Defining parameters
Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 380.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(380, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 108 | 20 |
Cusp forms | 112 | 108 | 4 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(380, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
380.2.k.a | $2$ | $3.034$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-2\) | \(-4\) | \(-4\) | \(q+(-1+i)q^{2}+(-1-i)q^{3}-2iq^{4}+\cdots\) |
380.2.k.b | $2$ | $3.034$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(2\) | \(-4\) | \(4\) | \(q+(1-i)q^{2}+(1+i)q^{3}-2iq^{4}+(-2+\cdots)q^{5}+\cdots\) |
380.2.k.c | $52$ | $3.034$ | None | \(-2\) | \(-2\) | \(4\) | \(-4\) | ||
380.2.k.d | $52$ | $3.034$ | None | \(2\) | \(2\) | \(4\) | \(4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(380, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(380, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)