Properties

Label 380.2.k.c.267.10
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.10
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.c.343.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.600761 + 1.28027i) q^{2} +(1.93295 + 1.93295i) q^{3} +(-1.27817 - 1.53827i) q^{4} +(2.18132 + 0.491792i) q^{5} +(-3.63593 + 1.31345i) q^{6} +(-3.06024 + 3.06024i) q^{7} +(2.73727 - 0.712271i) q^{8} +4.47257i q^{9} +O(q^{10})\) \(q+(-0.600761 + 1.28027i) q^{2} +(1.93295 + 1.93295i) q^{3} +(-1.27817 - 1.53827i) q^{4} +(2.18132 + 0.491792i) q^{5} +(-3.63593 + 1.31345i) q^{6} +(-3.06024 + 3.06024i) q^{7} +(2.73727 - 0.712271i) q^{8} +4.47257i q^{9} +(-1.94007 + 2.49722i) q^{10} -4.14335i q^{11} +(0.502754 - 5.44403i) q^{12} +(-2.07701 + 2.07701i) q^{13} +(-2.07945 - 5.75640i) q^{14} +(3.26576 + 5.16698i) q^{15} +(-0.732549 + 3.93235i) q^{16} +(-0.314830 - 0.314830i) q^{17} +(-5.72608 - 2.68694i) q^{18} +1.00000 q^{19} +(-2.03159 - 3.98405i) q^{20} -11.8306 q^{21} +(5.30459 + 2.48916i) q^{22} +(5.43304 + 5.43304i) q^{23} +(6.66779 + 3.91422i) q^{24} +(4.51628 + 2.14551i) q^{25} +(-1.41134 - 3.90691i) q^{26} +(-2.84639 + 2.84639i) q^{27} +(8.61899 + 0.795960i) q^{28} -0.106253i q^{29} +(-8.57706 + 1.07693i) q^{30} -8.35227i q^{31} +(-4.59437 - 3.30026i) q^{32} +(8.00887 - 8.00887i) q^{33} +(0.592205 - 0.213930i) q^{34} +(-8.18035 + 5.17035i) q^{35} +(6.88001 - 5.71671i) q^{36} +(3.26782 + 3.26782i) q^{37} +(-0.600761 + 1.28027i) q^{38} -8.02949 q^{39} +(6.32115 - 0.207520i) q^{40} -3.02173 q^{41} +(7.10733 - 15.1463i) q^{42} +(-7.14446 - 7.14446i) q^{43} +(-6.37359 + 5.29591i) q^{44} +(-2.19957 + 9.75608i) q^{45} +(-10.2197 + 3.69179i) q^{46} +(3.91723 - 3.91723i) q^{47} +(-9.01700 + 6.18504i) q^{48} -11.7301i q^{49} +(-5.46003 + 4.49311i) q^{50} -1.21710i q^{51} +(5.84978 + 0.540224i) q^{52} +(0.521892 - 0.521892i) q^{53} +(-1.93414 - 5.35415i) q^{54} +(2.03766 - 9.03795i) q^{55} +(-6.19699 + 10.5564i) q^{56} +(1.93295 + 1.93295i) q^{57} +(0.136032 + 0.0638325i) q^{58} +7.27666 q^{59} +(3.77400 - 11.6279i) q^{60} +9.20099 q^{61} +(10.6931 + 5.01772i) q^{62} +(-13.6871 - 13.6871i) q^{63} +(6.98534 - 3.89936i) q^{64} +(-5.55207 + 3.50916i) q^{65} +(5.44208 + 15.0649i) q^{66} +(-4.78675 + 4.78675i) q^{67} +(-0.0818865 + 0.886702i) q^{68} +21.0036i q^{69} +(-1.70500 - 13.5792i) q^{70} +10.2743i q^{71} +(3.18568 + 12.2426i) q^{72} +(4.65123 - 4.65123i) q^{73} +(-6.14687 + 2.22051i) q^{74} +(4.58258 + 12.8769i) q^{75} +(-1.27817 - 1.53827i) q^{76} +(12.6796 + 12.6796i) q^{77} +(4.82381 - 10.2799i) q^{78} +2.41405 q^{79} +(-3.53182 + 8.21744i) q^{80} +2.41385 q^{81} +(1.81534 - 3.86862i) q^{82} +(-8.80850 - 8.80850i) q^{83} +(15.1215 + 18.1986i) q^{84} +(-0.531914 - 0.841576i) q^{85} +(13.4389 - 4.85471i) q^{86} +(0.205381 - 0.205381i) q^{87} +(-2.95119 - 11.3415i) q^{88} +1.25042i q^{89} +(-11.1690 - 8.67711i) q^{90} -12.7123i q^{91} +(1.41312 - 15.3019i) q^{92} +(16.1445 - 16.1445i) q^{93} +(2.66179 + 7.36843i) q^{94} +(2.18132 + 0.491792i) q^{95} +(-2.50145 - 15.2599i) q^{96} +(-2.87685 - 2.87685i) q^{97} +(15.0177 + 7.04699i) q^{98} +18.5314 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q - 2 q^{2} - 2 q^{3} + 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 18 q^{10} - 38 q^{12} - 2 q^{13} + 2 q^{15} + 16 q^{16} - 20 q^{17} + 2 q^{18} + 52 q^{19} + 20 q^{20} - 16 q^{21} + 20 q^{22} + 20 q^{23} - 16 q^{25} - 8 q^{27} - 8 q^{28} - 48 q^{30} - 42 q^{32} + 8 q^{33} - 20 q^{34} + 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} - 64 q^{39} + 60 q^{40} - 4 q^{41} + 60 q^{42} - 28 q^{43} + 8 q^{44} + 12 q^{45} - 8 q^{46} - 4 q^{47} - 18 q^{48} - 42 q^{50} - 54 q^{52} - 2 q^{53} - 24 q^{54} + 12 q^{56} - 2 q^{57} - 12 q^{58} + 28 q^{59} + 90 q^{60} - 4 q^{61} + 56 q^{62} + 44 q^{63} + 24 q^{64} + 10 q^{65} + 36 q^{66} + 6 q^{67} - 60 q^{68} - 32 q^{70} - 24 q^{72} + 8 q^{73} - 88 q^{74} + 2 q^{75} + 12 q^{77} + 64 q^{78} - 52 q^{79} - 8 q^{80} - 24 q^{81} + 56 q^{82} - 76 q^{83} + 40 q^{84} + 12 q^{85} - 8 q^{86} + 12 q^{87} - 40 q^{88} - 94 q^{90} - 48 q^{92} + 24 q^{93} - 32 q^{94} + 4 q^{95} - 4 q^{96} - 10 q^{97} + 58 q^{98} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.600761 + 1.28027i −0.424802 + 0.905286i
\(3\) 1.93295 + 1.93295i 1.11599 + 1.11599i 0.992324 + 0.123663i \(0.0394642\pi\)
0.123663 + 0.992324i \(0.460536\pi\)
\(4\) −1.27817 1.53827i −0.639086 0.769135i
\(5\) 2.18132 + 0.491792i 0.975514 + 0.219936i
\(6\) −3.63593 + 1.31345i −1.48436 + 0.536214i
\(7\) −3.06024 + 3.06024i −1.15666 + 1.15666i −0.171472 + 0.985189i \(0.554852\pi\)
−0.985189 + 0.171472i \(0.945148\pi\)
\(8\) 2.73727 0.712271i 0.967773 0.251826i
\(9\) 4.47257i 1.49086i
\(10\) −1.94007 + 2.49722i −0.613506 + 0.789690i
\(11\) 4.14335i 1.24927i −0.780918 0.624633i \(-0.785249\pi\)
0.780918 0.624633i \(-0.214751\pi\)
\(12\) 0.502754 5.44403i 0.145133 1.57156i
\(13\) −2.07701 + 2.07701i −0.576059 + 0.576059i −0.933815 0.357756i \(-0.883542\pi\)
0.357756 + 0.933815i \(0.383542\pi\)
\(14\) −2.07945 5.75640i −0.555757 1.53846i
\(15\) 3.26576 + 5.16698i 0.843216 + 1.33411i
\(16\) −0.732549 + 3.93235i −0.183137 + 0.983087i
\(17\) −0.314830 0.314830i −0.0763576 0.0763576i 0.667897 0.744254i \(-0.267195\pi\)
−0.744254 + 0.667897i \(0.767195\pi\)
\(18\) −5.72608 2.68694i −1.34965 0.633319i
\(19\) 1.00000 0.229416
\(20\) −2.03159 3.98405i −0.454277 0.890860i
\(21\) −11.8306 −2.58164
\(22\) 5.30459 + 2.48916i 1.13094 + 0.530691i
\(23\) 5.43304 + 5.43304i 1.13287 + 1.13287i 0.989698 + 0.143169i \(0.0457294\pi\)
0.143169 + 0.989698i \(0.454271\pi\)
\(24\) 6.66779 + 3.91422i 1.36106 + 0.798987i
\(25\) 4.51628 + 2.14551i 0.903256 + 0.429101i
\(26\) −1.41134 3.90691i −0.276787 0.766209i
\(27\) −2.84639 + 2.84639i −0.547789 + 0.547789i
\(28\) 8.61899 + 0.795960i 1.62884 + 0.150422i
\(29\) 0.106253i 0.0197306i −0.999951 0.00986532i \(-0.996860\pi\)
0.999951 0.00986532i \(-0.00314028\pi\)
\(30\) −8.57706 + 1.07693i −1.56595 + 0.196620i
\(31\) 8.35227i 1.50011i −0.661374 0.750056i \(-0.730026\pi\)
0.661374 0.750056i \(-0.269974\pi\)
\(32\) −4.59437 3.30026i −0.812178 0.583409i
\(33\) 8.00887 8.00887i 1.39416 1.39416i
\(34\) 0.592205 0.213930i 0.101562 0.0366886i
\(35\) −8.18035 + 5.17035i −1.38273 + 0.873948i
\(36\) 6.88001 5.71671i 1.14667 0.952785i
\(37\) 3.26782 + 3.26782i 0.537227 + 0.537227i 0.922713 0.385487i \(-0.125966\pi\)
−0.385487 + 0.922713i \(0.625966\pi\)
\(38\) −0.600761 + 1.28027i −0.0974563 + 0.207687i
\(39\) −8.02949 −1.28575
\(40\) 6.32115 0.207520i 0.999462 0.0328118i
\(41\) −3.02173 −0.471915 −0.235957 0.971763i \(-0.575823\pi\)
−0.235957 + 0.971763i \(0.575823\pi\)
\(42\) 7.10733 15.1463i 1.09669 2.33712i
\(43\) −7.14446 7.14446i −1.08952 1.08952i −0.995578 0.0939420i \(-0.970053\pi\)
−0.0939420 0.995578i \(-0.529947\pi\)
\(44\) −6.37359 + 5.29591i −0.960854 + 0.798389i
\(45\) −2.19957 + 9.75608i −0.327893 + 1.45435i
\(46\) −10.2197 + 3.69179i −1.50681 + 0.544325i
\(47\) 3.91723 3.91723i 0.571387 0.571387i −0.361129 0.932516i \(-0.617609\pi\)
0.932516 + 0.361129i \(0.117609\pi\)
\(48\) −9.01700 + 6.18504i −1.30149 + 0.892734i
\(49\) 11.7301i 1.67573i
\(50\) −5.46003 + 4.49311i −0.772165 + 0.635422i
\(51\) 1.21710i 0.170428i
\(52\) 5.84978 + 0.540224i 0.811218 + 0.0749156i
\(53\) 0.521892 0.521892i 0.0716873 0.0716873i −0.670354 0.742041i \(-0.733858\pi\)
0.742041 + 0.670354i \(0.233858\pi\)
\(54\) −1.93414 5.35415i −0.263204 0.728607i
\(55\) 2.03766 9.03795i 0.274759 1.21868i
\(56\) −6.19699 + 10.5564i −0.828108 + 1.41066i
\(57\) 1.93295 + 1.93295i 0.256025 + 0.256025i
\(58\) 0.136032 + 0.0638325i 0.0178619 + 0.00838161i
\(59\) 7.27666 0.947340 0.473670 0.880702i \(-0.342929\pi\)
0.473670 + 0.880702i \(0.342929\pi\)
\(60\) 3.77400 11.6279i 0.487221 1.50116i
\(61\) 9.20099 1.17807 0.589033 0.808109i \(-0.299509\pi\)
0.589033 + 0.808109i \(0.299509\pi\)
\(62\) 10.6931 + 5.01772i 1.35803 + 0.637251i
\(63\) −13.6871 13.6871i −1.72441 1.72441i
\(64\) 6.98534 3.89936i 0.873167 0.487420i
\(65\) −5.55207 + 3.50916i −0.688649 + 0.435257i
\(66\) 5.44208 + 15.0649i 0.669874 + 1.85436i
\(67\) −4.78675 + 4.78675i −0.584794 + 0.584794i −0.936217 0.351423i \(-0.885698\pi\)
0.351423 + 0.936217i \(0.385698\pi\)
\(68\) −0.0818865 + 0.886702i −0.00993020 + 0.107528i
\(69\) 21.0036i 2.52853i
\(70\) −1.70500 13.5792i −0.203786 1.62302i
\(71\) 10.2743i 1.21933i 0.792659 + 0.609665i \(0.208696\pi\)
−0.792659 + 0.609665i \(0.791304\pi\)
\(72\) 3.18568 + 12.2426i 0.375436 + 1.44281i
\(73\) 4.65123 4.65123i 0.544386 0.544386i −0.380426 0.924811i \(-0.624223\pi\)
0.924811 + 0.380426i \(0.124223\pi\)
\(74\) −6.14687 + 2.22051i −0.714559 + 0.258129i
\(75\) 4.58258 + 12.8769i 0.529151 + 1.48689i
\(76\) −1.27817 1.53827i −0.146616 0.176452i
\(77\) 12.6796 + 12.6796i 1.44498 + 1.44498i
\(78\) 4.82381 10.2799i 0.546188 1.16397i
\(79\) 2.41405 0.271601 0.135801 0.990736i \(-0.456639\pi\)
0.135801 + 0.990736i \(0.456639\pi\)
\(80\) −3.53182 + 8.21744i −0.394869 + 0.918737i
\(81\) 2.41385 0.268205
\(82\) 1.81534 3.86862i 0.200470 0.427218i
\(83\) −8.80850 8.80850i −0.966858 0.966858i 0.0326101 0.999468i \(-0.489618\pi\)
−0.999468 + 0.0326101i \(0.989618\pi\)
\(84\) 15.1215 + 18.1986i 1.64989 + 1.98563i
\(85\) −0.531914 0.841576i −0.0576941 0.0912817i
\(86\) 13.4389 4.85471i 1.44916 0.523497i
\(87\) 0.205381 0.205381i 0.0220191 0.0220191i
\(88\) −2.95119 11.3415i −0.314598 1.20901i
\(89\) 1.25042i 0.132544i 0.997802 + 0.0662721i \(0.0211105\pi\)
−0.997802 + 0.0662721i \(0.978889\pi\)
\(90\) −11.1690 8.67711i −1.17731 0.914648i
\(91\) 12.7123i 1.33261i
\(92\) 1.41312 15.3019i 0.147328 1.59533i
\(93\) 16.1445 16.1445i 1.67411 1.67411i
\(94\) 2.66179 + 7.36843i 0.274542 + 0.759995i
\(95\) 2.18132 + 0.491792i 0.223798 + 0.0504568i
\(96\) −2.50145 15.2599i −0.255303 1.55746i
\(97\) −2.87685 2.87685i −0.292100 0.292100i 0.545810 0.837909i \(-0.316222\pi\)
−0.837909 + 0.545810i \(0.816222\pi\)
\(98\) 15.0177 + 7.04699i 1.51702 + 0.711854i
\(99\) 18.5314 1.86247
\(100\) −2.47222 9.68959i −0.247222 0.968959i
\(101\) −3.29590 −0.327954 −0.163977 0.986464i \(-0.552432\pi\)
−0.163977 + 0.986464i \(0.552432\pi\)
\(102\) 1.55822 + 0.731187i 0.154286 + 0.0723983i
\(103\) 8.36336 + 8.36336i 0.824066 + 0.824066i 0.986688 0.162622i \(-0.0519951\pi\)
−0.162622 + 0.986688i \(0.551995\pi\)
\(104\) −4.20595 + 7.16474i −0.412427 + 0.702560i
\(105\) −25.8062 5.81817i −2.51843 0.567795i
\(106\) 0.354629 + 0.981693i 0.0344446 + 0.0953505i
\(107\) 0.887437 0.887437i 0.0857918 0.0857918i −0.662909 0.748700i \(-0.730678\pi\)
0.748700 + 0.662909i \(0.230678\pi\)
\(108\) 8.01670 + 0.740339i 0.771407 + 0.0712392i
\(109\) 1.36449i 0.130694i −0.997863 0.0653470i \(-0.979185\pi\)
0.997863 0.0653470i \(-0.0208154\pi\)
\(110\) 10.3468 + 8.03840i 0.986533 + 0.766432i
\(111\) 12.6330i 1.19908i
\(112\) −9.79215 14.2757i −0.925271 1.34893i
\(113\) −1.40611 + 1.40611i −0.132276 + 0.132276i −0.770145 0.637869i \(-0.779816\pi\)
0.637869 + 0.770145i \(0.279816\pi\)
\(114\) −3.63593 + 1.31345i −0.340536 + 0.123016i
\(115\) 9.17926 + 14.5231i 0.855970 + 1.35429i
\(116\) −0.163445 + 0.135809i −0.0151755 + 0.0126096i
\(117\) −9.28956 9.28956i −0.858820 0.858820i
\(118\) −4.37153 + 9.31607i −0.402432 + 0.857614i
\(119\) 1.92691 0.176640
\(120\) 12.6196 + 11.8173i 1.15200 + 1.07877i
\(121\) −6.16732 −0.560665
\(122\) −5.52759 + 11.7797i −0.500445 + 1.06649i
\(123\) −5.84084 5.84084i −0.526651 0.526651i
\(124\) −12.8480 + 10.6756i −1.15379 + 0.958701i
\(125\) 8.79630 + 6.90110i 0.786765 + 0.617253i
\(126\) 25.7459 9.30050i 2.29362 0.828554i
\(127\) −4.26882 + 4.26882i −0.378797 + 0.378797i −0.870668 0.491871i \(-0.836313\pi\)
0.491871 + 0.870668i \(0.336313\pi\)
\(128\) 0.795712 + 11.2857i 0.0703317 + 0.997524i
\(129\) 27.6197i 2.43178i
\(130\) −1.15720 9.21630i −0.101493 0.808323i
\(131\) 4.06634i 0.355278i −0.984096 0.177639i \(-0.943154\pi\)
0.984096 0.177639i \(-0.0568460\pi\)
\(132\) −22.5565 2.08308i −1.96329 0.181309i
\(133\) −3.06024 + 3.06024i −0.265356 + 0.265356i
\(134\) −3.25263 9.00401i −0.280984 0.777828i
\(135\) −7.60872 + 4.80905i −0.654854 + 0.413897i
\(136\) −1.08602 0.637533i −0.0931256 0.0546680i
\(137\) −4.18040 4.18040i −0.357156 0.357156i 0.505608 0.862764i \(-0.331268\pi\)
−0.862764 + 0.505608i \(0.831268\pi\)
\(138\) −26.8902 12.6181i −2.28905 1.07413i
\(139\) 20.2237 1.71535 0.857674 0.514193i \(-0.171909\pi\)
0.857674 + 0.514193i \(0.171909\pi\)
\(140\) 18.4093 + 5.97499i 1.55587 + 0.504978i
\(141\) 15.1436 1.27532
\(142\) −13.1538 6.17237i −1.10384 0.517974i
\(143\) 8.60577 + 8.60577i 0.719650 + 0.719650i
\(144\) −17.5877 3.27637i −1.46564 0.273031i
\(145\) 0.0522542 0.231771i 0.00433948 0.0192475i
\(146\) 3.16055 + 8.74910i 0.261569 + 0.724081i
\(147\) 22.6737 22.6737i 1.87009 1.87009i
\(148\) 0.849951 9.20363i 0.0698656 0.756534i
\(149\) 6.18976i 0.507085i 0.967324 + 0.253542i \(0.0815957\pi\)
−0.967324 + 0.253542i \(0.918404\pi\)
\(150\) −19.2389 1.86900i −1.57085 0.152603i
\(151\) 0.852809i 0.0694006i −0.999398 0.0347003i \(-0.988952\pi\)
0.999398 0.0347003i \(-0.0110477\pi\)
\(152\) 2.73727 0.712271i 0.222022 0.0577728i
\(153\) 1.40810 1.40810i 0.113838 0.113838i
\(154\) −23.8507 + 8.61590i −1.92195 + 0.694289i
\(155\) 4.10758 18.2189i 0.329929 1.46338i
\(156\) 10.2631 + 12.3515i 0.821704 + 0.988914i
\(157\) −15.3133 15.3133i −1.22213 1.22213i −0.966873 0.255257i \(-0.917840\pi\)
−0.255257 0.966873i \(-0.582160\pi\)
\(158\) −1.45026 + 3.09063i −0.115377 + 0.245877i
\(159\) 2.01758 0.160004
\(160\) −8.39874 9.45839i −0.663979 0.747751i
\(161\) −33.2528 −2.62069
\(162\) −1.45015 + 3.09037i −0.113934 + 0.242803i
\(163\) −7.61959 7.61959i −0.596812 0.596812i 0.342651 0.939463i \(-0.388675\pi\)
−0.939463 + 0.342651i \(0.888675\pi\)
\(164\) 3.86229 + 4.64823i 0.301594 + 0.362966i
\(165\) 21.4086 13.5312i 1.66665 1.05340i
\(166\) 16.5690 5.98544i 1.28601 0.464560i
\(167\) 9.87017 9.87017i 0.763776 0.763776i −0.213226 0.977003i \(-0.568397\pi\)
0.977003 + 0.213226i \(0.0683972\pi\)
\(168\) −32.3835 + 8.42656i −2.49844 + 0.650124i
\(169\) 4.37207i 0.336313i
\(170\) 1.39700 0.175406i 0.107145 0.0134531i
\(171\) 4.47257i 0.342026i
\(172\) −1.85825 + 20.1220i −0.141691 + 1.53428i
\(173\) −11.9281 + 11.9281i −0.906874 + 0.906874i −0.996019 0.0891449i \(-0.971587\pi\)
0.0891449 + 0.996019i \(0.471587\pi\)
\(174\) 0.139558 + 0.386327i 0.0105798 + 0.0292874i
\(175\) −20.3867 + 7.25513i −1.54109 + 0.548437i
\(176\) 16.2931 + 3.03520i 1.22814 + 0.228787i
\(177\) 14.0654 + 14.0654i 1.05722 + 1.05722i
\(178\) −1.60087 0.751203i −0.119990 0.0563051i
\(179\) −15.5820 −1.16465 −0.582326 0.812956i \(-0.697857\pi\)
−0.582326 + 0.812956i \(0.697857\pi\)
\(180\) 17.8189 9.08642i 1.32814 0.677262i
\(181\) −12.0911 −0.898727 −0.449363 0.893349i \(-0.648349\pi\)
−0.449363 + 0.893349i \(0.648349\pi\)
\(182\) 16.2751 + 7.63704i 1.20639 + 0.566095i
\(183\) 17.7850 + 17.7850i 1.31471 + 1.31471i
\(184\) 18.7415 + 11.0019i 1.38164 + 0.811073i
\(185\) 5.52106 + 8.73524i 0.405917 + 0.642228i
\(186\) 10.9703 + 30.3683i 0.804382 + 2.22671i
\(187\) −1.30445 + 1.30445i −0.0953909 + 0.0953909i
\(188\) −11.0327 1.01886i −0.804640 0.0743081i
\(189\) 17.4213i 1.26721i
\(190\) −1.94007 + 2.49722i −0.140748 + 0.181167i
\(191\) 12.0103i 0.869036i −0.900663 0.434518i \(-0.856919\pi\)
0.900663 0.434518i \(-0.143081\pi\)
\(192\) 21.0396 + 5.96503i 1.51840 + 0.430489i
\(193\) 16.9937 16.9937i 1.22323 1.22323i 0.256754 0.966477i \(-0.417347\pi\)
0.966477 0.256754i \(-0.0826530\pi\)
\(194\) 5.41143 1.95484i 0.388518 0.140349i
\(195\) −17.5149 3.94884i −1.25427 0.282782i
\(196\) −18.0441 + 14.9931i −1.28886 + 1.07094i
\(197\) −10.1361 10.1361i −0.722166 0.722166i 0.246880 0.969046i \(-0.420595\pi\)
−0.969046 + 0.246880i \(0.920595\pi\)
\(198\) −11.1329 + 23.7251i −0.791183 + 1.68607i
\(199\) −18.9801 −1.34547 −0.672733 0.739886i \(-0.734880\pi\)
−0.672733 + 0.739886i \(0.734880\pi\)
\(200\) 13.8905 + 2.65602i 0.982206 + 0.187809i
\(201\) −18.5051 −1.30525
\(202\) 1.98005 4.21963i 0.139316 0.296892i
\(203\) 0.325159 + 0.325159i 0.0228217 + 0.0228217i
\(204\) −1.87223 + 1.55567i −0.131082 + 0.108918i
\(205\) −6.59135 1.48606i −0.460360 0.103791i
\(206\) −15.7317 + 5.68296i −1.09608 + 0.395951i
\(207\) −24.2996 + 24.2996i −1.68894 + 1.68894i
\(208\) −6.64601 9.68903i −0.460818 0.671814i
\(209\) 4.14335i 0.286601i
\(210\) 22.9522 29.5435i 1.58385 2.03870i
\(211\) 1.07044i 0.0736923i −0.999321 0.0368462i \(-0.988269\pi\)
0.999321 0.0368462i \(-0.0117312\pi\)
\(212\) −1.46988 0.135743i −0.100952 0.00932284i
\(213\) −19.8596 + 19.8596i −1.36076 + 1.36076i
\(214\) 0.603020 + 1.66930i 0.0412216 + 0.114111i
\(215\) −12.0707 19.0979i −0.823217 1.30247i
\(216\) −5.76395 + 9.81876i −0.392187 + 0.668082i
\(217\) 25.5599 + 25.5599i 1.73512 + 1.73512i
\(218\) 1.74691 + 0.819730i 0.118316 + 0.0555191i
\(219\) 17.9812 1.21505
\(220\) −16.5073 + 8.41758i −1.11292 + 0.567513i
\(221\) 1.30781 0.0879729
\(222\) −16.1737 7.58944i −1.08551 0.509370i
\(223\) −10.7260 10.7260i −0.718268 0.718268i 0.249982 0.968250i \(-0.419575\pi\)
−0.968250 + 0.249982i \(0.919575\pi\)
\(224\) 24.1595 3.96030i 1.61422 0.264608i
\(225\) −9.59592 + 20.1994i −0.639728 + 1.34662i
\(226\) −0.955461 2.64493i −0.0635563 0.175938i
\(227\) −8.16413 + 8.16413i −0.541872 + 0.541872i −0.924077 0.382205i \(-0.875165\pi\)
0.382205 + 0.924077i \(0.375165\pi\)
\(228\) 0.502754 5.44403i 0.0332957 0.360540i
\(229\) 2.80772i 0.185539i −0.995688 0.0927696i \(-0.970428\pi\)
0.995688 0.0927696i \(-0.0295720\pi\)
\(230\) −24.1080 + 3.02699i −1.58964 + 0.199594i
\(231\) 49.0181i 3.22515i
\(232\) −0.0756807 0.290843i −0.00496868 0.0190948i
\(233\) −13.6889 + 13.6889i −0.896789 + 0.896789i −0.995151 0.0983615i \(-0.968640\pi\)
0.0983615 + 0.995151i \(0.468640\pi\)
\(234\) 17.4739 6.31232i 1.14231 0.412649i
\(235\) 10.4712 6.61826i 0.683065 0.431728i
\(236\) −9.30082 11.1935i −0.605432 0.728632i
\(237\) 4.66622 + 4.66622i 0.303104 + 0.303104i
\(238\) −1.15761 + 2.46696i −0.0750369 + 0.159910i
\(239\) −22.3794 −1.44760 −0.723800 0.690009i \(-0.757606\pi\)
−0.723800 + 0.690009i \(0.757606\pi\)
\(240\) −22.7107 + 9.05705i −1.46597 + 0.584630i
\(241\) −8.23988 −0.530777 −0.265389 0.964142i \(-0.585500\pi\)
−0.265389 + 0.964142i \(0.585500\pi\)
\(242\) 3.70508 7.89582i 0.238172 0.507563i
\(243\) 13.2050 + 13.2050i 0.847102 + 0.847102i
\(244\) −11.7604 14.1536i −0.752886 0.906091i
\(245\) 5.76877 25.5871i 0.368553 1.63470i
\(246\) 10.9868 3.96889i 0.700492 0.253047i
\(247\) −2.07701 + 2.07701i −0.132157 + 0.132157i
\(248\) −5.94908 22.8625i −0.377767 1.45177i
\(249\) 34.0527i 2.15800i
\(250\) −14.1197 + 7.11571i −0.893010 + 0.450037i
\(251\) 1.80566i 0.113972i −0.998375 0.0569861i \(-0.981851\pi\)
0.998375 0.0569861i \(-0.0181491\pi\)
\(252\) −3.55998 + 38.5490i −0.224258 + 2.42836i
\(253\) 22.5110 22.5110i 1.41525 1.41525i
\(254\) −2.90070 8.02978i −0.182006 0.503833i
\(255\) 0.598560 2.65488i 0.0374833 0.166255i
\(256\) −14.9267 5.76128i −0.932921 0.360080i
\(257\) −5.48793 5.48793i −0.342328 0.342328i 0.514914 0.857242i \(-0.327824\pi\)
−0.857242 + 0.514914i \(0.827824\pi\)
\(258\) 35.3606 + 16.5928i 2.20146 + 1.03303i
\(259\) −20.0006 −1.24278
\(260\) 12.4945 + 4.05527i 0.774878 + 0.251497i
\(261\) 0.475222 0.0294155
\(262\) 5.20601 + 2.44290i 0.321628 + 0.150923i
\(263\) 10.0969 + 10.0969i 0.622602 + 0.622602i 0.946196 0.323594i \(-0.104891\pi\)
−0.323594 + 0.946196i \(0.604891\pi\)
\(264\) 16.2180 27.6270i 0.998148 1.70032i
\(265\) 1.39507 0.881749i 0.0856986 0.0541654i
\(266\) −2.07945 5.75640i −0.127499 0.352947i
\(267\) −2.41699 + 2.41699i −0.147918 + 0.147918i
\(268\) 13.4816 + 1.24502i 0.823520 + 0.0760517i
\(269\) 0.438106i 0.0267118i −0.999911 0.0133559i \(-0.995749\pi\)
0.999911 0.0133559i \(-0.00425144\pi\)
\(270\) −1.58585 12.6303i −0.0965120 0.768655i
\(271\) 8.49434i 0.515994i −0.966146 0.257997i \(-0.916937\pi\)
0.966146 0.257997i \(-0.0830625\pi\)
\(272\) 1.46865 1.00739i 0.0890501 0.0610823i
\(273\) 24.5722 24.5722i 1.48718 1.48718i
\(274\) 7.86346 2.84061i 0.475049 0.171608i
\(275\) 8.88958 18.7125i 0.536062 1.12841i
\(276\) 32.3092 26.8462i 1.94478 1.61595i
\(277\) −10.0130 10.0130i −0.601622 0.601622i 0.339121 0.940743i \(-0.389870\pi\)
−0.940743 + 0.339121i \(0.889870\pi\)
\(278\) −12.1496 + 25.8917i −0.728684 + 1.55288i
\(279\) 37.3561 2.23645
\(280\) −18.7092 + 19.9793i −1.11809 + 1.19399i
\(281\) −7.39792 −0.441323 −0.220661 0.975350i \(-0.570822\pi\)
−0.220661 + 0.975350i \(0.570822\pi\)
\(282\) −9.09769 + 19.3879i −0.541759 + 1.15453i
\(283\) 14.5566 + 14.5566i 0.865298 + 0.865298i 0.991948 0.126649i \(-0.0404222\pi\)
−0.126649 + 0.991948i \(0.540422\pi\)
\(284\) 15.8046 13.1323i 0.937830 0.779257i
\(285\) 3.26576 + 5.16698i 0.193447 + 0.306065i
\(286\) −16.1877 + 5.84768i −0.957199 + 0.345781i
\(287\) 9.24721 9.24721i 0.545845 0.545845i
\(288\) 14.7606 20.5486i 0.869779 1.21084i
\(289\) 16.8018i 0.988339i
\(290\) 0.265336 + 0.206138i 0.0155811 + 0.0121049i
\(291\) 11.1216i 0.651959i
\(292\) −13.0999 1.20977i −0.766615 0.0707966i
\(293\) −1.15451 + 1.15451i −0.0674471 + 0.0674471i −0.740026 0.672579i \(-0.765187\pi\)
0.672579 + 0.740026i \(0.265187\pi\)
\(294\) 15.4069 + 42.6499i 0.898551 + 2.48739i
\(295\) 15.8727 + 3.57860i 0.924144 + 0.208354i
\(296\) 11.2725 + 6.61735i 0.655201 + 0.384626i
\(297\) 11.7936 + 11.7936i 0.684334 + 0.684334i
\(298\) −7.92455 3.71856i −0.459057 0.215411i
\(299\) −22.5690 −1.30520
\(300\) 13.9508 23.5081i 0.805449 1.35724i
\(301\) 43.7275 2.52041
\(302\) 1.09182 + 0.512334i 0.0628274 + 0.0294815i
\(303\) −6.37079 6.37079i −0.365993 0.365993i
\(304\) −0.732549 + 3.93235i −0.0420146 + 0.225536i
\(305\) 20.0703 + 4.52497i 1.14922 + 0.259099i
\(306\) 0.956814 + 2.64868i 0.0546974 + 0.151415i
\(307\) 17.1688 17.1688i 0.979878 0.979878i −0.0199236 0.999802i \(-0.506342\pi\)
0.999802 + 0.0199236i \(0.00634229\pi\)
\(308\) 3.29794 35.7114i 0.187917 2.03485i
\(309\) 32.3319i 1.83930i
\(310\) 20.8575 + 16.2040i 1.18462 + 0.920327i
\(311\) 8.36370i 0.474262i 0.971478 + 0.237131i \(0.0762070\pi\)
−0.971478 + 0.237131i \(0.923793\pi\)
\(312\) −21.9789 + 5.71918i −1.24431 + 0.323785i
\(313\) −8.96217 + 8.96217i −0.506572 + 0.506572i −0.913472 0.406901i \(-0.866610\pi\)
0.406901 + 0.913472i \(0.366610\pi\)
\(314\) 28.8047 10.4055i 1.62554 0.587214i
\(315\) −23.1247 36.5871i −1.30293 2.06145i
\(316\) −3.08557 3.71346i −0.173577 0.208898i
\(317\) 0.158606 + 0.158606i 0.00890818 + 0.00890818i 0.711547 0.702639i \(-0.247995\pi\)
−0.702639 + 0.711547i \(0.747995\pi\)
\(318\) −1.21208 + 2.58304i −0.0679702 + 0.144850i
\(319\) −0.440242 −0.0246488
\(320\) 17.1549 5.07041i 0.958989 0.283445i
\(321\) 3.43074 0.191485
\(322\) 19.9770 42.5725i 1.11327 2.37247i
\(323\) −0.314830 0.314830i −0.0175176 0.0175176i
\(324\) −3.08532 3.71315i −0.171406 0.206286i
\(325\) −13.8366 + 4.92412i −0.767516 + 0.273141i
\(326\) 14.3327 5.17756i 0.793813 0.286759i
\(327\) 2.63748 2.63748i 0.145853 0.145853i
\(328\) −8.27130 + 2.15229i −0.456706 + 0.118840i
\(329\) 23.9753i 1.32180i
\(330\) 4.46210 + 35.5377i 0.245631 + 1.95629i
\(331\) 30.6880i 1.68677i −0.537312 0.843384i \(-0.680560\pi\)
0.537312 0.843384i \(-0.319440\pi\)
\(332\) −2.29107 + 24.8086i −0.125739 + 1.36155i
\(333\) −14.6155 + 14.6155i −0.800927 + 0.800927i
\(334\) 6.70685 + 18.5661i 0.366982 + 1.01589i
\(335\) −12.7955 + 8.08733i −0.699093 + 0.441858i
\(336\) 8.66646 46.5219i 0.472794 2.53798i
\(337\) 13.0981 + 13.0981i 0.713502 + 0.713502i 0.967266 0.253765i \(-0.0816688\pi\)
−0.253765 + 0.967266i \(0.581669\pi\)
\(338\) −5.59742 2.62657i −0.304460 0.142867i
\(339\) −5.43587 −0.295236
\(340\) −0.614693 + 1.89391i −0.0333364 + 0.102711i
\(341\) −34.6064 −1.87404
\(342\) −5.72608 2.68694i −0.309631 0.145293i
\(343\) 14.4753 + 14.4753i 0.781592 + 0.781592i
\(344\) −24.6451 14.4675i −1.32878 0.780038i
\(345\) −10.3294 + 45.8154i −0.556115 + 2.46662i
\(346\) −8.10520 22.4370i −0.435738 1.20622i
\(347\) 1.64722 1.64722i 0.0884272 0.0884272i −0.661510 0.749937i \(-0.730084\pi\)
0.749937 + 0.661510i \(0.230084\pi\)
\(348\) −0.578443 0.0534190i −0.0310078 0.00286356i
\(349\) 10.2088i 0.546466i −0.961948 0.273233i \(-0.911907\pi\)
0.961948 0.273233i \(-0.0880929\pi\)
\(350\) 2.95899 30.4590i 0.158165 1.62810i
\(351\) 11.8240i 0.631117i
\(352\) −13.6741 + 19.0361i −0.728833 + 1.01463i
\(353\) −7.07367 + 7.07367i −0.376493 + 0.376493i −0.869835 0.493342i \(-0.835775\pi\)
0.493342 + 0.869835i \(0.335775\pi\)
\(354\) −26.4574 + 9.55753i −1.40620 + 0.507977i
\(355\) −5.05280 + 22.4114i −0.268175 + 1.18947i
\(356\) 1.92348 1.59825i 0.101944 0.0847072i
\(357\) 3.72462 + 3.72462i 0.197128 + 0.197128i
\(358\) 9.36104 19.9491i 0.494746 1.05434i
\(359\) 13.0121 0.686753 0.343377 0.939198i \(-0.388429\pi\)
0.343377 + 0.939198i \(0.388429\pi\)
\(360\) 0.928147 + 28.2718i 0.0489176 + 1.49005i
\(361\) 1.00000 0.0526316
\(362\) 7.26388 15.4799i 0.381781 0.813605i
\(363\) −11.9211 11.9211i −0.625695 0.625695i
\(364\) −19.5549 + 16.2485i −1.02496 + 0.851652i
\(365\) 12.4332 7.85837i 0.650786 0.411326i
\(366\) −33.4541 + 12.0850i −1.74868 + 0.631696i
\(367\) −22.6401 + 22.6401i −1.18180 + 1.18180i −0.202528 + 0.979277i \(0.564916\pi\)
−0.979277 + 0.202528i \(0.935084\pi\)
\(368\) −25.3446 + 17.3847i −1.32118 + 0.906238i
\(369\) 13.5149i 0.703557i
\(370\) −14.5003 + 1.82065i −0.753834 + 0.0946512i
\(371\) 3.19423i 0.165836i
\(372\) −45.4701 4.19914i −2.35751 0.217715i
\(373\) 5.75270 5.75270i 0.297864 0.297864i −0.542313 0.840177i \(-0.682451\pi\)
0.840177 + 0.542313i \(0.182451\pi\)
\(374\) −0.886384 2.45371i −0.0458338 0.126878i
\(375\) 3.66331 + 30.3422i 0.189173 + 1.56687i
\(376\) 7.93241 13.5127i 0.409083 0.696863i
\(377\) 0.220688 + 0.220688i 0.0113660 + 0.0113660i
\(378\) 22.3039 + 10.4660i 1.14719 + 0.538314i
\(379\) 1.86322 0.0957072 0.0478536 0.998854i \(-0.484762\pi\)
0.0478536 + 0.998854i \(0.484762\pi\)
\(380\) −2.03159 3.98405i −0.104218 0.204377i
\(381\) −16.5028 −0.845465
\(382\) 15.3764 + 7.21533i 0.786727 + 0.369169i
\(383\) 22.4289 + 22.4289i 1.14606 + 1.14606i 0.987320 + 0.158745i \(0.0507448\pi\)
0.158745 + 0.987320i \(0.449255\pi\)
\(384\) −20.2766 + 23.3527i −1.03473 + 1.19171i
\(385\) 21.4225 + 33.8940i 1.09179 + 1.72740i
\(386\) 11.5473 + 31.9656i 0.587743 + 1.62700i
\(387\) 31.9541 31.9541i 1.62432 1.62432i
\(388\) −0.748260 + 8.10248i −0.0379872 + 0.411341i
\(389\) 20.0422i 1.01618i −0.861305 0.508089i \(-0.830352\pi\)
0.861305 0.508089i \(-0.169648\pi\)
\(390\) 15.5778 20.0514i 0.788814 1.01534i
\(391\) 3.42097i 0.173006i
\(392\) −8.35502 32.1085i −0.421992 1.62173i
\(393\) 7.86003 7.86003i 0.396486 0.396486i
\(394\) 19.0663 6.88754i 0.960544 0.346989i
\(395\) 5.26580 + 1.18721i 0.264951 + 0.0597349i
\(396\) −23.6863 28.5063i −1.19028 1.43249i
\(397\) 2.30242 + 2.30242i 0.115555 + 0.115555i 0.762520 0.646965i \(-0.223962\pi\)
−0.646965 + 0.762520i \(0.723962\pi\)
\(398\) 11.4025 24.2996i 0.571556 1.21803i
\(399\) −11.8306 −0.592269
\(400\) −11.7453 + 16.1879i −0.587264 + 0.809395i
\(401\) 6.80995 0.340073 0.170036 0.985438i \(-0.445612\pi\)
0.170036 + 0.985438i \(0.445612\pi\)
\(402\) 11.1171 23.6914i 0.554471 1.18162i
\(403\) 17.3477 + 17.3477i 0.864153 + 0.864153i
\(404\) 4.21273 + 5.06998i 0.209591 + 0.252241i
\(405\) 5.26537 + 1.18711i 0.261638 + 0.0589880i
\(406\) −0.611633 + 0.220948i −0.0303548 + 0.0109654i
\(407\) 13.5397 13.5397i 0.671139 0.671139i
\(408\) −0.866906 3.33154i −0.0429182 0.164936i
\(409\) 17.2472i 0.852821i 0.904530 + 0.426410i \(0.140222\pi\)
−0.904530 + 0.426410i \(0.859778\pi\)
\(410\) 5.86238 7.54592i 0.289522 0.372667i
\(411\) 16.1610i 0.797163i
\(412\) 2.17529 23.5549i 0.107169 1.16047i
\(413\) −22.2683 + 22.2683i −1.09575 + 1.09575i
\(414\) −16.5118 45.7083i −0.811510 2.24644i
\(415\) −14.8822 23.5461i −0.730537 1.15583i
\(416\) 16.3972 2.68789i 0.803940 0.131784i
\(417\) 39.0913 + 39.0913i 1.91431 + 1.91431i
\(418\) 5.30459 + 2.48916i 0.259456 + 0.121749i
\(419\) −6.11638 −0.298805 −0.149402 0.988776i \(-0.547735\pi\)
−0.149402 + 0.988776i \(0.547735\pi\)
\(420\) 24.0348 + 47.1335i 1.17278 + 2.29988i
\(421\) 3.01067 0.146731 0.0733655 0.997305i \(-0.476626\pi\)
0.0733655 + 0.997305i \(0.476626\pi\)
\(422\) 1.37045 + 0.643080i 0.0667126 + 0.0313046i
\(423\) 17.5201 + 17.5201i 0.851856 + 0.851856i
\(424\) 1.05683 1.80029i 0.0513243 0.0874298i
\(425\) −0.746392 2.09733i −0.0362053 0.101736i
\(426\) −13.4947 37.3565i −0.653822 1.80993i
\(427\) −28.1572 + 28.1572i −1.36262 + 1.36262i
\(428\) −2.49942 0.230820i −0.120814 0.0111571i
\(429\) 33.2690i 1.60624i
\(430\) 31.7021 3.98050i 1.52881 0.191957i
\(431\) 39.0994i 1.88335i 0.336518 + 0.941677i \(0.390751\pi\)
−0.336518 + 0.941677i \(0.609249\pi\)
\(432\) −9.10789 13.2781i −0.438203 0.638844i
\(433\) 4.66253 4.66253i 0.224067 0.224067i −0.586142 0.810209i \(-0.699354\pi\)
0.810209 + 0.586142i \(0.199354\pi\)
\(434\) −48.0790 + 17.3682i −2.30787 + 0.833699i
\(435\) 0.549005 0.346996i 0.0263228 0.0166372i
\(436\) −2.09895 + 1.74405i −0.100521 + 0.0835248i
\(437\) 5.43304 + 5.43304i 0.259898 + 0.259898i
\(438\) −10.8024 + 23.0207i −0.516158 + 1.09997i
\(439\) −31.4437 −1.50072 −0.750362 0.661027i \(-0.770121\pi\)
−0.750362 + 0.661027i \(0.770121\pi\)
\(440\) −0.859827 26.1907i −0.0409906 1.24859i
\(441\) 52.4637 2.49827
\(442\) −0.785682 + 1.67435i −0.0373711 + 0.0796407i
\(443\) 6.74152 + 6.74152i 0.320300 + 0.320300i 0.848882 0.528582i \(-0.177276\pi\)
−0.528582 + 0.848882i \(0.677276\pi\)
\(444\) 19.4330 16.1472i 0.922251 0.766313i
\(445\) −0.614946 + 2.72756i −0.0291512 + 0.129299i
\(446\) 20.1760 7.28841i 0.955360 0.345116i
\(447\) −11.9645 + 11.9645i −0.565900 + 0.565900i
\(448\) −9.44382 + 33.3098i −0.446179 + 1.57374i
\(449\) 2.27550i 0.107387i 0.998557 + 0.0536937i \(0.0170995\pi\)
−0.998557 + 0.0536937i \(0.982901\pi\)
\(450\) −20.0958 24.4203i −0.947323 1.15119i
\(451\) 12.5201i 0.589547i
\(452\) 3.96023 + 0.365725i 0.186273 + 0.0172023i
\(453\) 1.64843 1.64843i 0.0774502 0.0774502i
\(454\) −5.54758 15.3570i −0.260361 0.720738i
\(455\) 6.25180 27.7295i 0.293089 1.29998i
\(456\) 6.66779 + 3.91422i 0.312248 + 0.183300i
\(457\) −21.1563 21.1563i −0.989651 0.989651i 0.0102955 0.999947i \(-0.496723\pi\)
−0.999947 + 0.0102955i \(0.996723\pi\)
\(458\) 3.59463 + 1.68677i 0.167966 + 0.0788174i
\(459\) 1.79226 0.0836556
\(460\) 10.6078 32.6832i 0.494591 1.52386i
\(461\) −38.9174 −1.81256 −0.906282 0.422673i \(-0.861092\pi\)
−0.906282 + 0.422673i \(0.861092\pi\)
\(462\) −62.7563 29.4481i −2.91969 1.37005i
\(463\) −1.04918 1.04918i −0.0487597 0.0487597i 0.682307 0.731066i \(-0.260977\pi\)
−0.731066 + 0.682307i \(0.760977\pi\)
\(464\) 0.417823 + 0.0778353i 0.0193969 + 0.00361341i
\(465\) 43.1560 27.2765i 2.00131 1.26492i
\(466\) −9.30170 25.7492i −0.430893 1.19281i
\(467\) 0.388425 0.388425i 0.0179742 0.0179742i −0.698063 0.716037i \(-0.745954\pi\)
0.716037 + 0.698063i \(0.245954\pi\)
\(468\) −2.41619 + 26.1635i −0.111688 + 1.20941i
\(469\) 29.2972i 1.35282i
\(470\) 2.18247 + 17.3819i 0.100670 + 0.801768i
\(471\) 59.1994i 2.72776i
\(472\) 19.9182 5.18295i 0.916810 0.238565i
\(473\) −29.6020 + 29.6020i −1.36110 + 1.36110i
\(474\) −8.77730 + 3.17073i −0.403155 + 0.145637i
\(475\) 4.51628 + 2.14551i 0.207221 + 0.0984426i
\(476\) −2.46293 2.96411i −0.112888 0.135860i
\(477\) 2.33419 + 2.33419i 0.106875 + 0.106875i
\(478\) 13.4446 28.6516i 0.614944 1.31049i
\(479\) 6.97897 0.318877 0.159439 0.987208i \(-0.449032\pi\)
0.159439 + 0.987208i \(0.449032\pi\)
\(480\) 2.04824 34.5169i 0.0934889 1.57547i
\(481\) −13.5746 −0.618948
\(482\) 4.95020 10.5493i 0.225475 0.480505i
\(483\) −64.2759 64.2759i −2.92465 2.92465i
\(484\) 7.88290 + 9.48700i 0.358314 + 0.431227i
\(485\) −4.86051 7.69013i −0.220704 0.349191i
\(486\) −24.8390 + 8.97291i −1.12672 + 0.407019i
\(487\) 0.386963 0.386963i 0.0175350 0.0175350i −0.698285 0.715820i \(-0.746053\pi\)
0.715820 + 0.698285i \(0.246053\pi\)
\(488\) 25.1856 6.55360i 1.14010 0.296667i
\(489\) 29.4565i 1.33207i
\(490\) 29.2927 + 22.7573i 1.32331 + 1.02807i
\(491\) 16.1542i 0.729028i −0.931198 0.364514i \(-0.881235\pi\)
0.931198 0.364514i \(-0.118765\pi\)
\(492\) −1.51919 + 16.4504i −0.0684902 + 0.741641i
\(493\) −0.0334516 + 0.0334516i −0.00150658 + 0.00150658i
\(494\) −1.41134 3.90691i −0.0634993 0.175780i
\(495\) 40.4228 + 9.11359i 1.81687 + 0.409625i
\(496\) 32.8441 + 6.11845i 1.47474 + 0.274726i
\(497\) −31.4417 31.4417i −1.41035 1.41035i
\(498\) 43.5966 + 20.4575i 1.95361 + 0.916724i
\(499\) 33.8383 1.51481 0.757405 0.652945i \(-0.226467\pi\)
0.757405 + 0.652945i \(0.226467\pi\)
\(500\) −0.627431 22.3519i −0.0280596 0.999606i
\(501\) 38.1570 1.70473
\(502\) 2.31173 + 1.08477i 0.103177 + 0.0484156i
\(503\) −7.57074 7.57074i −0.337563 0.337563i 0.517887 0.855449i \(-0.326719\pi\)
−0.855449 + 0.517887i \(0.826719\pi\)
\(504\) −47.2143 27.7165i −2.10309 1.23459i
\(505\) −7.18939 1.62090i −0.319924 0.0721289i
\(506\) 15.2964 + 42.3438i 0.680007 + 1.88241i
\(507\) −8.45098 + 8.45098i −0.375321 + 0.375321i
\(508\) 12.0229 + 1.11031i 0.533430 + 0.0492620i
\(509\) 24.3847i 1.08083i 0.841398 + 0.540416i \(0.181733\pi\)
−0.841398 + 0.540416i \(0.818267\pi\)
\(510\) 3.03937 + 2.36127i 0.134586 + 0.104559i
\(511\) 28.4678i 1.25934i
\(512\) 16.3434 15.6491i 0.722282 0.691598i
\(513\) −2.84639 + 2.84639i −0.125671 + 0.125671i
\(514\) 10.3230 3.72909i 0.455326 0.164483i
\(515\) 14.1301 + 22.3562i 0.622647 + 0.985130i
\(516\) −42.4866 + 35.3028i −1.87037 + 1.55412i
\(517\) −16.2305 16.2305i −0.713814 0.713814i
\(518\) 12.0156 25.6062i 0.527935 1.12507i
\(519\) −46.1126 −2.02412
\(520\) −12.6981 + 13.5601i −0.556847 + 0.594650i
\(521\) 24.4994 1.07334 0.536670 0.843792i \(-0.319682\pi\)
0.536670 + 0.843792i \(0.319682\pi\)
\(522\) −0.285495 + 0.608412i −0.0124958 + 0.0266295i
\(523\) −4.42412 4.42412i −0.193453 0.193453i 0.603733 0.797186i \(-0.293679\pi\)
−0.797186 + 0.603733i \(0.793679\pi\)
\(524\) −6.25513 + 5.19749i −0.273257 + 0.227053i
\(525\) −53.4301 25.3825i −2.33188 1.10778i
\(526\) −18.9926 + 6.86092i −0.828116 + 0.299150i
\(527\) −2.62955 + 2.62955i −0.114545 + 0.114545i
\(528\) 25.6268 + 37.3606i 1.11526 + 1.62591i
\(529\) 36.0359i 1.56678i
\(530\) 0.290770 + 2.31579i 0.0126302 + 0.100591i
\(531\) 32.5453i 1.41235i
\(532\) 8.61899 + 0.795960i 0.373680 + 0.0345092i
\(533\) 6.27616 6.27616i 0.271851 0.271851i
\(534\) −1.64237 4.54644i −0.0710721 0.196744i
\(535\) 2.37222 1.49935i 0.102560 0.0648224i
\(536\) −9.69318 + 16.5121i −0.418682 + 0.713214i
\(537\) −30.1191 30.1191i −1.29974 1.29974i
\(538\) 0.560893 + 0.263197i 0.0241818 + 0.0113472i
\(539\) −48.6019 −2.09343
\(540\) 17.1229 + 5.55746i 0.736851 + 0.239155i
\(541\) 41.5657 1.78705 0.893525 0.449013i \(-0.148224\pi\)
0.893525 + 0.449013i \(0.148224\pi\)
\(542\) 10.8750 + 5.10307i 0.467123 + 0.219195i
\(543\) −23.3715 23.3715i −1.00297 1.00297i
\(544\) 0.407426 + 2.48547i 0.0174683 + 0.106564i
\(545\) 0.671043 2.97637i 0.0287443 0.127494i
\(546\) 16.6970 + 46.2210i 0.714564 + 1.97807i
\(547\) −10.6371 + 10.6371i −0.454809 + 0.454809i −0.896947 0.442138i \(-0.854220\pi\)
0.442138 + 0.896947i \(0.354220\pi\)
\(548\) −1.08731 + 11.7739i −0.0464476 + 0.502955i
\(549\) 41.1520i 1.75633i
\(550\) 18.6165 + 22.6228i 0.793811 + 0.964639i
\(551\) 0.106253i 0.00452652i
\(552\) 14.9602 + 57.4925i 0.636750 + 2.44704i
\(553\) −7.38756 + 7.38756i −0.314151 + 0.314151i
\(554\) 18.8347 6.80390i 0.800211 0.289070i
\(555\) −6.21283 + 27.5567i −0.263720 + 1.16972i
\(556\) −25.8493 31.1095i −1.09626 1.31933i
\(557\) −24.4145 24.4145i −1.03447 1.03447i −0.999384 0.0350905i \(-0.988828\pi\)
−0.0350905 0.999384i \(-0.511172\pi\)
\(558\) −22.4421 + 47.8258i −0.950049 + 2.02463i
\(559\) 29.6782 1.25525
\(560\) −14.3391 35.9555i −0.605938 1.51940i
\(561\) −5.04287 −0.212910
\(562\) 4.44438 9.47132i 0.187475 0.399524i
\(563\) 22.7286 + 22.7286i 0.957898 + 0.957898i 0.999149 0.0412505i \(-0.0131342\pi\)
−0.0412505 + 0.999149i \(0.513134\pi\)
\(564\) −19.3561 23.2950i −0.815041 0.980894i
\(565\) −3.75868 + 2.37566i −0.158129 + 0.0999446i
\(566\) −27.3813 + 9.89130i −1.15092 + 0.415762i
\(567\) −7.38695 + 7.38695i −0.310223 + 0.310223i
\(568\) 7.31806 + 28.1235i 0.307059 + 1.18003i
\(569\) 23.5108i 0.985623i 0.870136 + 0.492811i \(0.164031\pi\)
−0.870136 + 0.492811i \(0.835969\pi\)
\(570\) −8.57706 + 1.07693i −0.359253 + 0.0451077i
\(571\) 11.2223i 0.469640i 0.972039 + 0.234820i \(0.0754501\pi\)
−0.972039 + 0.234820i \(0.924550\pi\)
\(572\) 2.23834 24.2376i 0.0935895 1.01343i
\(573\) 23.2153 23.2153i 0.969834 0.969834i
\(574\) 6.28354 + 17.3943i 0.262270 + 0.726023i
\(575\) 12.8805 + 36.1938i 0.537155 + 1.50938i
\(576\) 17.4402 + 31.2424i 0.726673 + 1.30177i
\(577\) 11.7453 + 11.7453i 0.488965 + 0.488965i 0.907979 0.419015i \(-0.137624\pi\)
−0.419015 + 0.907979i \(0.637624\pi\)
\(578\) 21.5108 + 10.0938i 0.894730 + 0.419848i
\(579\) 65.6957 2.73022
\(580\) −0.423316 + 0.215862i −0.0175772 + 0.00896318i
\(581\) 53.9122 2.23665
\(582\) 14.2386 + 6.68142i 0.590210 + 0.276954i
\(583\) −2.16238 2.16238i −0.0895565 0.0895565i
\(584\) 9.41876 16.0446i 0.389751 0.663932i
\(585\) −15.6949 24.8320i −0.648906 1.02668i
\(586\) −0.784497 2.17166i −0.0324073 0.0897106i
\(587\) 22.7792 22.7792i 0.940200 0.940200i −0.0581101 0.998310i \(-0.518507\pi\)
0.998310 + 0.0581101i \(0.0185074\pi\)
\(588\) −63.8591 5.89736i −2.63351 0.243203i
\(589\) 8.35227i 0.344149i
\(590\) −14.1173 + 18.1714i −0.581198 + 0.748105i
\(591\) 39.1850i 1.61186i
\(592\) −15.2441 + 10.4564i −0.626527 + 0.429754i
\(593\) 2.63023 2.63023i 0.108010 0.108010i −0.651036 0.759047i \(-0.725665\pi\)
0.759047 + 0.651036i \(0.225665\pi\)
\(594\) −22.1841 + 8.01383i −0.910224 + 0.328811i
\(595\) 4.20321 + 0.947640i 0.172315 + 0.0388494i
\(596\) 9.52152 7.91158i 0.390017 0.324071i
\(597\) −36.6876 36.6876i −1.50152 1.50152i
\(598\) 13.5585 28.8943i 0.554450 1.18158i
\(599\) −36.8676 −1.50637 −0.753186 0.657808i \(-0.771484\pi\)
−0.753186 + 0.657808i \(0.771484\pi\)
\(600\) 21.7156 + 31.9835i 0.886536 + 1.30572i
\(601\) −21.6992 −0.885130 −0.442565 0.896736i \(-0.645931\pi\)
−0.442565 + 0.896736i \(0.645931\pi\)
\(602\) −26.2698 + 55.9829i −1.07068 + 2.28169i
\(603\) −21.4091 21.4091i −0.871844 0.871844i
\(604\) −1.31185 + 1.09004i −0.0533784 + 0.0443530i
\(605\) −13.4529 3.03304i −0.546937 0.123310i
\(606\) 11.9836 4.32900i 0.486802 0.175854i
\(607\) −22.4916 + 22.4916i −0.912904 + 0.912904i −0.996500 0.0835953i \(-0.973360\pi\)
0.0835953 + 0.996500i \(0.473360\pi\)
\(608\) −4.59437 3.30026i −0.186326 0.133843i
\(609\) 1.25703i 0.0509374i
\(610\) −17.8506 + 22.9769i −0.722750 + 0.930307i
\(611\) 16.2723i 0.658305i
\(612\) −3.96583 0.366243i −0.160309 0.0148045i
\(613\) −20.2852 + 20.2852i −0.819313 + 0.819313i −0.986008 0.166695i \(-0.946690\pi\)
0.166695 + 0.986008i \(0.446690\pi\)
\(614\) 11.6664 + 32.2951i 0.470816 + 1.30332i
\(615\) −9.86824 15.6132i −0.397926 0.629585i
\(616\) 43.7389 + 25.6763i 1.76229 + 1.03453i
\(617\) −28.8210 28.8210i −1.16029 1.16029i −0.984412 0.175876i \(-0.943724\pi\)
−0.175876 0.984412i \(-0.556276\pi\)
\(618\) −41.3934 19.4237i −1.66509 0.781336i
\(619\) 10.0305 0.403159 0.201580 0.979472i \(-0.435393\pi\)
0.201580 + 0.979472i \(0.435393\pi\)
\(620\) −33.2759 + 16.9684i −1.33639 + 0.681467i
\(621\) −30.9291 −1.24114
\(622\) −10.7078 5.02458i −0.429343 0.201467i
\(623\) −3.82658 3.82658i −0.153309 0.153309i
\(624\) 5.88200 31.5748i 0.235468 1.26400i
\(625\) 15.7936 + 19.3794i 0.631744 + 0.775177i
\(626\) −6.08986 16.8581i −0.243400 0.673785i
\(627\) 8.00887 8.00887i 0.319843 0.319843i
\(628\) −3.98293 + 43.1289i −0.158936 + 1.72103i
\(629\) 2.05762i 0.0820427i
\(630\) 60.7338 7.62572i 2.41969 0.303816i
\(631\) 45.8155i 1.82389i −0.410318 0.911943i \(-0.634582\pi\)
0.410318 0.911943i \(-0.365418\pi\)
\(632\) 6.60791 1.71946i 0.262848 0.0683963i
\(633\) 2.06911 2.06911i 0.0822397 0.0822397i
\(634\) −0.298342 + 0.107774i −0.0118487 + 0.00428024i
\(635\) −11.4110 + 7.21228i −0.452833 + 0.286211i
\(636\) −2.57881 3.10358i −0.102257 0.123065i
\(637\) 24.3636 + 24.3636i 0.965319 + 0.965319i
\(638\) 0.264480 0.563627i 0.0104709 0.0223142i
\(639\) −45.9523 −1.81785
\(640\) −3.81451 + 25.0090i −0.150782 + 0.988567i
\(641\) 29.3805 1.16046 0.580231 0.814452i \(-0.302962\pi\)
0.580231 + 0.814452i \(0.302962\pi\)
\(642\) −2.06105 + 4.39226i −0.0813433 + 0.173349i
\(643\) 33.1165 + 33.1165i 1.30599 + 1.30599i 0.924286 + 0.381700i \(0.124661\pi\)
0.381700 + 0.924286i \(0.375339\pi\)
\(644\) 42.5028 + 51.1518i 1.67485 + 2.01566i
\(645\) 13.5831 60.2473i 0.534836 2.37224i
\(646\) 0.592205 0.213930i 0.0233000 0.00841695i
\(647\) −7.26261 + 7.26261i −0.285523 + 0.285523i −0.835307 0.549784i \(-0.814710\pi\)
0.549784 + 0.835307i \(0.314710\pi\)
\(648\) 6.60737 1.71931i 0.259562 0.0675411i
\(649\) 30.1497i 1.18348i
\(650\) 2.00829 20.6728i 0.0787716 0.810853i
\(651\) 98.8120i 3.87275i
\(652\) −1.98183 + 21.4601i −0.0776146 + 0.840444i
\(653\) 26.0447 26.0447i 1.01921 1.01921i 0.0193970 0.999812i \(-0.493825\pi\)
0.999812 0.0193970i \(-0.00617465\pi\)
\(654\) 1.79219 + 4.96117i 0.0700800 + 0.193997i
\(655\) 1.99979 8.86998i 0.0781384 0.346579i
\(656\) 2.21356 11.8825i 0.0864252 0.463933i
\(657\) 20.8029 + 20.8029i 0.811600 + 0.811600i
\(658\) −30.6949 14.4034i −1.19661 0.561505i
\(659\) 23.0974 0.899746 0.449873 0.893093i \(-0.351469\pi\)
0.449873 + 0.893093i \(0.351469\pi\)
\(660\) −48.1785 15.6370i −1.87534 0.608669i
\(661\) 6.43437 0.250268 0.125134 0.992140i \(-0.460064\pi\)
0.125134 + 0.992140i \(0.460064\pi\)
\(662\) 39.2889 + 18.4362i 1.52701 + 0.716542i
\(663\) 2.52793 + 2.52793i 0.0981766 + 0.0981766i
\(664\) −30.3853 17.8372i −1.17918 0.692219i
\(665\) −8.18035 + 5.17035i −0.317220 + 0.200497i
\(666\) −9.93137 27.4923i −0.384833 1.06530i
\(667\) 0.577275 0.577275i 0.0223522 0.0223522i
\(668\) −27.7988 2.56720i −1.07557 0.0993281i
\(669\) 41.4657i 1.60316i
\(670\) −2.66692 21.2402i −0.103032 0.820581i
\(671\) 38.1229i 1.47172i
\(672\) 54.3540 + 39.0439i 2.09675 + 1.50615i
\(673\) −19.4454 + 19.4454i −0.749564 + 0.749564i −0.974397 0.224833i \(-0.927816\pi\)
0.224833 + 0.974397i \(0.427816\pi\)
\(674\) −24.6380 + 8.90028i −0.949020 + 0.342826i
\(675\) −18.9621 + 6.74816i −0.729850 + 0.259737i
\(676\) 6.72542 5.58826i 0.258670 0.214933i
\(677\) 32.4800 + 32.4800i 1.24831 + 1.24831i 0.956467 + 0.291839i \(0.0942671\pi\)
0.291839 + 0.956467i \(0.405733\pi\)
\(678\) 3.26566 6.95937i 0.125417 0.267273i
\(679\) 17.6077 0.675721
\(680\) −2.05542 1.92476i −0.0788219 0.0738111i
\(681\) −31.5617 −1.20945
\(682\) 20.7901 44.3054i 0.796096 1.69654i
\(683\) −15.3564 15.3564i −0.587598 0.587598i 0.349383 0.936980i \(-0.386391\pi\)
−0.936980 + 0.349383i \(0.886391\pi\)
\(684\) 6.88001 5.71671i 0.263064 0.218584i
\(685\) −7.06289 11.1747i −0.269859 0.426962i
\(686\) −27.2284 + 9.83606i −1.03959 + 0.375542i
\(687\) 5.42717 5.42717i 0.207059 0.207059i
\(688\) 33.3282 22.8608i 1.27062 0.871561i
\(689\) 2.16795i 0.0825922i
\(690\) −52.4505 40.7485i −1.99676 1.55127i
\(691\) 42.2379i 1.60681i −0.595436 0.803403i \(-0.703021\pi\)
0.595436 0.803403i \(-0.296979\pi\)
\(692\) 33.5947 + 3.10246i 1.27708 + 0.117938i
\(693\) −56.7105 + 56.7105i −2.15425 + 2.15425i
\(694\) 1.11930 + 3.09846i 0.0424879 + 0.117616i
\(695\) 44.1142 + 9.94583i 1.67335 + 0.377267i
\(696\) 0.415897 0.708470i 0.0157645 0.0268545i
\(697\) 0.951332 + 0.951332i 0.0360343 + 0.0360343i
\(698\) 13.0700 + 6.13306i 0.494708 + 0.232140i
\(699\) −52.9198 −2.00161
\(700\) 37.2180 + 22.0869i 1.40671 + 0.834805i
\(701\) −2.93471 −0.110843 −0.0554213 0.998463i \(-0.517650\pi\)
−0.0554213 + 0.998463i \(0.517650\pi\)
\(702\) 15.1378 + 7.10338i 0.571341 + 0.268100i
\(703\) 3.26782 + 3.26782i 0.123248 + 0.123248i
\(704\) −16.1564 28.9427i −0.608918 1.09082i
\(705\) 33.0330 + 7.44750i 1.24409 + 0.280489i
\(706\) −4.80661 13.3058i −0.180899 0.500769i
\(707\) 10.0862 10.0862i 0.379332 0.379332i
\(708\) 3.65837 39.6144i 0.137490 1.48880i
\(709\) 25.4554i 0.955996i 0.878361 + 0.477998i \(0.158637\pi\)
−0.878361 + 0.477998i \(0.841363\pi\)
\(710\) −25.6571 19.9328i −0.962893 0.748066i
\(711\) 10.7970i 0.404919i
\(712\) 0.890638 + 3.42274i 0.0333781 + 0.128273i
\(713\) 45.3782 45.3782i 1.69943 1.69943i
\(714\) −7.00612 + 2.53091i −0.262197 + 0.0947168i
\(715\) 14.5397 + 23.0041i 0.543752 + 0.860306i
\(716\) 19.9165 + 23.9693i 0.744313 + 0.895774i
\(717\) −43.2581 43.2581i −1.61550 1.61550i
\(718\) −7.81717 + 16.6590i −0.291734 + 0.621708i
\(719\) 6.31560 0.235532 0.117766 0.993041i \(-0.462427\pi\)
0.117766 + 0.993041i \(0.462427\pi\)
\(720\) −36.7530 15.7963i −1.36970 0.588693i
\(721\) −51.1877 −1.90633
\(722\) −0.600761 + 1.28027i −0.0223580 + 0.0476466i
\(723\) −15.9272 15.9272i −0.592341 0.592341i
\(724\) 15.4546 + 18.5994i 0.574364 + 0.691242i
\(725\) 0.227966 0.479867i 0.00846644 0.0178218i
\(726\) 22.4239 8.10047i 0.832230 0.300637i
\(727\) −22.0719 + 22.0719i −0.818600 + 0.818600i −0.985905 0.167305i \(-0.946493\pi\)
0.167305 + 0.985905i \(0.446493\pi\)
\(728\) −9.05459 34.7970i −0.335586 1.28966i
\(729\) 43.8077i 1.62251i
\(730\) 2.59141 + 20.6389i 0.0959125 + 0.763880i
\(731\) 4.49859i 0.166386i
\(732\) 4.62583 50.0905i 0.170976 1.85140i
\(733\) 24.9523 24.9523i 0.921635 0.921635i −0.0755102 0.997145i \(-0.524059\pi\)
0.997145 + 0.0755102i \(0.0240585\pi\)
\(734\) −15.3841 42.5867i −0.567838 1.57190i
\(735\) 60.6092 38.3078i 2.23560 1.41300i
\(736\) −7.03097 42.8919i −0.259165 1.58102i
\(737\) 19.8332 + 19.8332i 0.730564 + 0.730564i
\(738\) 17.3027 + 8.11921i 0.636920 + 0.298872i
\(739\) 24.8524 0.914209 0.457104 0.889413i \(-0.348887\pi\)
0.457104 + 0.889413i \(0.348887\pi\)
\(740\) 6.38028 19.6580i 0.234544 0.722644i
\(741\) −8.02949 −0.294971
\(742\) −4.08946 1.91897i −0.150129 0.0704474i
\(743\) −15.8488 15.8488i −0.581435 0.581435i 0.353862 0.935298i \(-0.384868\pi\)
−0.935298 + 0.353862i \(0.884868\pi\)
\(744\) 32.6927 55.6912i 1.19857 2.04174i
\(745\) −3.04407 + 13.5018i −0.111526 + 0.494668i
\(746\) 3.90900 + 10.8210i 0.143119 + 0.396185i
\(747\) 39.3966 39.3966i 1.44145 1.44145i
\(748\) 3.67391 + 0.339284i 0.134332 + 0.0124055i
\(749\) 5.43154i 0.198464i
\(750\) −41.0470 13.5384i −1.49882 0.494353i
\(751\) 36.4483i 1.33002i 0.746836 + 0.665009i \(0.231572\pi\)
−0.746836 + 0.665009i \(0.768428\pi\)
\(752\) 12.5344 + 18.2735i 0.457081 + 0.666366i
\(753\) 3.49024 3.49024i 0.127192 0.127192i
\(754\) −0.415120 + 0.149959i −0.0151178 + 0.00546118i
\(755\) 0.419404 1.86025i 0.0152637 0.0677013i
\(756\) −26.7986 + 22.2674i −0.974657 + 0.809858i
\(757\) −31.2540 31.2540i −1.13595 1.13595i −0.989170 0.146776i \(-0.953110\pi\)
−0.146776 0.989170i \(-0.546890\pi\)
\(758\) −1.11935 + 2.38542i −0.0406566 + 0.0866424i
\(759\) 87.0250 3.15881
\(760\) 6.32115 0.207520i 0.229292 0.00752754i
\(761\) −13.1619 −0.477120 −0.238560 0.971128i \(-0.576675\pi\)
−0.238560 + 0.971128i \(0.576675\pi\)
\(762\) 9.91424 21.1280i 0.359155 0.765388i
\(763\) 4.17565 + 4.17565i 0.151169 + 0.151169i
\(764\) −18.4751 + 15.3513i −0.668406 + 0.555389i
\(765\) 3.76400 2.37902i 0.136088 0.0860136i
\(766\) −42.1895 + 15.2406i −1.52437 + 0.550666i
\(767\) −15.1137 + 15.1137i −0.545723 + 0.545723i
\(768\) −17.7164 39.9888i −0.639284 1.44297i
\(769\) 0.433837i 0.0156445i −0.999969 0.00782227i \(-0.997510\pi\)
0.999969 0.00782227i \(-0.00248993\pi\)
\(770\) −56.2632 + 7.06440i