Defining parameters
| Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 380.k (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(380, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 128 | 108 | 20 |
| Cusp forms | 112 | 108 | 4 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(380, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 380.2.k.a | $2$ | $3.034$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-2\) | \(-4\) | \(-4\) | \(q+(i-1)q^{2}+(-i-1)q^{3}-2 i q^{4}+\cdots\) |
| 380.2.k.b | $2$ | $3.034$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(2\) | \(-4\) | \(4\) | \(q+(-i+1)q^{2}+(i+1)q^{3}-2 i q^{4}+\cdots\) |
| 380.2.k.c | $52$ | $3.034$ | None | \(-2\) | \(-2\) | \(4\) | \(-4\) | ||
| 380.2.k.d | $52$ | $3.034$ | None | \(2\) | \(2\) | \(4\) | \(4\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(380, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)