Properties

Label 380.2.d.b.379.17
Level $380$
Weight $2$
Character 380.379
Analytic conductor $3.034$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.17
Character \(\chi\) \(=\) 380.379
Dual form 380.2.d.b.379.20

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.440015 - 1.34402i) q^{2} -0.562756i q^{3} +(-1.61277 + 1.18278i) q^{4} +(1.40743 - 1.73757i) q^{5} +(-0.756355 + 0.247621i) q^{6} +3.12767 q^{7} +(2.29932 + 1.64716i) q^{8} +2.68331 q^{9} +O(q^{10})\) \(q+(-0.440015 - 1.34402i) q^{2} -0.562756i q^{3} +(-1.61277 + 1.18278i) q^{4} +(1.40743 - 1.73757i) q^{5} +(-0.756355 + 0.247621i) q^{6} +3.12767 q^{7} +(2.29932 + 1.64716i) q^{8} +2.68331 q^{9} +(-2.95462 - 1.12705i) q^{10} +3.83819i q^{11} +(0.665615 + 0.907599i) q^{12} +2.34421 q^{13} +(-1.37622 - 4.20365i) q^{14} +(-0.977829 - 0.792039i) q^{15} +(1.20208 - 3.81510i) q^{16} -0.296420i q^{17} +(-1.18069 - 3.60641i) q^{18} +(-4.35567 + 0.167855i) q^{19} +(-0.214705 + 4.46698i) q^{20} -1.76012i q^{21} +(5.15860 - 1.68886i) q^{22} -5.14271 q^{23} +(0.926950 - 1.29396i) q^{24} +(-1.03830 - 4.89101i) q^{25} +(-1.03149 - 3.15066i) q^{26} -3.19832i q^{27} +(-5.04423 + 3.69934i) q^{28} -6.81132i q^{29} +(-0.634256 + 1.66273i) q^{30} +4.76184 q^{31} +(-5.65650 + 0.0630825i) q^{32} +2.15997 q^{33} +(-0.398394 + 0.130429i) q^{34} +(4.40197 - 5.43455i) q^{35} +(-4.32756 + 3.17375i) q^{36} +1.81573 q^{37} +(2.14216 + 5.78024i) q^{38} -1.31922i q^{39} +(6.09818 - 1.67697i) q^{40} +12.0637i q^{41} +(-2.36563 + 0.774478i) q^{42} +0.171877 q^{43} +(-4.53972 - 6.19014i) q^{44} +(3.77656 - 4.66243i) q^{45} +(2.26287 + 6.91190i) q^{46} -6.96079 q^{47} +(-2.14697 - 0.676478i) q^{48} +2.78234 q^{49} +(-6.11674 + 3.54761i) q^{50} -0.166812 q^{51} +(-3.78068 + 2.77267i) q^{52} -11.1028 q^{53} +(-4.29860 + 1.40731i) q^{54} +(6.66913 + 5.40198i) q^{55} +(7.19152 + 5.15178i) q^{56} +(0.0944615 + 2.45118i) q^{57} +(-9.15454 + 2.99708i) q^{58} -7.33191 q^{59} +(2.51382 + 0.120827i) q^{60} +3.27261 q^{61} +(-2.09528 - 6.40000i) q^{62} +8.39250 q^{63} +(2.57373 + 7.57469i) q^{64} +(3.29930 - 4.07322i) q^{65} +(-0.950418 - 2.90304i) q^{66} +9.46955i q^{67} +(0.350598 + 0.478058i) q^{68} +2.89409i q^{69} +(-9.24107 - 3.52505i) q^{70} +9.45438 q^{71} +(6.16977 + 4.41983i) q^{72} -8.23306i q^{73} +(-0.798946 - 2.44037i) q^{74} +(-2.75245 + 0.584309i) q^{75} +(6.82617 - 5.42249i) q^{76} +12.0046i q^{77} +(-1.77305 + 0.580475i) q^{78} +7.49873 q^{79} +(-4.93717 - 7.45818i) q^{80} +6.25004 q^{81} +(16.2138 - 5.30820i) q^{82} -6.37747 q^{83} +(2.08183 + 2.83867i) q^{84} +(-0.515050 - 0.417189i) q^{85} +(-0.0756284 - 0.231006i) q^{86} -3.83311 q^{87} +(-6.32212 + 8.82523i) q^{88} -3.49224i q^{89} +(-7.92814 - 3.02423i) q^{90} +7.33191 q^{91} +(8.29403 - 6.08267i) q^{92} -2.67975i q^{93} +(3.06285 + 9.35543i) q^{94} +(-5.83862 + 7.80452i) q^{95} +(0.0355001 + 3.18323i) q^{96} -11.9154 q^{97} +(-1.22427 - 3.73952i) q^{98} +10.2990i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 4q^{5} + 8q^{6} - 8q^{9} + O(q^{10}) \) \( 40q - 4q^{5} + 8q^{6} - 8q^{9} - 8q^{16} - 20q^{20} - 40q^{24} - 84q^{25} - 24q^{26} + 24q^{30} + 24q^{36} - 40q^{44} - 12q^{45} + 128q^{49} - 120q^{54} + 24q^{61} + 72q^{64} + 112q^{66} + 32q^{74} + 56q^{76} + 96q^{80} - 72q^{81} + 44q^{85} - 40q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.440015 1.34402i −0.311137 0.950365i
\(3\) 0.562756i 0.324908i −0.986716 0.162454i \(-0.948059\pi\)
0.986716 0.162454i \(-0.0519408\pi\)
\(4\) −1.61277 + 1.18278i −0.806387 + 0.591388i
\(5\) 1.40743 1.73757i 0.629421 0.777065i
\(6\) −0.756355 + 0.247621i −0.308781 + 0.101091i
\(7\) 3.12767 1.18215 0.591075 0.806617i \(-0.298704\pi\)
0.591075 + 0.806617i \(0.298704\pi\)
\(8\) 2.29932 + 1.64716i 0.812932 + 0.582359i
\(9\) 2.68331 0.894435
\(10\) −2.95462 1.12705i −0.934331 0.356405i
\(11\) 3.83819i 1.15726i 0.815591 + 0.578629i \(0.196412\pi\)
−0.815591 + 0.578629i \(0.803588\pi\)
\(12\) 0.665615 + 0.907599i 0.192147 + 0.262001i
\(13\) 2.34421 0.650166 0.325083 0.945685i \(-0.394608\pi\)
0.325083 + 0.945685i \(0.394608\pi\)
\(14\) −1.37622 4.20365i −0.367811 1.12347i
\(15\) −0.977829 0.792039i −0.252474 0.204504i
\(16\) 1.20208 3.81510i 0.300520 0.953775i
\(17\) 0.296420i 0.0718924i −0.999354 0.0359462i \(-0.988556\pi\)
0.999354 0.0359462i \(-0.0114445\pi\)
\(18\) −1.18069 3.60641i −0.278292 0.850040i
\(19\) −4.35567 + 0.167855i −0.999258 + 0.0385086i
\(20\) −0.214705 + 4.46698i −0.0480096 + 0.998847i
\(21\) 1.76012i 0.384089i
\(22\) 5.15860 1.68886i 1.09982 0.360066i
\(23\) −5.14271 −1.07233 −0.536164 0.844114i \(-0.680127\pi\)
−0.536164 + 0.844114i \(0.680127\pi\)
\(24\) 0.926950 1.29396i 0.189213 0.264128i
\(25\) −1.03830 4.89101i −0.207660 0.978201i
\(26\) −1.03149 3.15066i −0.202291 0.617895i
\(27\) 3.19832i 0.615516i
\(28\) −5.04423 + 3.69934i −0.953270 + 0.699109i
\(29\) 6.81132i 1.26483i −0.774630 0.632415i \(-0.782064\pi\)
0.774630 0.632415i \(-0.217936\pi\)
\(30\) −0.634256 + 1.66273i −0.115799 + 0.303571i
\(31\) 4.76184 0.855251 0.427626 0.903956i \(-0.359350\pi\)
0.427626 + 0.903956i \(0.359350\pi\)
\(32\) −5.65650 + 0.0630825i −0.999938 + 0.0111515i
\(33\) 2.15997 0.376002
\(34\) −0.398394 + 0.130429i −0.0683240 + 0.0223684i
\(35\) 4.40197 5.43455i 0.744069 0.918607i
\(36\) −4.32756 + 3.17375i −0.721261 + 0.528958i
\(37\) 1.81573 0.298503 0.149252 0.988799i \(-0.452314\pi\)
0.149252 + 0.988799i \(0.452314\pi\)
\(38\) 2.14216 + 5.78024i 0.347504 + 0.937679i
\(39\) 1.31922i 0.211244i
\(40\) 6.09818 1.67697i 0.964207 0.265152i
\(41\) 12.0637i 1.88403i 0.335571 + 0.942015i \(0.391071\pi\)
−0.335571 + 0.942015i \(0.608929\pi\)
\(42\) −2.36563 + 0.774478i −0.365025 + 0.119505i
\(43\) 0.171877 0.0262110 0.0131055 0.999914i \(-0.495828\pi\)
0.0131055 + 0.999914i \(0.495828\pi\)
\(44\) −4.53972 6.19014i −0.684389 0.933198i
\(45\) 3.77656 4.66243i 0.562976 0.695034i
\(46\) 2.26287 + 6.91190i 0.333642 + 1.01910i
\(47\) −6.96079 −1.01534 −0.507668 0.861553i \(-0.669492\pi\)
−0.507668 + 0.861553i \(0.669492\pi\)
\(48\) −2.14697 0.676478i −0.309889 0.0976412i
\(49\) 2.78234 0.397477
\(50\) −6.11674 + 3.54761i −0.865037 + 0.501707i
\(51\) −0.166812 −0.0233584
\(52\) −3.78068 + 2.77267i −0.524285 + 0.384501i
\(53\) −11.1028 −1.52508 −0.762542 0.646939i \(-0.776049\pi\)
−0.762542 + 0.646939i \(0.776049\pi\)
\(54\) −4.29860 + 1.40731i −0.584965 + 0.191510i
\(55\) 6.66913 + 5.40198i 0.899265 + 0.728402i
\(56\) 7.19152 + 5.15178i 0.961007 + 0.688435i
\(57\) 0.0944615 + 2.45118i 0.0125117 + 0.324667i
\(58\) −9.15454 + 2.99708i −1.20205 + 0.393536i
\(59\) −7.33191 −0.954534 −0.477267 0.878758i \(-0.658373\pi\)
−0.477267 + 0.878758i \(0.658373\pi\)
\(60\) 2.51382 + 0.120827i 0.324533 + 0.0155987i
\(61\) 3.27261 0.419015 0.209507 0.977807i \(-0.432814\pi\)
0.209507 + 0.977807i \(0.432814\pi\)
\(62\) −2.09528 6.40000i −0.266101 0.812801i
\(63\) 8.39250 1.05736
\(64\) 2.57373 + 7.57469i 0.321716 + 0.946836i
\(65\) 3.29930 4.07322i 0.409228 0.505221i
\(66\) −0.950418 2.90304i −0.116988 0.357339i
\(67\) 9.46955i 1.15689i 0.815722 + 0.578445i \(0.196340\pi\)
−0.815722 + 0.578445i \(0.803660\pi\)
\(68\) 0.350598 + 0.478058i 0.0425163 + 0.0579731i
\(69\) 2.89409i 0.348408i
\(70\) −9.24107 3.52505i −1.10452 0.421324i
\(71\) 9.45438 1.12203 0.561014 0.827806i \(-0.310411\pi\)
0.561014 + 0.827806i \(0.310411\pi\)
\(72\) 6.16977 + 4.41983i 0.727115 + 0.520882i
\(73\) 8.23306i 0.963606i −0.876279 0.481803i \(-0.839982\pi\)
0.876279 0.481803i \(-0.160018\pi\)
\(74\) −0.798946 2.44037i −0.0928756 0.283687i
\(75\) −2.75245 + 0.584309i −0.317825 + 0.0674702i
\(76\) 6.82617 5.42249i 0.783015 0.622002i
\(77\) 12.0046i 1.36805i
\(78\) −1.77305 + 0.580475i −0.200759 + 0.0657259i
\(79\) 7.49873 0.843673 0.421836 0.906672i \(-0.361386\pi\)
0.421836 + 0.906672i \(0.361386\pi\)
\(80\) −4.93717 7.45818i −0.551992 0.833849i
\(81\) 6.25004 0.694449
\(82\) 16.2138 5.30820i 1.79052 0.586192i
\(83\) −6.37747 −0.700018 −0.350009 0.936746i \(-0.613821\pi\)
−0.350009 + 0.936746i \(0.613821\pi\)
\(84\) 2.08183 + 2.83867i 0.227146 + 0.309725i
\(85\) −0.515050 0.417189i −0.0558650 0.0452505i
\(86\) −0.0756284 0.231006i −0.00815522 0.0249100i
\(87\) −3.83311 −0.410953
\(88\) −6.32212 + 8.82523i −0.673940 + 0.940772i
\(89\) 3.49224i 0.370176i −0.982722 0.185088i \(-0.940743\pi\)
0.982722 0.185088i \(-0.0592571\pi\)
\(90\) −7.92814 3.02423i −0.835699 0.318781i
\(91\) 7.33191 0.768594
\(92\) 8.29403 6.08267i 0.864712 0.634163i
\(93\) 2.67975i 0.277878i
\(94\) 3.06285 + 9.35543i 0.315909 + 0.964939i
\(95\) −5.83862 + 7.80452i −0.599030 + 0.800727i
\(96\) 0.0355001 + 3.18323i 0.00362321 + 0.324887i
\(97\) −11.9154 −1.20983 −0.604913 0.796292i \(-0.706792\pi\)
−0.604913 + 0.796292i \(0.706792\pi\)
\(98\) −1.22427 3.73952i −0.123670 0.377749i
\(99\) 10.2990i 1.03509i
\(100\) 7.45951 + 6.66001i 0.745951 + 0.666001i
\(101\) −6.01740 −0.598754 −0.299377 0.954135i \(-0.596779\pi\)
−0.299377 + 0.954135i \(0.596779\pi\)
\(102\) 0.0733998 + 0.224199i 0.00726767 + 0.0221990i
\(103\) 0.989632i 0.0975113i 0.998811 + 0.0487557i \(0.0155256\pi\)
−0.998811 + 0.0487557i \(0.984474\pi\)
\(104\) 5.39008 + 3.86128i 0.528541 + 0.378630i
\(105\) −3.05833 2.47724i −0.298462 0.241754i
\(106\) 4.88539 + 14.9223i 0.474511 + 1.44939i
\(107\) 9.95699i 0.962578i −0.876562 0.481289i \(-0.840169\pi\)
0.876562 0.481289i \(-0.159831\pi\)
\(108\) 3.78289 + 5.15816i 0.364009 + 0.496344i
\(109\) 13.9205i 1.33334i 0.745351 + 0.666672i \(0.232282\pi\)
−0.745351 + 0.666672i \(0.767718\pi\)
\(110\) 4.32584 11.3404i 0.412453 1.08126i
\(111\) 1.02181i 0.0969860i
\(112\) 3.75971 11.9324i 0.355260 1.12751i
\(113\) 18.4958 1.73993 0.869967 0.493110i \(-0.164140\pi\)
0.869967 + 0.493110i \(0.164140\pi\)
\(114\) 3.25287 1.20551i 0.304659 0.112907i
\(115\) −7.23799 + 8.93581i −0.674946 + 0.833269i
\(116\) 8.05627 + 10.9851i 0.748006 + 1.01994i
\(117\) 6.29022 0.581531
\(118\) 3.22615 + 9.85423i 0.296991 + 0.907156i
\(119\) 0.927105i 0.0849875i
\(120\) −0.943725 3.43179i −0.0861499 0.313278i
\(121\) −3.73173 −0.339248
\(122\) −1.44000 4.39845i −0.130371 0.398217i
\(123\) 6.78891 0.612136
\(124\) −7.67977 + 5.63219i −0.689664 + 0.505785i
\(125\) −9.95979 5.07962i −0.890831 0.454335i
\(126\) −3.69283 11.2797i −0.328983 1.00487i
\(127\) 7.85899i 0.697372i 0.937240 + 0.348686i \(0.113372\pi\)
−0.937240 + 0.348686i \(0.886628\pi\)
\(128\) 9.04805 6.79212i 0.799742 0.600344i
\(129\) 0.0967248i 0.00851615i
\(130\) −6.92623 2.64204i −0.607471 0.231723i
\(131\) 16.0686i 1.40392i −0.712216 0.701960i \(-0.752308\pi\)
0.712216 0.701960i \(-0.247692\pi\)
\(132\) −3.48354 + 2.55476i −0.303203 + 0.222363i
\(133\) −13.6231 + 0.524996i −1.18127 + 0.0455229i
\(134\) 12.7273 4.16674i 1.09947 0.359952i
\(135\) −5.55730 4.50140i −0.478296 0.387419i
\(136\) 0.488251 0.681564i 0.0418672 0.0584436i
\(137\) 18.8105i 1.60709i 0.595247 + 0.803543i \(0.297054\pi\)
−0.595247 + 0.803543i \(0.702946\pi\)
\(138\) 3.88971 1.27344i 0.331114 0.108403i
\(139\) 15.2280i 1.29162i −0.763498 0.645810i \(-0.776520\pi\)
0.763498 0.645810i \(-0.223480\pi\)
\(140\) −0.671529 + 13.9713i −0.0567545 + 1.18079i
\(141\) 3.91723i 0.329890i
\(142\) −4.16007 12.7069i −0.349105 1.06634i
\(143\) 8.99752i 0.752410i
\(144\) 3.22555 10.2371i 0.268796 0.853090i
\(145\) −11.8351 9.58644i −0.982855 0.796110i
\(146\) −11.0654 + 3.62267i −0.915778 + 0.299814i
\(147\) 1.56578i 0.129143i
\(148\) −2.92836 + 2.14760i −0.240709 + 0.176531i
\(149\) −18.8032 −1.54041 −0.770207 0.637794i \(-0.779847\pi\)
−0.770207 + 0.637794i \(0.779847\pi\)
\(150\) 1.99644 + 3.44223i 0.163009 + 0.281057i
\(151\) 8.71133 0.708918 0.354459 0.935072i \(-0.384665\pi\)
0.354459 + 0.935072i \(0.384665\pi\)
\(152\) −10.2915 6.78853i −0.834755 0.550622i
\(153\) 0.795385i 0.0643031i
\(154\) 16.1344 5.28221i 1.30015 0.425652i
\(155\) 6.70194 8.27403i 0.538313 0.664586i
\(156\) 1.56034 + 2.12760i 0.124927 + 0.170344i
\(157\) 12.8390i 1.02466i 0.858788 + 0.512332i \(0.171218\pi\)
−0.858788 + 0.512332i \(0.828782\pi\)
\(158\) −3.29955 10.0784i −0.262498 0.801797i
\(159\) 6.24816i 0.495511i
\(160\) −7.85150 + 9.91735i −0.620716 + 0.784036i
\(161\) −16.0847 −1.26765
\(162\) −2.75011 8.40018i −0.216069 0.659980i
\(163\) 0.411443 0.0322267 0.0161133 0.999870i \(-0.494871\pi\)
0.0161133 + 0.999870i \(0.494871\pi\)
\(164\) −14.2686 19.4560i −1.11419 1.51926i
\(165\) 3.04000 3.75309i 0.236663 0.292178i
\(166\) 2.80618 + 8.57144i 0.217802 + 0.665273i
\(167\) 1.56210i 0.120879i −0.998172 0.0604396i \(-0.980750\pi\)
0.998172 0.0604396i \(-0.0192503\pi\)
\(168\) 2.89920 4.04707i 0.223678 0.312238i
\(169\) −7.50469 −0.577284
\(170\) −0.334081 + 0.875807i −0.0256228 + 0.0671713i
\(171\) −11.6876 + 0.450406i −0.893772 + 0.0344434i
\(172\) −0.277199 + 0.203292i −0.0211362 + 0.0155009i
\(173\) 11.3997 0.866705 0.433352 0.901225i \(-0.357331\pi\)
0.433352 + 0.901225i \(0.357331\pi\)
\(174\) 1.68663 + 5.15178i 0.127863 + 0.390555i
\(175\) −3.24746 15.2975i −0.245485 1.15638i
\(176\) 14.6431 + 4.61382i 1.10377 + 0.347779i
\(177\) 4.12608i 0.310135i
\(178\) −4.69363 + 1.53664i −0.351803 + 0.115176i
\(179\) −8.31107 −0.621199 −0.310599 0.950541i \(-0.600530\pi\)
−0.310599 + 0.950541i \(0.600530\pi\)
\(180\) −0.576120 + 11.9863i −0.0429415 + 0.893404i
\(181\) 1.46224i 0.108687i −0.998522 0.0543437i \(-0.982693\pi\)
0.998522 0.0543437i \(-0.0173067\pi\)
\(182\) −3.22615 9.85423i −0.239138 0.730444i
\(183\) 1.84168i 0.136141i
\(184\) −11.8247 8.47086i −0.871730 0.624480i
\(185\) 2.55550 3.15495i 0.187884 0.231957i
\(186\) −3.60164 + 1.17913i −0.264085 + 0.0864581i
\(187\) 1.13772 0.0831981
\(188\) 11.2262 8.23306i 0.818753 0.600457i
\(189\) 10.0033i 0.727632i
\(190\) 13.0585 + 4.41312i 0.947363 + 0.320161i
\(191\) 4.43480i 0.320891i −0.987045 0.160445i \(-0.948707\pi\)
0.987045 0.160445i \(-0.0512930\pi\)
\(192\) 4.26271 1.44838i 0.307634 0.104528i
\(193\) −6.39281 −0.460164 −0.230082 0.973171i \(-0.573899\pi\)
−0.230082 + 0.973171i \(0.573899\pi\)
\(194\) 5.24295 + 16.0145i 0.376422 + 1.14978i
\(195\) −2.29223 1.85670i −0.164150 0.132961i
\(196\) −4.48729 + 3.29089i −0.320521 + 0.235063i
\(197\) 22.3795i 1.59447i 0.603668 + 0.797235i \(0.293705\pi\)
−0.603668 + 0.797235i \(0.706295\pi\)
\(198\) 13.8421 4.53173i 0.983716 0.322056i
\(199\) 0.591395i 0.0419229i 0.999780 + 0.0209614i \(0.00667272\pi\)
−0.999780 + 0.0209614i \(0.993327\pi\)
\(200\) 5.66889 12.9562i 0.400851 0.916143i
\(201\) 5.32905 0.375882
\(202\) 2.64775 + 8.08750i 0.186295 + 0.569035i
\(203\) 21.3036i 1.49522i
\(204\) 0.269030 0.197302i 0.0188359 0.0138139i
\(205\) 20.9615 + 16.9787i 1.46401 + 1.18585i
\(206\) 1.33008 0.435453i 0.0926713 0.0303394i
\(207\) −13.7995 −0.959128
\(208\) 2.81793 8.94339i 0.195388 0.620112i
\(209\) −0.644260 16.7179i −0.0445644 1.15640i
\(210\) −1.98375 + 5.20047i −0.136891 + 0.358867i
\(211\) −18.8494 −1.29765 −0.648824 0.760938i \(-0.724739\pi\)
−0.648824 + 0.760938i \(0.724739\pi\)
\(212\) 17.9063 13.1321i 1.22981 0.901916i
\(213\) 5.32052i 0.364556i
\(214\) −13.3824 + 4.38122i −0.914801 + 0.299494i
\(215\) 0.241904 0.298648i 0.0164977 0.0203676i
\(216\) 5.26814 7.35395i 0.358451 0.500373i
\(217\) 14.8935 1.01103
\(218\) 18.7094 6.12523i 1.26716 0.414853i
\(219\) −4.63321 −0.313083
\(220\) −17.1451 0.824081i −1.15592 0.0555595i
\(221\) 0.694870i 0.0467420i
\(222\) −1.37333 + 0.449612i −0.0921721 + 0.0301760i
\(223\) 15.5731i 1.04285i 0.853296 + 0.521427i \(0.174600\pi\)
−0.853296 + 0.521427i \(0.825400\pi\)
\(224\) −17.6917 + 0.197302i −1.18208 + 0.0131828i
\(225\) −2.78607 13.1241i −0.185738 0.874937i
\(226\) −8.13840 24.8586i −0.541359 1.65357i
\(227\) 23.0220i 1.52803i −0.645201 0.764013i \(-0.723227\pi\)
0.645201 0.764013i \(-0.276773\pi\)
\(228\) −3.05154 3.84147i −0.202093 0.254408i
\(229\) 14.0599 0.929102 0.464551 0.885546i \(-0.346216\pi\)
0.464551 + 0.885546i \(0.346216\pi\)
\(230\) 15.1947 + 5.79610i 1.00191 + 0.382184i
\(231\) 6.75567 0.444491
\(232\) 11.2193 15.6614i 0.736585 1.02822i
\(233\) 18.3115i 1.19963i 0.800140 + 0.599813i \(0.204758\pi\)
−0.800140 + 0.599813i \(0.795242\pi\)
\(234\) −2.76779 8.45418i −0.180936 0.552667i
\(235\) −9.79680 + 12.0949i −0.639073 + 0.788981i
\(236\) 11.8247 8.67202i 0.769724 0.564500i
\(237\) 4.21996i 0.274116i
\(238\) −1.24605 + 0.407940i −0.0807692 + 0.0264428i
\(239\) 7.19400i 0.465341i −0.972556 0.232671i \(-0.925254\pi\)
0.972556 0.232671i \(-0.0747464\pi\)
\(240\) −4.19714 + 2.77842i −0.270924 + 0.179346i
\(241\) 2.45499i 0.158140i −0.996869 0.0790698i \(-0.974805\pi\)
0.996869 0.0790698i \(-0.0251950\pi\)
\(242\) 1.64201 + 5.01551i 0.105553 + 0.322409i
\(243\) 13.1122i 0.841148i
\(244\) −5.27798 + 3.87077i −0.337888 + 0.247800i
\(245\) 3.91594 4.83451i 0.250180 0.308866i
\(246\) −2.98722 9.12443i −0.190458 0.581752i
\(247\) −10.2106 + 0.393487i −0.649684 + 0.0250370i
\(248\) 10.9490 + 7.84351i 0.695261 + 0.498063i
\(249\) 3.58896i 0.227441i
\(250\) −2.44465 + 15.6213i −0.154613 + 0.987975i
\(251\) 14.3768i 0.907455i 0.891140 + 0.453728i \(0.149906\pi\)
−0.891140 + 0.453728i \(0.850094\pi\)
\(252\) −13.5352 + 9.92645i −0.852638 + 0.625308i
\(253\) 19.7387i 1.24096i
\(254\) 10.5626 3.45807i 0.662758 0.216979i
\(255\) −0.234776 + 0.289848i −0.0147022 + 0.0181510i
\(256\) −13.1100 9.17212i −0.819375 0.573257i
\(257\) −13.3686 −0.833913 −0.416956 0.908927i \(-0.636903\pi\)
−0.416956 + 0.908927i \(0.636903\pi\)
\(258\) −0.130000 + 0.0425603i −0.00809345 + 0.00264969i
\(259\) 5.67900 0.352876
\(260\) −0.503314 + 10.4715i −0.0312142 + 0.649416i
\(261\) 18.2769i 1.13131i
\(262\) −21.5965 + 7.07042i −1.33424 + 0.436812i
\(263\) 18.3342 1.13053 0.565267 0.824908i \(-0.308773\pi\)
0.565267 + 0.824908i \(0.308773\pi\)
\(264\) 4.96645 + 3.55781i 0.305664 + 0.218968i
\(265\) −15.6263 + 19.2918i −0.959919 + 1.18509i
\(266\) 6.69997 + 18.0787i 0.410801 + 1.10848i
\(267\) −1.96528 −0.120273
\(268\) −11.2004 15.2722i −0.684171 0.932901i
\(269\) 3.91723i 0.238838i 0.992844 + 0.119419i \(0.0381031\pi\)
−0.992844 + 0.119419i \(0.961897\pi\)
\(270\) −3.60467 + 9.44980i −0.219373 + 0.575096i
\(271\) 32.0793i 1.94868i 0.225079 + 0.974341i \(0.427736\pi\)
−0.225079 + 0.974341i \(0.572264\pi\)
\(272\) −1.13087 0.356320i −0.0685692 0.0216051i
\(273\) 4.12608i 0.249722i
\(274\) 25.2816 8.27688i 1.52732 0.500024i
\(275\) 18.7726 3.98519i 1.13203 0.240316i
\(276\) −3.42306 4.66752i −0.206044 0.280951i
\(277\) 6.15489i 0.369812i 0.982756 + 0.184906i \(0.0591980\pi\)
−0.982756 + 0.184906i \(0.940802\pi\)
\(278\) −20.4667 + 6.70054i −1.22751 + 0.401872i
\(279\) 12.7775 0.764967
\(280\) 19.0731 5.24501i 1.13984 0.313449i
\(281\) 6.21318i 0.370647i 0.982678 + 0.185323i \(0.0593333\pi\)
−0.982678 + 0.185323i \(0.940667\pi\)
\(282\) 5.26483 1.72364i 0.313516 0.102641i
\(283\) 13.4604 0.800136 0.400068 0.916485i \(-0.368986\pi\)
0.400068 + 0.916485i \(0.368986\pi\)
\(284\) −15.2478 + 11.1824i −0.904790 + 0.663555i
\(285\) 4.39204 + 3.28572i 0.260162 + 0.194629i
\(286\) 12.0928 3.95904i 0.715064 0.234103i
\(287\) 37.7312i 2.22720i
\(288\) −15.1781 + 0.169270i −0.894379 + 0.00997431i
\(289\) 16.9121 0.994831
\(290\) −7.67672 + 20.1248i −0.450792 + 1.18177i
\(291\) 6.70547i 0.393081i
\(292\) 9.73786 + 13.2781i 0.569865 + 0.777040i
\(293\) −10.3893 −0.606949 −0.303475 0.952840i \(-0.598147\pi\)
−0.303475 + 0.952840i \(0.598147\pi\)
\(294\) −2.10444 + 0.688967i −0.122733 + 0.0401814i
\(295\) −10.3191 + 12.7397i −0.600803 + 0.741735i
\(296\) 4.17493 + 2.99079i 0.242663 + 0.173836i
\(297\) 12.2758 0.712312
\(298\) 8.27367 + 25.2718i 0.479281 + 1.46396i
\(299\) −12.0556 −0.697192
\(300\) 3.74797 4.19788i 0.216389 0.242365i
\(301\) 0.537575 0.0309853
\(302\) −3.83311 11.7082i −0.220571 0.673731i
\(303\) 3.38633i 0.194540i
\(304\) −4.59548 + 16.8191i −0.263569 + 0.964641i
\(305\) 4.60596 5.68639i 0.263737 0.325602i
\(306\) −1.06901 + 0.349981i −0.0611114 + 0.0200071i
\(307\) 11.5192i 0.657434i −0.944428 0.328717i \(-0.893384\pi\)
0.944428 0.328717i \(-0.106616\pi\)
\(308\) −14.1988 19.3607i −0.809050 1.10318i
\(309\) 0.556922 0.0316822
\(310\) −14.0694 5.36684i −0.799088 0.304816i
\(311\) 19.4638i 1.10369i −0.833946 0.551847i \(-0.813923\pi\)
0.833946 0.551847i \(-0.186077\pi\)
\(312\) 2.17296 3.03330i 0.123020 0.171727i
\(313\) 14.3879i 0.813255i −0.913594 0.406628i \(-0.866705\pi\)
0.913594 0.406628i \(-0.133295\pi\)
\(314\) 17.2559 5.64935i 0.973804 0.318811i
\(315\) 11.8118 14.5826i 0.665522 0.821634i
\(316\) −12.0938 + 8.86932i −0.680327 + 0.498938i
\(317\) −11.3099 −0.635230 −0.317615 0.948220i \(-0.602882\pi\)
−0.317615 + 0.948220i \(0.602882\pi\)
\(318\) 8.39764 2.74928i 0.470917 0.154172i
\(319\) 26.1432 1.46374
\(320\) 16.7839 + 6.18879i 0.938248 + 0.345964i
\(321\) −5.60336 −0.312749
\(322\) 7.07751 + 21.6182i 0.394414 + 1.20473i
\(323\) 0.0497555 + 1.29111i 0.00276847 + 0.0718390i
\(324\) −10.0799 + 7.39240i −0.559995 + 0.410689i
\(325\) −2.43399 11.4655i −0.135013 0.635993i
\(326\) −0.181041 0.552987i −0.0100269 0.0306271i
\(327\) 7.83386 0.433214
\(328\) −19.8708 + 27.7382i −1.09718 + 1.53159i
\(329\) −21.7711 −1.20028
\(330\) −6.38187 2.43440i −0.351311 0.134009i
\(331\) −8.54452 −0.469649 −0.234825 0.972038i \(-0.575452\pi\)
−0.234825 + 0.972038i \(0.575452\pi\)
\(332\) 10.2854 7.54312i 0.564486 0.413982i
\(333\) 4.87215 0.266992
\(334\) −2.09950 + 0.687349i −0.114879 + 0.0376101i
\(335\) 16.4540 + 13.3277i 0.898978 + 0.728170i
\(336\) −6.71503 2.11580i −0.366335 0.115427i
\(337\) −9.77305 −0.532372 −0.266186 0.963922i \(-0.585764\pi\)
−0.266186 + 0.963922i \(0.585764\pi\)
\(338\) 3.30218 + 10.0864i 0.179615 + 0.548631i
\(339\) 10.4086i 0.565318i
\(340\) 1.32410 + 0.0636430i 0.0718095 + 0.00345152i
\(341\) 18.2769i 0.989747i
\(342\) 5.74806 + 15.5101i 0.310820 + 0.838693i
\(343\) −13.1915 −0.712272
\(344\) 0.395200 + 0.283109i 0.0213077 + 0.0152642i
\(345\) 5.02869 + 4.07322i 0.270735 + 0.219295i
\(346\) −5.01605 15.3214i −0.269664 0.823686i
\(347\) −32.2557 −1.73158 −0.865789 0.500408i \(-0.833183\pi\)
−0.865789 + 0.500408i \(0.833183\pi\)
\(348\) 6.18195 4.53372i 0.331387 0.243033i
\(349\) 12.2964 0.658212 0.329106 0.944293i \(-0.393253\pi\)
0.329106 + 0.944293i \(0.393253\pi\)
\(350\) −19.1312 + 11.0958i −1.02260 + 0.593093i
\(351\) 7.49752i 0.400188i
\(352\) −0.242123 21.7107i −0.0129052 1.15719i
\(353\) 9.48559i 0.504867i −0.967614 0.252434i \(-0.918769\pi\)
0.967614 0.252434i \(-0.0812309\pi\)
\(354\) 5.54553 1.81554i 0.294742 0.0964947i
\(355\) 13.3064 16.4277i 0.706228 0.871889i
\(356\) 4.13053 + 5.63219i 0.218918 + 0.298505i
\(357\) −0.521734 −0.0276131
\(358\) 3.65699 + 11.1702i 0.193278 + 0.590365i
\(359\) 11.7875i 0.622118i 0.950391 + 0.311059i \(0.100684\pi\)
−0.950391 + 0.311059i \(0.899316\pi\)
\(360\) 16.3633 4.49982i 0.862420 0.237161i
\(361\) 18.9436 1.46224i 0.997034 0.0769600i
\(362\) −1.96528 + 0.643407i −0.103293 + 0.0338167i
\(363\) 2.10005i 0.110224i
\(364\) −11.8247 + 8.67202i −0.619784 + 0.454537i
\(365\) −14.3055 11.5874i −0.748785 0.606514i
\(366\) −2.47526 + 0.810368i −0.129384 + 0.0423586i
\(367\) 27.6424 1.44292 0.721460 0.692457i \(-0.243472\pi\)
0.721460 + 0.692457i \(0.243472\pi\)
\(368\) −6.18195 + 19.6200i −0.322256 + 1.02276i
\(369\) 32.3705i 1.68514i
\(370\) −5.36477 2.04642i −0.278901 0.106388i
\(371\) −34.7259 −1.80288
\(372\) 3.16955 + 4.32184i 0.164334 + 0.224077i
\(373\) 15.2573 0.789991 0.394996 0.918683i \(-0.370746\pi\)
0.394996 + 0.918683i \(0.370746\pi\)
\(374\) −0.500612 1.52911i −0.0258860 0.0790685i
\(375\) −2.85859 + 5.60494i −0.147617 + 0.289438i
\(376\) −16.0051 11.4655i −0.825398 0.591290i
\(377\) 15.9671i 0.822350i
\(378\) −13.4446 + 4.40160i −0.691516 + 0.226394i
\(379\) 29.8592 1.53376 0.766882 0.641788i \(-0.221807\pi\)
0.766882 + 0.641788i \(0.221807\pi\)
\(380\) 0.185381 19.4927i 0.00950982 0.999955i
\(381\) 4.42269 0.226582
\(382\) −5.96045 + 1.95138i −0.304963 + 0.0998411i
\(383\) 24.1703i 1.23504i 0.786554 + 0.617521i \(0.211863\pi\)
−0.786554 + 0.617521i \(0.788137\pi\)
\(384\) −3.82231 5.09185i −0.195056 0.259842i
\(385\) 20.8589 + 16.8956i 1.06307 + 0.861081i
\(386\) 2.81293 + 8.59205i 0.143174 + 0.437324i
\(387\) 0.461198 0.0234440
\(388\) 19.2168 14.0933i 0.975588 0.715477i
\(389\) 14.6644 0.743513 0.371757 0.928330i \(-0.378756\pi\)
0.371757 + 0.928330i \(0.378756\pi\)
\(390\) −1.48683 + 3.89778i −0.0752884 + 0.197372i
\(391\) 1.52440i 0.0770923i
\(392\) 6.39749 + 4.58296i 0.323122 + 0.231475i
\(393\) −9.04271 −0.456144
\(394\) 30.0784 9.84730i 1.51533 0.496100i
\(395\) 10.5539 13.0296i 0.531025 0.655588i
\(396\) −12.1815 16.6100i −0.612142 0.834685i
\(397\) 10.8320i 0.543643i −0.962348 0.271821i \(-0.912374\pi\)
0.962348 0.271821i \(-0.0876260\pi\)
\(398\) 0.794846 0.260222i 0.0398420 0.0130438i
\(399\) 0.295445 + 7.66649i 0.0147907 + 0.383804i
\(400\) −19.9078 1.91817i −0.995390 0.0959085i
\(401\) 24.3653i 1.21675i −0.793652 0.608373i \(-0.791823\pi\)
0.793652 0.608373i \(-0.208177\pi\)
\(402\) −2.34486 7.16234i −0.116951 0.357225i
\(403\) 11.1627 0.556055
\(404\) 9.70471 7.11724i 0.482827 0.354096i
\(405\) 8.79648 10.8599i 0.437101 0.539632i
\(406\) −28.6324 + 9.37389i −1.42100 + 0.465218i
\(407\) 6.96911i 0.345446i
\(408\) −0.383554 0.274766i −0.0189888 0.0136030i
\(409\) 14.3876i 0.711422i −0.934596 0.355711i \(-0.884239\pi\)
0.934596 0.355711i \(-0.115761\pi\)
\(410\) 13.5964 35.6435i 0.671478 1.76031i
\(411\) 10.5857 0.522154
\(412\) −1.17051 1.59605i −0.0576670 0.0786319i
\(413\) −22.9318 −1.12840
\(414\) 6.07196 + 18.5467i 0.298421 + 0.911522i
\(415\) −8.97582 + 11.0813i −0.440606 + 0.543959i
\(416\) −13.2600 + 0.147878i −0.650126 + 0.00725034i
\(417\) −8.56965 −0.419657
\(418\) −22.1857 + 8.22201i −1.08514 + 0.402152i
\(419\) 25.9927i 1.26983i 0.772583 + 0.634914i \(0.218965\pi\)
−0.772583 + 0.634914i \(0.781035\pi\)
\(420\) 7.86241 + 0.377907i 0.383646 + 0.0184400i
\(421\) 22.3672i 1.09011i −0.838400 0.545056i \(-0.816508\pi\)
0.838400 0.545056i \(-0.183492\pi\)
\(422\) 8.29403 + 25.3340i 0.403747 + 1.23324i
\(423\) −18.6779 −0.908151
\(424\) −25.5288 18.2880i −1.23979 0.888146i
\(425\) −1.44979 + 0.307772i −0.0703252 + 0.0149291i
\(426\) −7.15087 + 2.34111i −0.346461 + 0.113427i
\(427\) 10.2357 0.495338
\(428\) 11.7769 + 16.0584i 0.569258 + 0.776211i
\(429\) 5.06341 0.244464
\(430\) −0.507830 0.193714i −0.0244897 0.00934173i
\(431\) 25.7719 1.24139 0.620695 0.784052i \(-0.286851\pi\)
0.620695 + 0.784052i \(0.286851\pi\)
\(432\) −12.2019 3.84463i −0.587064 0.184975i
\(433\) 17.9384 0.862062 0.431031 0.902337i \(-0.358150\pi\)
0.431031 + 0.902337i \(0.358150\pi\)
\(434\) −6.55335 20.0171i −0.314571 0.960852i
\(435\) −5.39483 + 6.66030i −0.258662 + 0.319337i
\(436\) −16.4649 22.4507i −0.788524 1.07519i
\(437\) 22.3999 0.863229i 1.07153 0.0412938i
\(438\) 2.03868 + 6.22712i 0.0974118 + 0.297543i
\(439\) −22.9968 −1.09758 −0.548790 0.835960i \(-0.684911\pi\)
−0.548790 + 0.835960i \(0.684911\pi\)
\(440\) 6.43653 + 23.4060i 0.306849 + 1.11584i
\(441\) 7.46587 0.355518
\(442\) −0.933918 + 0.305753i −0.0444219 + 0.0145432i
\(443\) −24.3789 −1.15828 −0.579138 0.815230i \(-0.696611\pi\)
−0.579138 + 0.815230i \(0.696611\pi\)
\(444\) 1.20857 + 1.64795i 0.0573564 + 0.0782083i
\(445\) −6.06801 4.91507i −0.287651 0.232997i
\(446\) 20.9306 6.85241i 0.991092 0.324471i
\(447\) 10.5816i 0.500492i
\(448\) 8.04978 + 23.6912i 0.380317 + 1.11930i
\(449\) 35.0227i 1.65283i 0.563065 + 0.826413i \(0.309622\pi\)
−0.563065 + 0.826413i \(0.690378\pi\)
\(450\) −16.4131 + 9.51931i −0.773720 + 0.448745i
\(451\) −46.3027 −2.18031
\(452\) −29.8295 + 21.8763i −1.40306 + 1.02898i
\(453\) 4.90236i 0.230333i
\(454\) −30.9420 + 10.1300i −1.45218 + 0.475426i
\(455\) 10.3191 12.7397i 0.483769 0.597247i
\(456\) −3.82029 + 5.79163i −0.178901 + 0.271218i
\(457\) 1.73993i 0.0813904i 0.999172 + 0.0406952i \(0.0129573\pi\)
−0.999172 + 0.0406952i \(0.987043\pi\)
\(458\) −6.18655 18.8967i −0.289078 0.882986i
\(459\) −0.948045 −0.0442509
\(460\) 1.10417 22.9724i 0.0514821 1.07109i
\(461\) 20.9737 0.976845 0.488422 0.872607i \(-0.337573\pi\)
0.488422 + 0.872607i \(0.337573\pi\)
\(462\) −2.97260 9.07975i −0.138298 0.422428i
\(463\) 4.36243 0.202740 0.101370 0.994849i \(-0.467677\pi\)
0.101370 + 0.994849i \(0.467677\pi\)
\(464\) −25.9859 8.18775i −1.20636 0.380107i
\(465\) −4.65626 3.77156i −0.215929 0.174902i
\(466\) 24.6110 8.05732i 1.14008 0.373248i
\(467\) 11.5244 0.533287 0.266643 0.963795i \(-0.414085\pi\)
0.266643 + 0.963795i \(0.414085\pi\)
\(468\) −10.1447 + 7.43993i −0.468939 + 0.343911i
\(469\) 29.6177i 1.36762i
\(470\) 20.5665 + 7.84517i 0.948660 + 0.361871i
\(471\) 7.22523 0.332921
\(472\) −16.8584 12.0768i −0.775971 0.555881i
\(473\) 0.659697i 0.0303329i
\(474\) −5.67170 + 1.85684i −0.260510 + 0.0852876i
\(475\) 5.34346 + 21.1293i 0.245175 + 0.969479i
\(476\) 1.09656 + 1.49521i 0.0502606 + 0.0685328i
\(477\) −29.7921 −1.36409
\(478\) −9.66887 + 3.16547i −0.442244 + 0.144785i
\(479\) 11.7269i 0.535817i −0.963444 0.267908i \(-0.913668\pi\)
0.963444 0.267908i \(-0.0863324\pi\)
\(480\) 5.58105 + 4.41848i 0.254739 + 0.201675i
\(481\) 4.25644 0.194077
\(482\) −3.29955 + 1.08023i −0.150290 + 0.0492032i
\(483\) 9.05178i 0.411870i
\(484\) 6.01843 4.41380i 0.273565 0.200627i
\(485\) −16.7701 + 20.7038i −0.761489 + 0.940113i
\(486\) −17.6230 + 5.76956i −0.799398 + 0.261713i
\(487\) 36.4267i 1.65065i −0.564656 0.825327i \(-0.690991\pi\)
0.564656 0.825327i \(-0.309009\pi\)
\(488\) 7.52477 + 5.39051i 0.340631 + 0.244017i
\(489\) 0.231542i 0.0104707i
\(490\) −8.22075 3.13585i −0.371376 0.141663i
\(491\) 7.95871i 0.359171i −0.983742 0.179586i \(-0.942524\pi\)
0.983742 0.179586i \(-0.0574757\pi\)
\(492\) −10.9490 + 8.02976i −0.493618 + 0.362010i
\(493\) −2.01901 −0.0909317
\(494\) 5.02166 + 13.5501i 0.225935 + 0.609647i
\(495\) 17.8953 + 14.4952i 0.804334 + 0.651509i
\(496\) 5.72411 18.1669i 0.257020 0.815718i
\(497\) 29.5702 1.32641
\(498\) 4.82363 1.57920i 0.216152 0.0707655i
\(499\) 25.3695i 1.13569i −0.823134 0.567847i \(-0.807776\pi\)
0.823134 0.567847i \(-0.192224\pi\)
\(500\) 22.0709 3.58793i 0.987043 0.160457i
\(501\) −0.879084 −0.0392746
\(502\) 19.3227 6.32600i 0.862414 0.282343i
\(503\) −8.43511 −0.376103 −0.188052 0.982159i \(-0.560217\pi\)
−0.188052 + 0.982159i \(0.560217\pi\)
\(504\) 19.2970 + 13.8238i 0.859558 + 0.615761i
\(505\) −8.46906 + 10.4557i −0.376868 + 0.465271i
\(506\) −26.5292 + 8.68532i −1.17937 + 0.386110i
\(507\) 4.22331i 0.187564i
\(508\) −9.29542 12.6748i −0.412418 0.562352i
\(509\) 38.3457i 1.69965i −0.527069 0.849823i \(-0.676709\pi\)
0.527069 0.849823i \(-0.323291\pi\)
\(510\) 0.492866 + 0.188006i 0.0218245 + 0.00832505i
\(511\) 25.7503i 1.13913i
\(512\) −6.55890 + 21.6560i −0.289865 + 0.957067i
\(513\) 0.536853 + 13.9308i 0.0237027 + 0.615060i
\(514\) 5.88240 + 17.9677i 0.259461 + 0.792521i
\(515\) 1.71955 + 1.39283i 0.0757726 + 0.0613756i
\(516\) 0.114404 + 0.155995i 0.00503635 + 0.00686731i
\(517\) 26.7168i 1.17501i
\(518\) −2.49884 7.63268i −0.109793 0.335361i
\(519\) 6.41527i 0.281599i
\(520\) 14.2954 3.93116i 0.626894 0.172393i
\(521\) 26.1113i 1.14396i −0.820269 0.571979i \(-0.806176\pi\)
0.820269 0.571979i \(-0.193824\pi\)
\(522\) −24.5644 + 8.04208i −1.07516 + 0.351992i
\(523\) 5.15443i 0.225387i −0.993630 0.112694i \(-0.964052\pi\)
0.993630 0.112694i \(-0.0359479\pi\)
\(524\) 19.0056 + 25.9150i 0.830262 + 1.13210i
\(525\) −8.60875 + 1.82753i −0.375717 + 0.0797598i
\(526\) −8.06730 24.6415i −0.351751 1.07442i
\(527\) 1.41150i 0.0614860i
\(528\) 2.59645 8.24050i 0.112996 0.358622i
\(529\) 3.44744 0.149889
\(530\) 32.8044 + 12.5134i 1.42493 + 0.543548i
\(531\) −19.6738 −0.853769
\(532\) 21.3500 16.9598i 0.925641 0.735300i
\(533\) 28.2798i 1.22493i
\(534\) 0.864752 + 2.64137i 0.0374215 + 0.114303i
\(535\) −17.3010 14.0137i −0.747986 0.605867i
\(536\) −15.5979 + 21.7735i −0.673725 + 0.940472i
\(537\) 4.67711i 0.201832i
\(538\) 5.26483 1.72364i 0.226983 0.0743113i
\(539\) 10.6792i 0.459984i
\(540\) 14.2868 + 0.686696i 0.614807 + 0.0295507i
\(541\) −8.68410 −0.373359 −0.186679 0.982421i \(-0.559773\pi\)
−0.186679 + 0.982421i \(0.559773\pi\)
\(542\) 43.1152 14.1154i 1.85196 0.606308i
\(543\) −0.822885 −0.0353134
\(544\) 0.0186989 + 1.67670i 0.000801709 + 0.0718879i
\(545\) 24.1879 + 19.5921i 1.03609 + 0.839234i
\(546\) −5.54553 + 1.81554i −0.237327 + 0.0776978i
\(547\) 1.22724i 0.0524731i −0.999656 0.0262365i \(-0.991648\pi\)
0.999656 0.0262365i \(-0.00835231\pi\)
\(548\) −22.2486 30.3370i −0.950411 1.29593i
\(549\) 8.78142 0.374782
\(550\) −13.6164 23.4772i −0.580605 1.00107i
\(551\) 1.14331 + 29.6678i 0.0487068 + 1.26389i
\(552\) −4.76703 + 6.65444i −0.202898 + 0.283232i
\(553\) 23.4536 0.997347
\(554\) 8.27229 2.70824i 0.351456 0.115062i
\(555\) −1.77547 1.43813i −0.0753644 0.0610450i
\(556\) 18.0113 + 24.5593i 0.763849 + 1.04155i
\(557\) 10.1755i 0.431151i −0.976487 0.215575i \(-0.930837\pi\)
0.976487 0.215575i \(-0.0691627\pi\)
\(558\) −5.62227 17.1732i −0.238010 0.726998i
\(559\) 0.402915 0.0170415
\(560\) −15.4418 23.3267i −0.652537 0.985735i
\(561\) 0.640257i 0.0270317i
\(562\) 8.35063 2.73389i 0.352250 0.115322i
\(563\) 44.1373i 1.86017i −0.367348 0.930084i \(-0.619734\pi\)
0.367348 0.930084i \(-0.380266\pi\)
\(564\) −4.63321 6.31760i −0.195093 0.266019i
\(565\) 26.0314 32.1377i 1.09515 1.35204i
\(566\) −5.92276 18.0910i −0.248952 0.760422i
\(567\) 19.5481 0.820943
\(568\) 21.7386 + 15.5729i 0.912133 + 0.653424i
\(569\) 15.7494i 0.660248i −0.943938 0.330124i \(-0.892910\pi\)
0.943938 0.330124i \(-0.107090\pi\)
\(570\) 2.48351 7.34875i 0.104023 0.307805i
\(571\) 29.5903i 1.23832i −0.785266 0.619158i \(-0.787474\pi\)
0.785266 0.619158i \(-0.212526\pi\)
\(572\) −10.6421 14.5110i −0.444967 0.606734i
\(573\) −2.49571 −0.104260
\(574\) 50.7115 16.6023i 2.11666 0.692967i
\(575\) 5.33966 + 25.1530i 0.222679 + 1.04895i
\(576\) 6.90610 + 20.3252i 0.287754 + 0.846883i
\(577\) 24.8985i 1.03654i −0.855218 0.518269i \(-0.826577\pi\)
0.855218 0.518269i \(-0.173423\pi\)
\(578\) −7.44159 22.7302i −0.309529 0.945453i
\(579\) 3.59759i 0.149511i
\(580\) 30.4260 + 1.46243i 1.26337 + 0.0607240i
\(581\) −19.9466 −0.827526
\(582\) 9.01228 2.95050i 0.373571 0.122302i
\(583\) 42.6146i 1.76492i
\(584\) 13.5612 18.9304i 0.561165 0.783346i
\(585\) 8.85303 10.9297i 0.366028 0.451888i
\(586\) 4.57144 + 13.9634i 0.188845 + 0.576823i
\(587\) 41.6137 1.71758 0.858790 0.512327i \(-0.171217\pi\)
0.858790 + 0.512327i \(0.171217\pi\)
\(588\) 1.85197 + 2.52525i 0.0763739 + 0.104140i
\(589\) −20.7410 + 0.799298i −0.854617 + 0.0329345i
\(590\) 21.6630 + 8.26345i 0.891851 + 0.340201i
\(591\) 12.5942 0.518056
\(592\) 2.18265 6.92718i 0.0897063 0.284705i
\(593\) 34.0574i 1.39857i 0.714843 + 0.699285i \(0.246498\pi\)
−0.714843 + 0.699285i \(0.753502\pi\)
\(594\) −5.40151 16.4988i −0.221627 0.676956i
\(595\) −1.61091 1.30483i −0.0660408 0.0534929i
\(596\) 30.3252 22.2399i 1.24217 0.910983i
\(597\) 0.332811 0.0136211
\(598\) 5.30463 + 16.2029i 0.216922 + 0.662587i
\(599\) −45.2260 −1.84789 −0.923943 0.382530i \(-0.875053\pi\)
−0.923943 + 0.382530i \(0.875053\pi\)
\(600\) −7.29120 3.19021i −0.297662 0.130240i
\(601\) 13.7934i 0.562645i −0.959613 0.281322i \(-0.909227\pi\)
0.959613 0.281322i \(-0.0907730\pi\)
\(602\) −0.236541 0.722511i −0.00964068 0.0294473i
\(603\) 25.4097i 1.03476i
\(604\) −14.0494 + 10.3036i −0.571662 + 0.419246i
\(605\) −5.25213 + 6.48413i −0.213530 + 0.263618i
\(606\) 4.55130 1.49004i 0.184884 0.0605286i
\(607\) 6.05673i 0.245835i −0.992417 0.122918i \(-0.960775\pi\)
0.992417 0.122918i \(-0.0392251\pi\)
\(608\) 24.6272 1.22424i 0.998767 0.0496494i
\(609\) −11.9887 −0.485808
\(610\) −9.66931 3.68840i −0.391499 0.149339i
\(611\) −16.3175 −0.660137
\(612\) 0.940762 + 1.28278i 0.0380281 + 0.0518532i
\(613\) 17.6797i 0.714074i −0.934090 0.357037i \(-0.883787\pi\)
0.934090 0.357037i \(-0.116213\pi\)
\(614\) −15.4820 + 5.06861i −0.624802 + 0.204552i
\(615\) 9.55490 11.7962i 0.385291 0.475669i
\(616\) −19.7735 + 27.6024i −0.796698 + 1.11213i
\(617\) 20.4490i 0.823245i −0.911355 0.411622i \(-0.864962\pi\)
0.911355 0.411622i \(-0.135038\pi\)
\(618\) −0.245054 0.748513i −0.00985751 0.0301096i
\(619\) 41.3733i 1.66293i 0.555576 + 0.831466i \(0.312498\pi\)
−0.555576 + 0.831466i \(0.687502\pi\)
\(620\) −1.02239 + 21.2710i −0.0410603 + 0.854265i
\(621\) 16.4480i 0.660036i
\(622\) −26.1598 + 8.56438i −1.04891 + 0.343400i
\(623\) 10.9226i 0.437604i
\(624\) −5.03295 1.58581i −0.201479 0.0634830i
\(625\) −22.8439 + 10.1566i −0.913755 + 0.406266i
\(626\) −19.3377 + 6.33091i −0.772889 + 0.253034i
\(627\) −9.40810 + 0.362561i −0.375723 + 0.0144793i
\(628\) −15.1857 20.7064i −0.605974 0.826275i
\(629\) 0.538217i 0.0214601i
\(630\) −24.7966 9.45879i −0.987921 0.376847i
\(631\) 8.70064i 0.346367i −0.984890 0.173183i \(-0.944595\pi\)
0.984890 0.173183i \(-0.0554054\pi\)
\(632\) 17.2420 + 12.3516i 0.685848 + 0.491320i
\(633\) 10.6076i 0.421616i
\(634\) 4.97654 + 15.2008i 0.197644 + 0.603700i
\(635\) 13.6555 + 11.0609i 0.541903 + 0.438940i
\(636\) −7.39017 10.0769i −0.293039 0.399574i
\(637\) 6.52239 0.258426
\(638\) −11.5034 35.1369i −0.455423 1.39108i
\(639\) 25.3690 1.00358
\(640\) 0.932694 25.2810i 0.0368680 0.999320i
\(641\) 21.0321i 0.830718i 0.909658 + 0.415359i \(0.136344\pi\)
−0.909658 + 0.415359i \(0.863656\pi\)
\(642\) 2.46556 + 7.53102i 0.0973079 + 0.297226i
\(643\) −28.6196 −1.12865 −0.564323 0.825554i \(-0.690863\pi\)
−0.564323 + 0.825554i \(0.690863\pi\)
\(644\) 25.9410 19.0246i 1.02222 0.749675i
\(645\) −0.168066 0.136133i −0.00661760 0.00536024i
\(646\) 1.71338 0.634978i 0.0674119 0.0249829i
\(647\) −15.6384 −0.614808 −0.307404 0.951579i \(-0.599460\pi\)
−0.307404 + 0.951579i \(0.599460\pi\)
\(648\) 14.3708 + 10.2948i 0.564540 + 0.404419i
\(649\) 28.1413i 1.10464i
\(650\) −14.3389 + 8.31632i −0.562418 + 0.326193i
\(651\) 8.38140i 0.328493i
\(652\) −0.663564 + 0.486645i −0.0259872 + 0.0190585i
\(653\) 21.3458i 0.835324i 0.908602 + 0.417662i \(0.137150\pi\)
−0.908602 + 0.417662i \(0.862850\pi\)
\(654\) −3.44701 10.5289i −0.134789 0.411711i
\(655\) −27.9203 22.6154i −1.09094 0.883656i
\(656\) 46.0242 + 14.5015i 1.79694 + 0.566189i
\(657\) 22.0918i 0.861883i
\(658\) 9.57959 + 29.2607i 0.373451 + 1.14070i
\(659\) 27.8535 1.08502 0.542510 0.840049i \(-0.317474\pi\)
0.542510 + 0.840049i \(0.317474\pi\)
\(660\) −0.463757 + 9.64853i −0.0180517 + 0.375569i
\(661\) 18.3813i 0.714949i 0.933923 + 0.357474i \(0.116362\pi\)
−0.933923 + 0.357474i \(0.883638\pi\)
\(662\) 3.75971 + 11.4840i 0.146125 + 0.446338i
\(663\) −0.391042 −0.0151868
\(664\) −14.6638 10.5047i −0.569067 0.407662i
\(665\) −18.2613 + 24.4100i −0.708143 + 0.946579i
\(666\) −2.14382 6.54826i −0.0830712 0.253740i
\(667\) 35.0286i 1.35631i
\(668\) 1.84762 + 2.51932i 0.0714866 + 0.0974755i
\(669\) 8.76388 0.338831
\(670\) 10.6727 27.9789i 0.412322 1.08092i
\(671\) 12.5609i 0.484909i
\(672\) 0.111033 + 9.95611i 0.00428318 + 0.384065i
\(673\) −40.0610 −1.54424 −0.772119 0.635478i \(-0.780803\pi\)
−0.772119 + 0.635478i \(0.780803\pi\)
\(674\) 4.30029 + 13.1352i 0.165641 + 0.505948i
\(675\) −15.6430 + 3.32080i −0.602099 + 0.127818i
\(676\) 12.1034 8.87637i 0.465514 0.341399i
\(677\) 27.5660 1.05945 0.529723 0.848171i \(-0.322296\pi\)
0.529723 + 0.848171i \(0.322296\pi\)
\(678\) −13.9894 + 4.57994i −0.537258 + 0.175892i
\(679\) −37.2675 −1.43019
\(680\) −0.497087 1.80762i −0.0190624 0.0693191i
\(681\) −12.9558 −0.496467
\(682\) 24.5644 8.04208i 0.940621 0.307947i
\(683\) 27.6266i 1.05710i 0.848901 + 0.528552i \(0.177265\pi\)
−0.848901 + 0.528552i \(0.822735\pi\)
\(684\) 18.3167 14.5502i 0.700356 0.556341i
\(685\) 32.6845 + 26.4743i 1.24881 + 1.01153i
\(686\) 5.80444 + 17.7296i 0.221614 + 0.676918i
\(687\) 7.91228i 0.301872i
\(688\) 0.206610 0.655728i 0.00787692 0.0249994i
\(689\) −26.0272 −0.991558
\(690\) 3.26179 8.55093i 0.124174 0.325528i
\(691\) 16.1536i 0.614513i 0.951627 + 0.307256i \(0.0994109\pi\)
−0.951627 + 0.307256i \(0.900589\pi\)
\(692\) −18.3852 + 13.4833i −0.698900 + 0.512559i
\(693\) 32.2120i 1.22363i
\(694\) 14.1930 + 43.3523i 0.538759 + 1.64563i
\(695\) −26.4597 21.4323i −1.00367 0.812973i
\(696\) −8.81355 6.31375i −0.334077 0.239322i
\(697\) 3.57591 0.135447
\(698\) −5.41060 16.5266i −0.204794 0.625541i
\(699\) 10.3049 0.389767
\(700\) 23.3309 + 20.8303i 0.881825 + 0.787313i
\(701\) −10.8798 −0.410923 −0.205461 0.978665i \(-0.565869\pi\)
−0.205461 + 0.978665i \(0.565869\pi\)
\(702\) −10.0768 + 3.29902i −0.380324 + 0.124513i
\(703\) −7.90869 + 0.304779i −0.298282 + 0.0114949i
\(704\) −29.0731 + 9.87847i −1.09573 + 0.372309i
\(705\) 6.80646 + 5.51321i 0.256346 + 0.207640i
\(706\) −12.7488 + 4.17380i −0.479808 + 0.157083i
\(707\) −18.8205 −0.707817
\(708\) −4.88023 6.65444i −0.183410 0.250089i
\(709\) −45.2518 −1.69947 −0.849734 0.527212i \(-0.823237\pi\)
−0.849734 + 0.527212i \(0.823237\pi\)
\(710\) −27.9341 10.6556i −1.04835 0.399897i
\(711\) 20.1214 0.754610
\(712\) 5.75227 8.02976i 0.215576 0.300928i
\(713\) −24.4887 −0.917110
\(714\) 0.229571 + 0.701220i 0.00859147 + 0.0262425i
\(715\) 15.6338 + 12.6634i 0.584672 + 0.473583i
\(716\) 13.4039 9.83014i 0.500926 0.367369i
\(717\) −4.04847 −0.151193
\(718\) 15.8426 5.18666i 0.591240 0.193564i
\(719\) 36.6480i 1.36674i −0.730073 0.683369i \(-0.760514\pi\)
0.730073 0.683369i \(-0.239486\pi\)
\(720\) −13.2479 20.0126i −0.493721 0.745824i
\(721\) 3.09525i 0.115273i
\(722\) −10.3008 24.8172i −0.383355 0.923601i
\(723\) −1.38156 −0.0513808
\(724\) 1.72950 + 2.35826i 0.0642765 + 0.0876442i
\(725\) −33.3142 + 7.07218i −1.23726 + 0.262654i
\(726\) 2.82251 0.924054i 0.104753 0.0342949i
\(727\) 29.9330 1.11015 0.555077 0.831799i \(-0.312689\pi\)
0.555077 + 0.831799i \(0.312689\pi\)
\(728\) 16.8584 + 12.0768i 0.624814 + 0.447597i
\(729\) 11.3712 0.421154
\(730\) −9.27909 + 24.3255i −0.343434 + 0.900328i
\(731\) 0.0509477i 0.00188437i
\(732\) 2.17830 + 2.97022i 0.0805123 + 0.109782i
\(733\) 11.4917i 0.424456i 0.977220 + 0.212228i \(0.0680719\pi\)
−0.977220 + 0.212228i \(0.931928\pi\)
\(734\) −12.1630 37.1518i −0.448946 1.37130i
\(735\) −2.72065 2.20372i −0.100353 0.0812855i
\(736\) 29.0897 0.324415i 1.07226 0.0119581i
\(737\) −36.3460 −1.33882
\(738\) 43.5066 14.2435i 1.60150 0.524311i
\(739\) 10.5334i 0.387477i −0.981053 0.193739i \(-0.937939\pi\)
0.981053 0.193739i \(-0.0620613\pi\)
\(740\) −0.389846 + 8.11081i −0.0143310 + 0.298159i
\(741\) 0.221437 + 5.74607i 0.00813470 + 0.211087i
\(742\) 15.2799 + 46.6722i 0.560942 + 1.71339i
\(743\) 0.681568i 0.0250043i 0.999922 + 0.0125022i \(0.00397966\pi\)
−0.999922 + 0.0125022i \(0.996020\pi\)
\(744\) 4.41398 6.16161i 0.161825 0.225896i
\(745\) −26.4641 + 32.6718i −0.969569 + 1.19700i
\(746\) −6.71342 20.5061i −0.245796 0.750780i
\(747\) −17.1127 −0.626121
\(748\) −1.83488 + 1.34566i −0.0670898 + 0.0492024i
\(749\) 31.1422i 1.13791i
\(750\) 8.79096 + 1.37574i 0.321001 + 0.0502350i
\(751\) −4.02795 −0.146982 −0.0734910 0.997296i \(-0.523414\pi\)
−0.0734910 + 0.997296i \(0.523414\pi\)
\(752\) −8.36743 + 26.5561i −0.305129 + 0.968402i
\(753\) 8.09063 0.294839
\(754\) −21.4601 + 7.02578i −0.781532 + 0.255864i
\(755\) 12.2606 15.1365i 0.446208 0.550875i
\(756\) 11.8317 + 16.1330i 0.430313 + 0.586753i
\(757\) 11.3612i 0.412930i 0.978454 + 0.206465i \(0.0661960\pi\)
−0.978454 + 0.206465i \(0.933804\pi\)
\(758\) −13.1385 40.1313i −0.477211 1.45764i
\(759\) −11.1081 −0.403198
\(760\) −26.2801 + 8.32792i −0.953281 + 0.302086i
\(761\) −33.0747 −1.19896 −0.599479 0.800390i \(-0.704626\pi\)
−0.599479 + 0.800390i \(0.704626\pi\)
\(762\) −1.94605 5.94419i −0.0704980 0.215335i
\(763\) 43.5388i 1.57621i
\(764\) 5.24537 + 7.15232i 0.189771 + 0.258762i
\(765\) −1.38204 1.11945i −0.0499676 0.0404737i
\(766\) 32.4853 10.6353i 1.17374 0.384268i
\(767\) −17.1875 −0.620606
\(768\) −5.16167 + 7.37774i −0.186256 + 0.266221i
\(769\) 9.24948 0.333545 0.166772 0.985995i \(-0.446665\pi\)
0.166772 + 0.985995i \(0.446665\pi\)
\(770\) 13.5298 35.4690i 0.487581 1.27821i
\(771\) 7.52329i 0.270945i
\(772\) 10.3102 7.56126i 0.371071 0.272136i
\(773\) 40.5301 1.45777 0.728884 0.684638i \(-0.240040\pi\)
0.728884 + 0.684638i \(0.240040\pi\)
\(774\) −0.202934 0.619859i −0.00729431 0.0222804i
\(775\) −4.94421 23.2902i −0.177601 0.836608i
\(776\) −27.3973 19.6266i −0.983506 0.704553i
\(777\) 3.19589i 0.114652i
\(778\) −6.45254 19.7092i −0.231335 0.706609i
\(779\) −2.02495 52.5453i −0.0725513 1.88263i
\(780\) 5.89292 + 0.283243i 0.211000 + 0.0101417i
\(781\)