975514 + 0.219938i \(0.0705856\pi\)
\(174\) −27.5787 15.5859i −2.09073 1.18157i
\(175\) −11.6394 7.30886i −0.879854 0.552498i
\(176\) 14.7809 + 7.82306i 1.11415 + 0.589685i
\(177\) 3.46936 + 3.46936i 0.260773 + 0.260773i
\(178\) 16.9686 4.71451i 1.27185 0.353368i
\(179\) 0.461309 0.0344798 0.0172399 0.999851i \(-0.494512\pi\)
0.0172399 + 0.999851i \(0.494512\pi\)
\(180\) −1.16858 + 8.86585i −0.0871005 + 0.660821i
\(181\) 7.36640 0.547540 0.273770 0.961795i \(-0.411729\pi\)
0.273770 + 0.961795i \(0.411729\pi\)
\(182\) 16.6639 4.62985i 1.23521 0.343187i
\(183\) 10.1643 + 10.1643i 0.751370 + 0.751370i
\(184\) −0.408607 14.7962i −0.0301229 1.09079i
\(185\) −1.87309 16.6028i −0.137713 1.22067i
\(186\) −0.760048 0.429537i −0.0557294 0.0314952i
\(187\) 10.6193 10.6193i 0.776557 0.776557i
\(188\) 2.55284 10.2806i 0.186185 0.749789i
\(189\) 6.14861i 0.447245i
\(190\) −1.23743 + 2.91012i −0.0897724 + 0.211122i
\(191\) 7.81764i 0.565665i −0.959169 0.282832i \(-0.908726\pi\)
0.959169 0.282832i \(-0.0912740\pi\)
\(192\) 11.9313 13.3274i 0.861065 0.961823i
\(193\) −17.7987 + 17.7987i −1.28118 + 1.28118i −0.341176 + 0.939999i \(0.610825\pi\)
−0.939999 + 0.341176i \(0.889175\pi\)
\(194\) −8.36205 + 14.7963i −0.600360 + 1.06231i
\(195\) 17.3934 + 13.8667i 1.24557 + 0.993014i
\(196\) 0.573398 + 0.952240i 0.0409570 + 0.0680171i
\(197\) 1.33547 + 1.33547i 0.0951485 + 0.0951485i 0.753079 0.657930i \(-0.228568\pi\)
−0.657930 + 0.753079i \(0.728568\pi\)
\(198\) 3.16498 + 11.3915i 0.224925 + 0.809557i
\(199\) 15.5573 1.10283 0.551413 0.834233i \(-0.314089\pi\)
0.551413 + 0.834233i \(0.314089\pi\)
\(200\) −7.18716 + 12.1797i −0.508209 + 0.861234i
\(201\) 16.3679 1.15451
\(202\) 2.49599 + 8.98364i 0.175617 + 0.632087i
\(203\) −19.4716 19.4716i −1.36664 1.36664i
\(204\) −8.28644 13.7612i −0.580167 0.963479i
\(205\) 8.97807 + 7.15767i 0.627056 + 0.499914i
\(206\) −6.95270 + 12.3025i −0.484417 + 0.857157i
\(207\) 7.39948 7.39948i 0.514299 0.514299i
\(208\) −5.23553 17.0087i −0.363018 1.17934i
\(209\) 4.18087i 0.289197i
\(210\) −7.60549 + 17.8862i −0.524829 + 1.23426i
\(211\) 16.8879i 1.16261i 0.813686 + 0.581305i \(0.197458\pi\)
−0.813686 + 0.581305i \(0.802542\pi\)
\(212\) −4.12326 + 16.6049i −0.283187 + 1.14043i
\(213\) −5.06515 + 5.06515i −0.347059 + 0.347059i
\(214\) 6.28785 + 3.55354i 0.429829 + 0.242915i
\(215\) −2.75075 24.3822i −0.187599 1.66285i
\(216\) −6.32436 + 0.174651i −0.430318 + 0.0118835i
\(217\) −0.536623 0.536623i −0.0364283 0.0364283i
\(218\) 0.540786 0.150251i 0.0366266 0.0101763i
\(219\) 21.6277 1.46147
\(220\) −2.44331 + 18.5371i −0.164728 + 1.24977i
\(221\) −15.9813 −1.07502
\(222\) −22.7656 + 6.32515i −1.52793 + 0.424516i
\(223\) 7.24122 + 7.24122i 0.484908 + 0.484908i 0.906695 0.421787i \(-0.138597\pi\)
−0.421787 + 0.906695i \(0.638597\pi\)
\(224\) 13.0943 8.38591i 0.874901 0.560307i
\(225\) −9.74674 + 2.22756i −0.649783 + 0.148504i
\(226\) 18.5101 + 10.4609i 1.23127 + 0.695847i
\(227\) 0.349778 0.349778i 0.0232156 0.0232156i −0.695404 0.718619i \(-0.744774\pi\)
0.718619 + 0.695404i \(0.244774\pi\)
\(228\) 4.34015 + 1.07773i 0.287434 + 0.0713746i
\(229\) 10.6868i 0.706207i 0.935584 + 0.353103i \(0.114874\pi\)
−0.935584 + 0.353103i \(0.885126\pi\)
\(230\) 15.3478 6.18972i 1.01201 0.408138i
\(231\) 25.6965i 1.69071i
\(232\) −19.4751 + 20.5813i −1.27860 + 1.35123i
\(233\) −20.5613 + 20.5613i −1.34701 + 1.34701i −0.458128 + 0.888886i \(0.651480\pi\)
−0.888886 + 0.458128i \(0.848520\pi\)
\(234\) 6.19016 10.9532i 0.404663 0.716035i
\(235\) 11.7685 1.32769i 0.767689 0.0866089i
\(236\) 3.75961 2.26388i 0.244730 0.147366i
\(237\) 5.34076 + 5.34076i 0.346920 + 0.346920i
\(238\) −3.73802 13.4540i −0.242300 0.872091i
\(239\) 10.6830 0.691028 0.345514 0.938414i \(-0.387705\pi\)
0.345514 + 0.938414i \(0.387705\pi\)
\(240\) 18.6135 + 7.31483i 1.20150 + 0.472170i
\(241\) 11.7625 0.757689 0.378844 0.925460i \(-0.376322\pi\)
0.378844 + 0.925460i \(0.376322\pi\)
\(242\) 2.45308 + 8.82920i 0.157690 + 0.567563i
\(243\) −12.6474 12.6474i −0.811330 0.811330i
\(244\) 11.0147 6.63259i 0.705145 0.424608i
\(245\) −0.774704 + 0.971733i −0.0494940 + 0.0620818i
\(246\) 7.98898 14.1362i 0.509359 0.901290i
\(247\) 3.14596 3.14596i 0.200173 0.200173i
\(248\) −0.536719 + 0.567204i −0.0340817 + 0.0360175i
\(249\) 13.3329i 0.844941i
\(250\) −15.5633 2.78975i −0.984311 0.176439i
\(251\) 20.7617i 1.31047i 0.755427 + 0.655233i \(0.227430\pi\)
−0.755427 + 0.655233i \(0.772570\pi\)
\(252\) 10.6690 + 2.64928i 0.672081 + 0.166889i
\(253\) 15.4711 15.4711i 0.972663 0.972663i
\(254\) −11.5740 6.54097i −0.726216 0.410417i
\(255\) 11.1956 14.0430i 0.701095 0.879404i
\(256\) −8.99756 13.2304i −0.562347 0.826901i
\(257\) 13.8568 + 13.8568i 0.864366 + 0.864366i 0.991842 0.127475i \(-0.0406874\pi\)
−0.127475 + 0.991842i \(0.540687\pi\)
\(258\) −33.4327 + 9.28885i −2.08143 + 0.578298i
\(259\) −20.5392 −1.27624
\(260\) 15.7870 12.1100i 0.979070 0.751031i
\(261\) −20.0319 −1.23994
\(262\) −15.3230 + 4.25731i −0.946660 + 0.263018i
\(263\) −17.5064 17.5064i −1.07949 1.07949i −0.996555 0.0829348i \(-0.973571\pi\)
−0.0829348 0.996555i \(-0.526429\pi\)
\(264\) 26.4310 0.729910i 1.62672 0.0449229i
\(265\) −19.0080 + 2.14444i −1.16765 + 0.131732i
\(266\) 3.38430 + 1.91262i 0.207504 + 0.117270i
\(267\) 19.6893 19.6893i 1.20497 1.20497i
\(268\) 3.52833 14.2090i 0.215527 0.867952i
\(269\) 16.0727i 0.979973i −0.871730 0.489986i \(-0.837002\pi\)
0.871730 0.489986i \(-0.162998\pi\)
\(270\) −2.64568 6.56014i −0.161011 0.399237i
\(271\) 10.6807i 0.648808i 0.945919 + 0.324404i \(0.105164\pi\)
−0.945919 + 0.324404i \(0.894836\pi\)
\(272\) −13.7324 + 4.22702i −0.832647 + 0.256301i
\(273\) 19.3357 19.3357i 1.17025 1.17025i
\(274\) −3.05838 + 5.41168i −0.184764 + 0.326932i
\(275\) −20.3789 + 4.65748i −1.22889 + 0.280857i
\(276\) −12.0725 20.0487i −0.726677 1.20679i
\(277\) 8.82550 + 8.82550i 0.530273 + 0.530273i 0.920654 0.390381i \(-0.127657\pi\)
−0.390381 + 0.920654i \(0.627657\pi\)
\(278\) −1.31551 4.73483i −0.0788992 0.283976i
\(279\) −0.552064 −0.0330512
\(280\) 13.8875 + 10.4579i 0.829938 + 0.624980i
\(281\) 13.8513 0.826299 0.413150 0.910663i \(-0.364429\pi\)
0.413150 + 0.910663i \(0.364429\pi\)
\(282\) −4.48340 16.1368i −0.266983 0.960931i
\(283\) 10.2962 + 10.2962i 0.612045 + 0.612045i 0.943479 0.331433i \(-0.107532\pi\)
−0.331433 + 0.943479i \(0.607532\pi\)
\(284\) 3.30519 + 5.48891i 0.196127 + 0.325707i
\(285\) 0.560510 + 4.96829i 0.0332018 + 0.294296i
\(286\) 12.9426 22.9015i 0.765314 1.35419i
\(287\) 9.98068 9.98068i 0.589141 0.589141i
\(288\) 2.42195 11.0492i 0.142715 0.651079i
\(289\) 4.09716i 0.241009i
\(290\) −29.1532 12.3964i −1.71194 0.727943i
\(291\) 26.8715i 1.57524i
\(292\) 4.66214 18.7750i 0.272831 1.09872i
\(293\) −8.39088 + 8.39088i −0.490201 + 0.490201i −0.908369 0.418169i \(-0.862672\pi\)
0.418169 + 0.908369i \(0.362672\pi\)
\(294\) 1.53002 + 0.864680i 0.0892324 + 0.0504292i
\(295\) 3.83658 + 3.05867i 0.223374 + 0.178083i
\(296\) 0.583416 + 21.1263i 0.0339104 + 1.22794i
\(297\) −6.61285 6.61285i −0.383717 0.383717i
\(298\) −4.75915 + 1.32227i −0.275690 + 0.0765970i
\(299\) −23.2830 −1.34649
\(300\) −0.418291 + 22.3559i −0.0241501 + 1.29072i
\(301\) −30.1630 −1.73857
\(302\) −0.0384914 + 0.0106944i −0.00221493 + 0.000615391i
\(303\) 10.4241 + 10.4241i 0.598847 + 0.598847i
\(304\) 1.87116 3.53536i 0.107318 0.202767i
\(305\) 11.2402 + 8.96113i 0.643612 + 0.513113i
\(306\) −8.84335 4.99777i −0.505541 0.285703i
\(307\) −16.2471 + 16.2471i −0.927270 + 0.927270i −0.997529 0.0702587i \(-0.977618\pi\)
0.0702587 + 0.997529i \(0.477618\pi\)
\(308\) 22.3071 + 5.53922i 1.27107 + 0.315627i
\(309\) 22.3426i 1.27103i
\(310\) −0.803442 0.341636i −0.0456325 0.0194036i
\(311\) 28.1999i 1.59907i −0.600618 0.799536i \(-0.705079\pi\)
0.600618 0.799536i \(-0.294921\pi\)
\(312\) −20.4377 19.3392i −1.15706 1.09487i
\(313\) −4.82974 + 4.82974i −0.272993 + 0.272993i −0.830304 0.557311i \(-0.811833\pi\)
0.557311 + 0.830304i \(0.311833\pi\)
\(314\) 5.73579 10.1492i 0.323689 0.572755i
\(315\) 1.37785 + 12.2130i 0.0776328 + 0.688126i
\(316\) 5.78758 3.48503i 0.325577 0.196049i
\(317\) −14.0276 14.0276i −0.787868 0.787868i 0.193276 0.981144i \(-0.438089\pi\)
−0.981144 + 0.193276i \(0.938089\pi\)
\(318\) 7.24144 + 26.0636i 0.406080 + 1.46157i
\(319\) −41.8835 −2.34503
\(320\) 10.3624 14.5815i 0.579274 0.815133i
\(321\) 11.4194 0.637366
\(322\) −5.44589 19.6010i −0.303488 1.09232i
\(323\) −2.53996 2.53996i −0.141327 0.141327i
\(324\) −18.8475 + 11.3492i −1.04709 + 0.630511i
\(325\) 18.8390 + 11.8298i 1.04500 + 0.656201i
\(326\) −11.3602 + 20.1013i −0.629181 + 1.11331i
\(327\) 0.627495 0.627495i 0.0347006 0.0347006i
\(328\) −10.5495 9.98247i −0.582497 0.551189i
\(329\) 14.5586i 0.802643i
\(330\) 11.0569 + 27.4164i 0.608665 + 1.50922i
\(331\) 18.6160i 1.02323i −0.859216 0.511613i \(-0.829048\pi\)
0.859216 0.511613i \(-0.170952\pi\)
\(332\) 11.5743 + 2.87409i 0.635222 + 0.157736i
\(333\) −10.5651 + 10.5651i −0.578965 + 0.578965i
\(334\) 22.6486 + 12.7997i 1.23927 + 0.700369i
\(335\) 16.2654 1.83502i 0.888673 0.100258i
\(336\) 11.5005 21.7291i 0.627405 1.18542i
\(337\) 3.14441 + 3.14441i 0.171287 + 0.171287i 0.787545 0.616258i \(-0.211352\pi\)
−0.616258 + 0.787545i \(0.711352\pi\)
\(338\) −9.25767 + 2.57213i −0.503551 + 0.139905i
\(339\) 33.6162 1.82578
\(340\) −9.77730 12.7460i −0.530249 0.691250i
\(341\) −1.15428 −0.0625077
\(342\) 2.72467 0.757015i 0.147333 0.0409347i
\(343\) −12.5255 12.5255i −0.676314 0.676314i
\(344\) 0.856780 + 31.0252i 0.0461945 + 1.67277i
\(345\) 16.3108 20.4591i 0.878144 1.10148i
\(346\) −17.3039 9.77921i −0.930265 0.525734i
\(347\) 6.64122 6.64122i 0.356519 0.356519i −0.506009 0.862528i \(-0.668880\pi\)
0.862528 + 0.506009i \(0.168880\pi\)
\(348\) −10.7966 + 43.4792i −0.578759 + 2.33073i
\(349\) 7.71160i 0.412793i −0.978468 0.206396i \(-0.933826\pi\)
0.978468 0.206396i \(-0.0661736\pi\)
\(350\) −5.55260 + 18.6268i −0.296799 + 0.995644i
\(351\) 9.95189i 0.531192i
\(352\) 5.06393 23.1021i 0.269908 1.23135i
\(353\) 0.937561 0.937561i 0.0499014 0.0499014i −0.681716 0.731617i \(-0.738766\pi\)
0.731617 + 0.681716i \(0.238766\pi\)
\(354\) 3.41391 6.04078i 0.181447 0.321064i
\(355\) −4.46556 + 5.60128i −0.237007 + 0.297285i
\(356\) −12.8480 21.3366i −0.680941 1.13084i
\(357\) −15.6112 15.6112i −0.826230 0.826230i
\(358\) −0.174643 0.628579i −0.00923016 0.0332214i
\(359\) −25.7286 −1.35791 −0.678953 0.734182i \(-0.737566\pi\)
−0.678953 + 0.734182i \(0.737566\pi\)
\(360\) 12.5230 1.76414i 0.660020 0.0929784i
\(361\) 1.00000 0.0526316
\(362\) −2.78878 10.0375i −0.146575 0.527557i
\(363\) 10.2449 + 10.2449i 0.537716 + 0.537716i
\(364\) −12.6172 20.9534i −0.661324 1.09826i
\(365\) 21.4922 2.42470i 1.12495 0.126915i
\(366\) 10.0019 17.6980i 0.522808 0.925087i
\(367\) 3.95182 3.95182i 0.206283 0.206283i −0.596402 0.802686i \(-0.703404\pi\)
0.802686 + 0.596402i \(0.203404\pi\)
\(368\) −20.0066 + 6.15833i −1.04292 + 0.321025i
\(369\) 10.2679i 0.534524i
\(370\) −21.9139 + 8.83780i −1.13925 + 0.459455i
\(371\) 23.5146i 1.22082i
\(372\) −0.297547 + 1.19826i −0.0154271 + 0.0621267i
\(373\) −8.10059 + 8.10059i −0.419433 + 0.419433i −0.885008 0.465575i \(-0.845847\pi\)
0.465575 + 0.885008i \(0.345847\pi\)
\(374\) −18.4900 10.4495i −0.956098 0.540333i
\(375\) −23.5926 + 8.26677i −1.21832 + 0.426894i
\(376\) −14.9748 + 0.413538i −0.772265 + 0.0213266i
\(377\) 31.5159 + 31.5159i 1.62315 + 1.62315i
\(378\) −8.37809 + 2.32775i −0.430922 + 0.119726i
\(379\) −10.1697 −0.522380 −0.261190 0.965287i \(-0.584115\pi\)
−0.261190 + 0.965287i \(0.584115\pi\)
\(380\) 4.43379 + 0.584402i 0.227449 + 0.0299792i
\(381\) −21.0195 −1.07686
\(382\) −10.6523 + 2.95961i −0.545020 + 0.151427i
\(383\) −14.3086 14.3086i −0.731138 0.731138i 0.239707 0.970845i \(-0.422949\pi\)
−0.970845 + 0.239707i \(0.922949\pi\)
\(384\) −22.6769 11.2120i −1.15722 0.572162i
\(385\) 2.88086 + 25.5355i 0.146822 + 1.30141i
\(386\) 30.9907 + 17.5142i 1.57738 + 0.891450i
\(387\) −15.5155 + 15.5155i −0.788696 + 0.788696i
\(388\) 23.3271 + 5.79252i 1.18426 + 0.294070i
\(389\) 30.0276i 1.52246i −0.648482 0.761230i \(-0.724596\pi\)
0.648482 0.761230i \(-0.275404\pi\)
\(390\) 12.3099 28.9499i 0.623338 1.46593i
\(391\) 18.7981i 0.950660i
\(392\) 1.08044 1.14181i 0.0545706 0.0576702i
\(393\) −17.7799 + 17.7799i −0.896878 + 0.896878i
\(394\) 1.31413 2.32530i 0.0662049 0.117147i
\(395\) 5.90606 + 4.70854i 0.297166 + 0.236913i
\(396\) 14.3238 8.62520i 0.719799 0.433432i
\(397\) −6.99848 6.99848i −0.351244 0.351244i 0.509329 0.860572i \(-0.329894\pi\)
−0.860572 + 0.509329i \(0.829894\pi\)
\(398\) −5.88969 21.1983i −0.295223 1.06258i
\(399\) 6.14621 0.307696
\(400\) 19.3169 + 5.18223i 0.965847 + 0.259111i
\(401\) −16.6477 −0.831349 −0.415674 0.909514i \(-0.636454\pi\)
−0.415674 + 0.909514i \(0.636454\pi\)
\(402\) −6.19659 22.3029i −0.309058 1.11237i
\(403\) 0.868555 + 0.868555i 0.0432658 + 0.0432658i
\(404\) 11.2962 6.80207i 0.562005 0.338416i
\(405\) −19.2334 15.3336i −0.955715 0.761934i
\(406\) −19.1604 + 33.9035i −0.950914 + 1.68260i
\(407\) −22.0900 + 22.0900i −1.09496 + 1.09496i
\(408\) −15.6140 + 16.5008i −0.773006 + 0.816913i
\(409\) 10.2017i 0.504444i 0.967669 + 0.252222i \(0.0811613\pi\)
−0.967669 + 0.252222i \(0.918839\pi\)
\(410\) 6.35411 14.9433i 0.313807 0.737996i
\(411\) 9.82815i 0.484787i
\(412\) 19.3956 + 4.81624i 0.955551 + 0.237279i
\(413\) 4.26502 4.26502i 0.209868 0.209868i
\(414\) −12.8838 7.28122i −0.633206 0.357852i
\(415\) 1.49477 + 13.2494i 0.0733752 + 0.650388i
\(416\) −21.1939 + 13.5731i −1.03912 + 0.665475i
\(417\) −5.49400 5.49400i −0.269043 0.269043i
\(418\) 5.69685 1.58280i 0.278642 0.0774172i
\(419\) 12.2167 0.596824 0.298412 0.954437i \(-0.403543\pi\)
0.298412 + 0.954437i \(0.403543\pi\)
\(420\) 27.2510 + 3.59186i 1.32971 + 0.175265i
\(421\) −3.09851 −0.151012 −0.0755062 0.997145i \(-0.524057\pi\)
−0.0755062 + 0.997145i \(0.524057\pi\)
\(422\) 23.0114 6.39344i 1.12018 0.311228i
\(423\) −7.48878 7.48878i −0.364117 0.364117i
\(424\) 24.1867 0.667933i 1.17461 0.0324377i
\(425\) 9.55109 15.2101i 0.463296 0.737799i
\(426\) 8.81935 + 4.98420i 0.427299 + 0.241485i
\(427\) 12.4954 12.4954i 0.604696 0.604696i
\(428\) 2.46159 9.91312i 0.118986 0.479169i
\(429\) 41.5913i 2.00805i
\(430\) −32.1818 + 12.9788i −1.55195 + 0.625894i
\(431\) 6.40238i 0.308392i 0.988040 + 0.154196i \(0.0492787\pi\)
−0.988040 + 0.154196i \(0.950721\pi\)
\(432\) 2.63226 + 8.55145i 0.126645 + 0.411432i
\(433\) 17.5962 17.5962i 0.845621 0.845621i −0.143962 0.989583i \(-0.545984\pi\)
0.989583 + 0.143962i \(0.0459843\pi\)
\(434\) −0.528046 + 0.934356i −0.0253470 + 0.0448505i
\(435\) −49.7718 + 5.61514i −2.38638 + 0.269225i
\(436\) −0.409463 0.679992i −0.0196097 0.0325657i
\(437\) −3.70046 3.70046i −0.177017 0.177017i
\(438\) −8.18785 29.4699i −0.391230 1.40813i
\(439\) −19.9289 −0.951155 −0.475578 0.879674i \(-0.657761\pi\)
−0.475578 + 0.879674i \(0.657761\pi\)
\(440\) 26.1836 3.68854i 1.24825 0.175844i
\(441\) 1.11133 0.0529207
\(442\) 6.05020 + 21.7760i 0.287779 + 1.03578i
\(443\) 1.19044 + 1.19044i 0.0565597 + 0.0565597i 0.734821 0.678261i \(-0.237266\pi\)
−0.678261 + 0.734821i \(0.737266\pi\)
\(444\) 17.2373 + 28.6259i 0.818045 + 1.35852i
\(445\) 17.3586 21.7734i 0.822876 1.03216i
\(446\) 7.12549 12.6083i 0.337402 0.597019i
\(447\) −5.52223 + 5.52223i −0.261192 + 0.261192i
\(448\) −16.3839 14.6676i −0.774066 0.692978i
\(449\) 31.3174i 1.47796i 0.673728 + 0.738980i \(0.264692\pi\)
−0.673728 + 0.738980i \(0.735308\pi\)
\(450\) 6.72521 + 12.4376i 0.317029 + 0.586314i
\(451\) 21.4685i 1.01091i
\(452\) 7.24641 29.1821i 0.340842 1.37261i
\(453\) −0.0446631 + 0.0446631i −0.00209846 + 0.00209846i
\(454\) −0.609026 0.344187i −0.0285830 0.0161535i
\(455\) 17.0469 21.3823i 0.799169 1.00242i
\(456\) −0.174583 6.32190i −0.00817561 0.296050i
\(457\) −19.7335 19.7335i −0.923096 0.923096i 0.0741508 0.997247i \(-0.476375\pi\)
−0.997247 + 0.0741508i \(0.976375\pi\)
\(458\) 14.5619 4.04584i 0.680432 0.189050i
\(459\) 8.03489 0.375037
\(460\) −14.2445 18.5696i −0.664153 0.865813i
\(461\) −13.6317 −0.634894 −0.317447 0.948276i \(-0.602825\pi\)
−0.317447 + 0.948276i \(0.602825\pi\)
\(462\) 35.0141 9.72822i 1.62900 0.452598i
\(463\) 26.2755 + 26.2755i 1.22113 + 1.22113i 0.967231 + 0.253897i \(0.0817123\pi\)
0.253897 + 0.967231i \(0.418288\pi\)
\(464\) 35.4169 + 18.7450i 1.64419 + 0.870217i
\(465\) −1.37167 + 0.154749i −0.0636099 + 0.00717632i
\(466\) 35.8009 + 20.2327i 1.65844 + 0.937260i
\(467\) 3.54910 3.54910i 0.164233 0.164233i −0.620206 0.784439i \(-0.712951\pi\)
0.784439 + 0.620206i \(0.212951\pi\)
\(468\) −17.2683 4.28801i −0.798229 0.198214i
\(469\) 20.1217i 0.929135i
\(470\) −6.26442 15.5330i −0.288956 0.716486i
\(471\) 18.4320i 0.849303i
\(472\) −4.50808 4.26578i −0.207501 0.196349i
\(473\) −32.4404 + 32.4404i −1.49161 + 1.49161i
\(474\) 5.25541 9.29923i 0.241389 0.427128i
\(475\) 1.11400 + 4.87432i 0.0511137 + 0.223649i
\(476\) −16.9172 + 10.1868i −0.775399 + 0.466913i
\(477\) 12.0956 + 12.0956i 0.553821 + 0.553821i
\(478\) −4.04439 14.5567i −0.184986 0.665807i
\(479\) 28.6474 1.30893 0.654465 0.756092i \(-0.272894\pi\)
0.654465 + 0.756092i \(0.272894\pi\)
\(480\) 2.92046 28.1320i 0.133300 1.28404i
\(481\) 33.2439 1.51579
\(482\) −4.45306 16.0276i −0.202831 0.730035i
\(483\) −22.7438 22.7438i −1.03488 1.03488i
\(484\) 11.1020 6.68514i 0.504635 0.303870i
\(485\) 3.01259 + 26.7032i 0.136795 + 1.21253i
\(486\) −12.4453 + 22.0214i −0.564528 + 0.998910i
\(487\) 30.1230 30.1230i 1.36500 1.36500i 0.497590 0.867412i \(-0.334218\pi\)
0.867412 0.497590i \(-0.165782\pi\)
\(488\) −13.2075 12.4977i −0.597877 0.565743i
\(489\) 36.5060i 1.65086i
\(490\) 1.61737 + 0.687732i 0.0730654 + 0.0310685i
\(491\) 11.8932i 0.536731i −0.963317 0.268366i \(-0.913516\pi\)
0.963317 0.268366i \(-0.0864836\pi\)
\(492\) −22.2864 5.53409i −1.00475 0.249496i
\(493\) 25.4451 25.4451i 1.14599 1.14599i
\(494\) −5.47768 3.09568i −0.246453 0.139281i
\(495\) 14.6170 + 11.6533i 0.656987 + 0.523776i
\(496\) 0.976064 + 0.516600i 0.0438266 + 0.0231960i
\(497\) 6.22679 + 6.22679i 0.279310 + 0.279310i
\(498\) 18.1675 5.04760i 0.814103 0.226188i
\(499\) 18.1037 0.810432 0.405216 0.914221i \(-0.367196\pi\)
0.405216 + 0.914221i \(0.367196\pi\)
\(500\) 2.09067 + 22.2627i 0.0934975 + 0.995620i
\(501\) 41.1320 1.83764
\(502\) 28.2899 7.85999i 1.26264 0.350808i
\(503\) −16.2494 16.2494i −0.724524 0.724524i 0.244999 0.969523i \(-0.421212\pi\)
−0.969523 + 0.244999i \(0.921212\pi\)
\(504\) −0.429160 15.5405i −0.0191163 0.692228i
\(505\) 11.5274 + 9.19011i 0.512963 + 0.408955i
\(506\) −26.9381 15.2239i −1.19754 0.676784i
\(507\) −10.7420 + 10.7420i −0.477071 + 0.477071i
\(508\) −4.53103 + 18.2470i −0.201032 + 0.809579i
\(509\) 43.7904i 1.94097i 0.241155 + 0.970487i \(0.422474\pi\)
−0.241155 + 0.970487i \(0.577526\pi\)
\(510\) −23.3734 9.93872i −1.03499 0.440094i
\(511\) 26.5878i 1.17617i
\(512\) −14.6215 + 17.2688i −0.646183 + 0.763183i
\(513\) −1.58169 + 1.58169i −0.0698335 + 0.0698335i
\(514\) 13.6354 24.1273i 0.601431 1.06421i
\(515\) 2.50485 + 22.2026i 0.110377 + 0.978364i
\(516\) 25.3140 + 42.0387i 1.11438 + 1.85065i
\(517\) −15.6579 15.6579i −0.688632 0.688632i
\(518\) 7.77575 + 27.9867i 0.341647 + 1.22966i
\(519\) −31.4256 −1.37943
\(520\) −22.4778 16.9268i −0.985715 0.742288i
\(521\) 34.0703 1.49265 0.746323 0.665584i \(-0.231817\pi\)
0.746323 + 0.665584i \(0.231817\pi\)
\(522\) 7.58370 + 27.2954i 0.331929 + 1.19469i
\(523\) 16.2536 + 16.2536i 0.710720 + 0.710720i 0.966686 0.255966i \(-0.0823934\pi\)
−0.255966 + 0.966686i \(0.582393\pi\)
\(524\) 11.6020 + 19.2674i 0.506837 + 0.841701i
\(525\) 6.84687 + 29.9586i 0.298822 + 1.30750i
\(526\) −17.2266 + 30.4818i −0.751115 + 1.32907i
\(527\) 0.701249 0.701249i 0.0305469 0.0305469i
\(528\) −11.0009 35.7386i −0.478751 1.55532i
\(529\) 4.38682i 0.190731i
\(530\) 10.1181 + 25.0885i 0.439501 + 1.08977i
\(531\) 4.38775i 0.190412i
\(532\) 1.32490 5.33552i 0.0574416 0.231324i
\(533\) −16.1543 + 16.1543i −0.699721 + 0.699721i
\(534\) −34.2827 19.3747i −1.48356 0.838423i
\(535\) 11.3478 1.28023i 0.490609 0.0553493i
\(536\) −20.6969 + 0.571558i −0.893970 + 0.0246876i
\(537\) −0.729365 0.729365i −0.0314744 0.0314744i
\(538\) −21.9007 + 6.08484i −0.944207 + 0.262336i
\(539\) 2.32363 0.100086
\(540\) −7.93724 + 6.08855i −0.341564 + 0.262009i
\(541\) 2.52042 0.108361 0.0541807 0.998531i \(-0.482745\pi\)
0.0541807 + 0.998531i \(0.482745\pi\)
\(542\) 14.5535 4.04352i 0.625128 0.173684i
\(543\) −11.6469 11.6469i −0.499814 0.499814i
\(544\) 10.9586 + 17.1114i 0.469844 + 0.733647i
\(545\) 0.553215 0.693913i 0.0236971 0.0297240i
\(546\) −33.6670 19.0267i −1.44081 0.814268i
\(547\) −15.0297 + 15.0297i −0.642623 + 0.642623i −0.951200 0.308576i \(-0.900148\pi\)
0.308576 + 0.951200i \(0.400148\pi\)
\(548\) 8.53180 + 2.11859i 0.364460 + 0.0905016i
\(549\) 12.8550i 0.548638i
\(550\) 14.0613 + 26.0050i 0.599578 + 1.10886i
\(551\) 10.0179i 0.426777i
\(552\) −22.7479 + 24.0400i −0.968215 + 1.02321i
\(553\) 6.56560 6.56560i 0.279198 0.279198i
\(554\) 8.68445 15.3668i 0.368967 0.652872i
\(555\) −23.2889 + 29.2119i −0.988557 + 1.23998i
\(556\) −5.95364 + 3.58503i −0.252491 + 0.152039i
\(557\) 26.2644 + 26.2644i 1.11286 + 1.11286i 0.992762 + 0.120098i \(0.0383209\pi\)
0.120098 + 0.992762i \(0.461679\pi\)
\(558\) 0.209001 + 0.752242i 0.00884772 + 0.0318450i
\(559\) 48.8206 2.06489
\(560\) 8.99240 22.8823i 0.379998 0.966953i
\(561\) −33.5797 −1.41774
\(562\) −5.24384 18.8738i −0.221198 0.796142i
\(563\) 30.1923 + 30.1923i 1.27246 + 1.27246i 0.944796 + 0.327660i \(0.106260\pi\)
0.327660 + 0.944796i \(0.393740\pi\)
\(564\) −20.2906 + 12.2182i −0.854390 + 0.514477i
\(565\) 33.4056 3.76874i 1.40538 0.158552i
\(566\) 10.1316 17.9275i 0.425865 0.753550i
\(567\) −21.3812 + 21.3812i −0.897927 + 0.897927i
\(568\) 6.22791 6.58165i 0.261317 0.276160i
\(569\) 14.6606i 0.614603i 0.951612 + 0.307302i \(0.0994261\pi\)
−0.951612 + 0.307302i \(0.900574\pi\)
\(570\) 6.55759 2.64465i 0.274667 0.110772i
\(571\) 16.3003i 0.682145i −0.940037 0.341072i \(-0.889210\pi\)
0.940037 0.341072i \(-0.110790\pi\)
\(572\) −36.1054 8.96556i −1.50964 0.374869i
\(573\) −12.3603 + 12.3603i −0.516359 + 0.516359i
\(574\) −17.3782 9.82117i −0.725350 0.409928i
\(575\) 13.9149 22.1595i 0.580293 0.924117i
\(576\) −15.9725 + 0.882855i −0.665521 + 0.0367856i
\(577\) −22.0297 22.0297i −0.917107 0.917107i 0.0797106 0.996818i \(-0.474600\pi\)
−0.996818 + 0.0797106i \(0.974600\pi\)
\(578\) −5.58279 + 1.55111i −0.232213 + 0.0645176i
\(579\) 56.2821 2.33901
\(580\) −5.85448 + 44.4172i −0.243094 + 1.84433i
\(581\) 16.3907 0.680001
\(582\) 36.6151 10.1731i 1.51775 0.421687i
\(583\) 25.2901 + 25.2901i 1.04741 + 1.04741i
\(584\) −27.3478 + 0.755227i −1.13166 + 0.0312515i
\(585\) −2.23012 19.7675i −0.0922043 0.817286i
\(586\) 14.6100 + 8.25678i 0.603535 + 0.341084i
\(587\) −9.33394 + 9.33394i −0.385253 + 0.385253i −0.872990 0.487737i \(-0.837822\pi\)
0.487737 + 0.872990i \(0.337822\pi\)
\(588\) 0.598977 2.41215i 0.0247014 0.0994755i
\(589\) 0.276086i 0.0113759i
\(590\) 2.71529 6.38567i 0.111787 0.262894i
\(591\) 4.22297i 0.173710i
\(592\) 28.5658 8.79298i 1.17405 0.361389i
\(593\) −6.90298 + 6.90298i −0.283472 + 0.283472i −0.834492 0.551020i \(-0.814239\pi\)
0.551020 + 0.834492i \(0.314239\pi\)
\(594\) −6.50717 + 11.5142i −0.266992 + 0.472432i
\(595\) −17.2635 13.7632i −0.707736 0.564235i
\(596\) 3.60345 + 5.98423i 0.147603 + 0.245123i
\(597\) −24.5972 24.5972i −1.00670 1.00670i
\(598\) 8.81450 + 31.7254i 0.360452 + 1.29735i
\(599\) 6.30551 0.257636 0.128818 0.991668i \(-0.458882\pi\)
0.128818 + 0.991668i \(0.458882\pi\)
\(600\) 30.6205 7.89356i 1.25008 0.322253i
\(601\) −28.6173 −1.16732 −0.583662 0.811996i \(-0.698381\pi\)
−0.583662 + 0.811996i \(0.698381\pi\)
\(602\) 11.4191 + 41.1001i 0.465409 + 1.67511i
\(603\) −10.3504 10.3504i −0.421500 0.421500i
\(604\) 0.0291442 + 0.0483997i 0.00118586 + 0.00196936i
\(605\) 11.3292 + 9.03212i 0.460599 + 0.367208i
\(606\) 10.2575 18.1502i 0.416681 0.737301i
\(607\) −19.1663 + 19.1663i −0.777937 + 0.777937i −0.979480 0.201543i \(-0.935405\pi\)
0.201543 + 0.979480i \(0.435405\pi\)
\(608\) −5.52566 1.21121i −0.224095 0.0491212i
\(609\) 61.5721i 2.49503i
\(610\) 7.95511 18.7084i 0.322093 0.757481i
\(611\) 23.5640i 0.953297i
\(612\) −3.46203 + 13.9420i −0.139944 + 0.563572i
\(613\) 4.87008 4.87008i 0.196701 0.196701i −0.601883 0.798584i \(-0.705583\pi\)
0.798584 + 0.601883i \(0.205583\pi\)
\(614\) 28.2891 + 15.9874i 1.14166 + 0.645200i
\(615\) −2.87819 25.5119i −0.116060 1.02874i
\(616\) −0.897307 32.4927i −0.0361535 1.30917i
\(617\) −22.0210 22.0210i −0.886533 0.886533i 0.107655 0.994188i \(-0.465666\pi\)
−0.994188 + 0.107655i \(0.965666\pi\)
\(618\) 30.4440 8.45848i 1.22464 0.340250i
\(619\) −46.0944 −1.85269 −0.926345 0.376677i \(-0.877067\pi\)
−0.926345 + 0.376677i \(0.877067\pi\)
\(620\) −0.161345 + 1.22411i −0.00647978 + 0.0491613i
\(621\) 11.7060 0.469745
\(622\) −38.4252 + 10.6760i −1.54071 + 0.428067i
\(623\) −24.2048 24.2048i −0.969747 0.969747i
\(624\) −18.6143 + 35.1698i −0.745167 + 1.40792i
\(625\) −22.5180 + 10.8600i −0.900721 + 0.434399i
\(626\) 8.40945 + 4.75255i 0.336109 + 0.189950i
\(627\) 6.61028 6.61028i 0.263989 0.263989i
\(628\) −16.0008 3.97327i −0.638502 0.158551i
\(629\) 26.8402i 1.07019i
\(630\) 16.1198 6.50107i 0.642230 0.259009i
\(631\) 22.0131i 0.876327i −0.898895 0.438164i \(-0.855629\pi\)
0.898895 0.438164i \(-0.144371\pi\)
\(632\) −6.93977 6.56678i −0.276049 0.261213i
\(633\) 26.7011 26.7011i 1.06127 1.06127i
\(634\) −13.8034 + 24.4246i −0.548203 + 0.970024i
\(635\) −20.8878 + 2.35651i −0.828907 + 0.0935153i
\(636\) 32.7727 19.7344i 1.29952 0.782518i
\(637\) −1.74845 1.74845i −0.0692760 0.0692760i
\(638\) 15.8563 + 57.0705i 0.627757 + 2.25944i
\(639\) 6.40597 0.253416
\(640\) −23.7918 8.59947i −0.940453 0.339924i
\(641\) 14.7965 0.584427 0.292213 0.956353i \(-0.405608\pi\)
0.292213 + 0.956353i \(0.405608\pi\)
\(642\) −4.32315 15.5600i −0.170621 0.614104i
\(643\) 30.6307 + 30.6307i 1.20796 + 1.20796i 0.971688 + 0.236268i \(0.0759242\pi\)
0.236268 + 0.971688i \(0.424076\pi\)
\(644\) −24.6466 + 14.8411i −0.971212 + 0.584823i
\(645\) −34.2011 + 42.8993i −1.34667 + 1.68916i
\(646\) −2.49937 + 4.42254i −0.0983364 + 0.174002i
\(647\) −31.2175 + 31.2175i −1.22728 + 1.22728i −0.262298 + 0.964987i \(0.584480\pi\)
−0.964987 + 0.262298i \(0.915520\pi\)
\(648\) 22.5997 + 21.3851i 0.887801 + 0.840085i
\(649\) 9.17409i 0.360115i
\(650\) 8.98722 30.1486i 0.352508 1.18252i
\(651\) 1.69688i 0.0665061i
\(652\) 31.6908 + 7.86935i 1.24111 + 0.308188i
\(653\) 2.80916 2.80916i 0.109931 0.109931i −0.650002 0.759933i \(-0.725232\pi\)
0.759933 + 0.650002i \(0.225232\pi\)
\(654\) −1.09258 0.617466i −0.0427233 0.0241448i
\(655\) −15.6752 + 19.6618i −0.612481 + 0.768252i
\(656\) −9.60827 + 18.1539i −0.375140 + 0.708790i
\(657\) −13.6764 13.6764i −0.533569 0.533569i
\(658\) −19.8376 + 5.51162i −0.773349 + 0.214865i
\(659\) −4.02042 −0.156613 −0.0783066 0.996929i \(-0.524951\pi\)
−0.0783066 + 0.996929i \(0.524951\pi\)
\(660\) 33.1716 25.4455i 1.29120 0.990465i
\(661\) −18.3750 −0.714705 −0.357352 0.933970i \(-0.616321\pi\)
−0.357352 + 0.933970i \(0.616321\pi\)
\(662\) −25.3661 + 7.04765i −0.985882 + 0.273915i
\(663\) 25.2676 + 25.2676i 0.981312 + 0.981312i
\(664\) −0.465578 16.8592i −0.0180679 0.654264i
\(665\) 6.10771 0.689057i 0.236847 0.0267205i
\(666\) 18.3958 + 10.3963i 0.712821 + 0.402847i
\(667\) 37.0708 37.0708i 1.43539 1.43539i
\(668\) 8.86655 35.7067i 0.343057 1.38153i
\(669\) 22.8979i 0.885282i
\(670\) −8.65817 21.4685i −0.334494 0.829401i
\(671\) 26.8778i 1.03760i
\(672\) −33.9619 7.44438i −1.31011 0.287173i
\(673\) 31.9937 31.9937i 1.23327 1.23327i 0.270565 0.962702i \(-0.412789\pi\)
0.962702 0.270565i \(-0.0872105\pi\)
\(674\) 3.09416 5.47499i 0.119183 0.210889i
\(675\) −9.47168 5.94768i −0.364565 0.228926i
\(676\) 7.00956 + 11.6407i 0.269598 + 0.447721i
\(677\) 8.69191 + 8.69191i 0.334057 + 0.334057i 0.854125 0.520068i \(-0.174093\pi\)
−0.520068 + 0.854125i \(0.674093\pi\)
\(678\) −12.7264 45.8054i −0.488756 1.75914i
\(679\) 33.0342 1.26774
\(680\) −13.6662 + 18.1479i −0.524076 + 0.695942i
\(681\) −1.10605 −0.0423840
\(682\) 0.436988 + 1.57282i 0.0167332 + 0.0602264i
\(683\) 18.0817 + 18.0817i 0.691878 + 0.691878i 0.962645 0.270767i \(-0.0872773\pi\)
−0.270767 + 0.962645i \(0.587277\pi\)
\(684\) −2.06301 3.42604i −0.0788813 0.130998i
\(685\) 1.10184 + 9.76658i 0.0420992 + 0.373162i
\(686\) −12.3253 + 21.8092i −0.470583 + 0.832678i
\(687\) 16.8967 16.8967i 0.644650 0.644650i
\(688\) 41.9505 12.9130i 1.59935 0.492303i
\(689\) 38.0598i 1.44996i
\(690\) −34.0525 14.4797i −1.29636 0.551231i
\(691\) 3.20982i 0.122107i −0.998134 0.0610536i \(-0.980554\pi\)
0.998134 0.0610536i \(-0.0194460\pi\)
\(692\) −6.77421 + 27.2805i −0.257517 + 1.03705i
\(693\) 16.2494 16.2494i 0.617263 0.617263i
\(694\) −11.5636 6.53508i −0.438947 0.248068i
\(695\) −6.07552 4.84365i −0.230458 0.183730i
\(696\) 63.3321 1.74896i 2.40060 0.0662941i
\(697\) 13.0426 + 13.0426i 0.494022 + 0.494022i
\(698\) −10.5078 + 2.91947i −0.397727 + 0.110503i
\(699\) 65.0179 2.45920
\(700\) 27.4830 + 0.514222i 1.03876 + 0.0194357i
\(701\) 1.08890 0.0411273 0.0205637 0.999789i \(-0.493454\pi\)
0.0205637 + 0.999789i \(0.493454\pi\)
\(702\) 13.5604 3.76760i 0.511806 0.142199i
\(703\) 5.28359 + 5.28359i 0.199274 + 0.199274i
\(704\) −33.3960 + 1.84591i −1.25866 + 0.0695704i
\(705\) −20.7060 16.5077i −0.779834 0.621714i
\(706\) −1.63246 0.922577i −0.0614386 0.0347217i
\(707\) 12.8147 12.8147i 0.481947 0.481947i
\(708\) −9.52361 2.36487i −0.357919 0.0888772i
\(709\) 39.2212i 1.47298i −0.676446 0.736492i \(-0.736481\pi\)
0.676446 0.736492i \(-0.263519\pi\)
\(710\) 9.32288 + 3.96423i 0.349881 + 0.148775i
\(711\) 6.75454i 0.253315i
\(712\) −24.2092 + 25.5843i −0.907278 + 0.958811i
\(713\) 1.02165 1.02165i 0.0382609 0.0382609i
\(714\) −15.3617 + 27.1818i −0.574896 + 1.01726i
\(715\) −4.66284 41.3308i −0.174380 1.54568i
\(716\) −0.790385 + 0.475936i −0.0295381 + 0.0177866i
\(717\) −16.8907 16.8907i −0.630795 0.630795i
\(718\) 9.74038 + 35.0578i 0.363508 + 1.30835i
\(719\) −18.4618 −0.688509 −0.344255 0.938876i \(-0.611868\pi\)
−0.344255 + 0.938876i \(0.611868\pi\)
\(720\) −7.14479 16.3960i −0.266271 0.611041i
\(721\) 27.4666 1.02291
\(722\) −0.378581 1.36260i −0.0140893 0.0507107i
\(723\) −18.5974 18.5974i −0.691645 0.691645i
\(724\) −12.6212 + 7.59998i −0.469065 + 0.282451i
\(725\) −48.8305 + 11.1599i −1.81352 + 0.414469i
\(726\) 10.0811 17.8382i 0.374146 0.662036i
\(727\) −22.6031 + 22.6031i −0.838301 + 0.838301i −0.988635 0.150334i \(-0.951965\pi\)
0.150334 + 0.988635i \(0.451965\pi\)
\(728\) −23.7744 + 25.1248i −0.881139 + 0.931188i
\(729\) 6.99182i 0.258956i
\(730\) −11.4404 28.3673i −0.423430 1.04992i
\(731\) 39.4165i 1.45787i
\(732\) −27.9018 6.92847i −1.03128 0.256084i
\(733\) −10.3459 + 10.3459i −0.382136 + 0.382136i −0.871871 0.489735i \(-0.837093\pi\)
0.489735 + 0.871871i \(0.337093\pi\)
\(734\) −6.88083 3.88866i −0.253976 0.143533i
\(735\) 2.76125 0.311518i 0.101850 0.0114905i
\(736\) 15.9655 + 24.9296i 0.588494 + 0.918915i
\(737\) −21.6410 21.6410i −0.797157 0.797157i
\(738\) −13.9910 + 3.88723i −0.515016 + 0.143091i
\(739\) −2.93089 −0.107814 −0.0539072 0.998546i \(-0.517168\pi\)
−0.0539072 + 0.998546i \(0.517168\pi\)
\(740\) 20.3386 + 26.5140i 0.747660 + 0.974675i
\(741\) −9.94801 −0.365449
\(742\) 32.0410 8.90218i 1.17626 0.326809i
\(743\) −7.25703 7.25703i −0.266234 0.266234i 0.561346 0.827581i \(-0.310284\pi\)
−0.827581 + 0.561346i \(0.810284\pi\)
\(744\) 1.74539 0.0482000i 0.0639890 0.00176710i
\(745\) −4.86853 + 6.10673i −0.178369 + 0.223733i
\(746\) 14.1046 + 7.97113i 0.516406 + 0.291844i
\(747\) 8.43118 8.43118i 0.308481 0.308481i
\(748\) −7.23856 + 29.1505i −0.264668 + 1.06585i
\(749\) 14.0383i 0.512947i
\(750\) 20.1960 + 29.0176i 0.737454 + 1.05957i
\(751\) 49.3852i 1.80209i −0.433725 0.901045i \(-0.642801\pi\)
0.433725 0.901045i \(-0.357199\pi\)
\(752\) 6.23265 + 20.2481i 0.227281 + 0.738371i
\(753\) 32.8258 32.8258i 1.19624 1.19624i
\(754\) 31.0122 54.8749i 1.12940 1.99842i
\(755\) −0.0393761 + 0.0493905i −0.00143304 + 0.00179750i
\(756\) 6.34357 + 10.5347i 0.230713 + 0.383145i
\(757\) −24.5487 24.5487i −0.892236 0.892236i 0.102497 0.994733i \(-0.467317\pi\)
−0.994733 + 0.102497i \(0.967317\pi\)
\(758\) 3.85004 + 13.8572i 0.139840 + 0.503315i
\(759\) −48.9222 −1.77576
\(760\) −0.882243 6.26272i −0.0320023 0.227173i
\(761\) −1.97888 −0.0717342 −0.0358671 0.999357i \(-0.511419\pi\)
−0.0358671 + 0.999357i \(0.511419\pi\)
\(762\) 7.95758 + 28.6411i 0.288273 + 1.03756i
\(763\) −0.771404 0.771404i −0.0279267 0.0279267i
\(764\) 8.06553 + 13.3944i 0.291801 + 0.484592i
\(765\) −15.9598 + 1.80054i −0.577027 + 0.0650988i
\(766\) −14.0800 + 24.9139i −0.508730 + 0.900177i
\(767\) −6.90318 + 6.90318i −0.249260 + 0.249260i
\(768\) −6.69248 + 35.1441i −0.241494 + 1.26816i
\(769\) 28.4422i 1.02565i −0.858492 0.512827i \(-0.828598\pi\)
0.858492 0.512827i \(-0.171402\pi\)
\(770\)