Newspace parameters
Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 380.i (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.03431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 6.0.1783323.2 |
Defining polynomial: |
\( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -3\nu^{5} + 15\nu^{4} + 8\nu^{3} + 57\nu^{2} + 47\nu + 180 ) / 83 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 4\nu^{5} - 20\nu^{4} + 17\nu^{3} - 76\nu^{2} + 131\nu - 240 ) / 83 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -5\nu^{5} + 25\nu^{4} - 42\nu^{3} + 95\nu^{2} - 60\nu + 300 ) / 83 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -20\nu^{5} + 17\nu^{4} - 85\nu^{3} - 35\nu^{2} - 323\nu - 45 ) / 249 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 16\nu^{5} + 3\nu^{4} + 68\nu^{3} + 28\nu^{2} + 358\nu + 36 ) / 83 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + 2\beta_{2} + \beta_1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -3\beta_{5} - 9\beta_{4} + 2\beta_{3} + \beta_{2} + 2\beta _1 - 9 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -7\beta_{3} - 5\beta_{2} + 5\beta_1 ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( 5\beta_{5} + 12\beta_{4} - 2\beta_{3} - 4\beta_{2} - 2\beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 18\beta_{5} + 9\beta_{4} + 5\beta_{3} - 23\beta_{2} - 46\beta _1 + 9 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) | \(191\) |
\(\chi(n)\) | \(\beta_{4}\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121.1 |
|
0 | −1.28442 | − | 2.22469i | 0 | 0.500000 | + | 0.866025i | 0 | 3.56885 | 0 | −1.79949 | + | 3.11682i | 0 | ||||||||||||||||||||||||||||||
121.2 | 0 | 0.182224 | + | 0.315621i | 0 | 0.500000 | + | 0.866025i | 0 | 0.635552 | 0 | 1.43359 | − | 2.48305i | 0 | |||||||||||||||||||||||||||||||
121.3 | 0 | 1.60220 | + | 2.77509i | 0 | 0.500000 | + | 0.866025i | 0 | −2.20440 | 0 | −3.63409 | + | 6.29444i | 0 | |||||||||||||||||||||||||||||||
201.1 | 0 | −1.28442 | + | 2.22469i | 0 | 0.500000 | − | 0.866025i | 0 | 3.56885 | 0 | −1.79949 | − | 3.11682i | 0 | |||||||||||||||||||||||||||||||
201.2 | 0 | 0.182224 | − | 0.315621i | 0 | 0.500000 | − | 0.866025i | 0 | 0.635552 | 0 | 1.43359 | + | 2.48305i | 0 | |||||||||||||||||||||||||||||||
201.3 | 0 | 1.60220 | − | 2.77509i | 0 | 0.500000 | − | 0.866025i | 0 | −2.20440 | 0 | −3.63409 | − | 6.29444i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 380.2.i.b | ✓ | 6 |
3.b | odd | 2 | 1 | 3420.2.t.v | 6 | ||
4.b | odd | 2 | 1 | 1520.2.q.i | 6 | ||
5.b | even | 2 | 1 | 1900.2.i.c | 6 | ||
5.c | odd | 4 | 2 | 1900.2.s.c | 12 | ||
19.c | even | 3 | 1 | inner | 380.2.i.b | ✓ | 6 |
19.c | even | 3 | 1 | 7220.2.a.n | 3 | ||
19.d | odd | 6 | 1 | 7220.2.a.o | 3 | ||
57.h | odd | 6 | 1 | 3420.2.t.v | 6 | ||
76.g | odd | 6 | 1 | 1520.2.q.i | 6 | ||
95.i | even | 6 | 1 | 1900.2.i.c | 6 | ||
95.m | odd | 12 | 2 | 1900.2.s.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
380.2.i.b | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
380.2.i.b | ✓ | 6 | 19.c | even | 3 | 1 | inner |
1520.2.q.i | 6 | 4.b | odd | 2 | 1 | ||
1520.2.q.i | 6 | 76.g | odd | 6 | 1 | ||
1900.2.i.c | 6 | 5.b | even | 2 | 1 | ||
1900.2.i.c | 6 | 95.i | even | 6 | 1 | ||
1900.2.s.c | 12 | 5.c | odd | 4 | 2 | ||
1900.2.s.c | 12 | 95.m | odd | 12 | 2 | ||
3420.2.t.v | 6 | 3.b | odd | 2 | 1 | ||
3420.2.t.v | 6 | 57.h | odd | 6 | 1 | ||
7220.2.a.n | 3 | 19.c | even | 3 | 1 | ||
7220.2.a.o | 3 | 19.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{6} - T_{3}^{5} + 9T_{3}^{4} + 2T_{3}^{3} + 67T_{3}^{2} - 24T_{3} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(380, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} \)
$3$
\( T^{6} - T^{5} + 9 T^{4} + 2 T^{3} + 67 T^{2} + \cdots + 9 \)
$5$
\( (T^{2} - T + 1)^{3} \)
$7$
\( (T^{3} - 2 T^{2} - 7 T + 5)^{2} \)
$11$
\( (T^{3} - 5 T^{2} + 9)^{2} \)
$13$
\( (T^{2} - T + 1)^{3} \)
$17$
\( T^{6} - 3 T^{5} + 45 T^{4} + \cdots + 6561 \)
$19$
\( T^{6} - 18 T^{4} + 7 T^{3} + \cdots + 6859 \)
$23$
\( T^{6} - 14 T^{5} + 157 T^{4} + \cdots + 2025 \)
$29$
\( T^{6} + 6 T^{5} + 117 T^{4} + \cdots + 263169 \)
$31$
\( (T^{3} - 11 T^{2} + 14 T + 71)^{2} \)
$37$
\( (T^{3} - 2 T^{2} - 7 T + 5)^{2} \)
$41$
\( T^{6} + 6 T^{5} + 99 T^{4} + \cdots + 18225 \)
$43$
\( T^{6} - 5 T^{5} + 87 T^{4} + \cdots + 11025 \)
$47$
\( T^{6} - 6 T^{5} + 117 T^{4} + \cdots + 263169 \)
$53$
\( T^{6} - 13 T^{5} + 139 T^{4} + \cdots + 81 \)
$59$
\( T^{6} - 6 T^{5} + 117 T^{4} + \cdots + 263169 \)
$61$
\( T^{6} + 7 T^{5} + 66 T^{4} + \cdots + 3969 \)
$67$
\( T^{6} + 4 T^{5} + 108 T^{4} + \cdots + 28224 \)
$71$
\( T^{6} - 9 T^{5} + 99 T^{4} + 108 T^{3} + \cdots + 729 \)
$73$
\( T^{6} - 18 T^{5} + 255 T^{4} + \cdots + 625 \)
$79$
\( T^{6} + 32 T^{5} + 716 T^{4} + \cdots + 732736 \)
$83$
\( (T^{3} + 31 T^{2} + 294 T + 855)^{2} \)
$89$
\( T^{6} + 2 T^{5} + 136 T^{4} + \cdots + 5184 \)
$97$
\( T^{6} + 11 T^{5} + 215 T^{4} + \cdots + 93025 \)
show more
show less