Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [380,2,Mod(379,380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(380, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("380.379");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 380.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.03431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
379.1 | −1.39672 | − | 0.221721i | − | 2.04365i | 1.90168 | + | 0.619368i | 0.665544 | − | 2.13473i | −0.453121 | + | 2.85442i | 2.07881 | −2.51879 | − | 1.28673i | −1.17650 | −1.40290 | + | 2.83406i | |||||
379.2 | −1.39672 | − | 0.221721i | − | 2.04365i | 1.90168 | + | 0.619368i | 0.665544 | + | 2.13473i | −0.453121 | + | 2.85442i | −2.07881 | −2.51879 | − | 1.28673i | −1.17650 | −0.456267 | − | 3.12919i | |||||
379.3 | −1.39672 | + | 0.221721i | 2.04365i | 1.90168 | − | 0.619368i | 0.665544 | − | 2.13473i | −0.453121 | − | 2.85442i | −2.07881 | −2.51879 | + | 1.28673i | −1.17650 | −0.456267 | + | 3.12919i | ||||||
379.4 | −1.39672 | + | 0.221721i | 2.04365i | 1.90168 | − | 0.619368i | 0.665544 | + | 2.13473i | −0.453121 | − | 2.85442i | 2.07881 | −2.51879 | + | 1.28673i | −1.17650 | −1.40290 | − | 2.83406i | ||||||
379.5 | −1.27059 | − | 0.620975i | 0.701989i | 1.22878 | + | 1.57800i | −1.10449 | − | 1.94425i | 0.435918 | − | 0.891938i | 1.18642 | −0.581371 | − | 2.76803i | 2.50721 | 0.196019 | + | 3.15620i | ||||||
379.6 | −1.27059 | − | 0.620975i | 0.701989i | 1.22878 | + | 1.57800i | −1.10449 | + | 1.94425i | 0.435918 | − | 0.891938i | −1.18642 | −0.581371 | − | 2.76803i | 2.50721 | 2.61068 | − | 1.78448i | ||||||
379.7 | −1.27059 | + | 0.620975i | − | 0.701989i | 1.22878 | − | 1.57800i | −1.10449 | − | 1.94425i | 0.435918 | + | 0.891938i | −1.18642 | −0.581371 | + | 2.76803i | 2.50721 | 2.61068 | + | 1.78448i | |||||
379.8 | −1.27059 | + | 0.620975i | − | 0.701989i | 1.22878 | − | 1.57800i | −1.10449 | + | 1.94425i | 0.435918 | + | 0.891938i | 1.18642 | −0.581371 | + | 2.76803i | 2.50721 | 0.196019 | − | 3.15620i | |||||
379.9 | −0.948256 | − | 1.04920i | − | 1.76151i | −0.201622 | + | 1.98981i | −1.85854 | − | 1.24332i | −1.84816 | + | 1.67036i | −4.29252 | 2.27889 | − | 1.67531i | −0.102903 | 0.457886 | + | 3.12895i | |||||
379.10 | −0.948256 | − | 1.04920i | − | 1.76151i | −0.201622 | + | 1.98981i | −1.85854 | + | 1.24332i | −1.84816 | + | 1.67036i | 4.29252 | 2.27889 | − | 1.67531i | −0.102903 | 3.06685 | + | 0.770986i | |||||
379.11 | −0.948256 | + | 1.04920i | 1.76151i | −0.201622 | − | 1.98981i | −1.85854 | − | 1.24332i | −1.84816 | − | 1.67036i | 4.29252 | 2.27889 | + | 1.67531i | −0.102903 | 3.06685 | − | 0.770986i | ||||||
379.12 | −0.948256 | + | 1.04920i | 1.76151i | −0.201622 | − | 1.98981i | −1.85854 | + | 1.24332i | −1.84816 | − | 1.67036i | −4.29252 | 2.27889 | + | 1.67531i | −0.102903 | 0.457886 | − | 3.12895i | ||||||
379.13 | −0.584780 | − | 1.28765i | 2.81267i | −1.31606 | + | 1.50598i | 0.390055 | − | 2.20178i | 3.62172 | − | 1.64479i | −4.13073 | 2.70878 | + | 0.813956i | −4.91111 | −3.06322 | + | 0.785308i | ||||||
379.14 | −0.584780 | − | 1.28765i | 2.81267i | −1.31606 | + | 1.50598i | 0.390055 | + | 2.20178i | 3.62172 | − | 1.64479i | 4.13073 | 2.70878 | + | 0.813956i | −4.91111 | 2.60702 | − | 1.78981i | ||||||
379.15 | −0.584780 | + | 1.28765i | − | 2.81267i | −1.31606 | − | 1.50598i | 0.390055 | − | 2.20178i | 3.62172 | + | 1.64479i | 4.13073 | 2.70878 | − | 0.813956i | −4.91111 | 2.60702 | + | 1.78981i | |||||
379.16 | −0.584780 | + | 1.28765i | − | 2.81267i | −1.31606 | − | 1.50598i | 0.390055 | + | 2.20178i | 3.62172 | + | 1.64479i | −4.13073 | 2.70878 | − | 0.813956i | −4.91111 | −3.06322 | − | 0.785308i | |||||
379.17 | −0.440015 | − | 1.34402i | − | 0.562756i | −1.61277 | + | 1.18278i | 1.40743 | − | 1.73757i | −0.756355 | + | 0.247621i | 3.12767 | 2.29932 | + | 1.64716i | 2.68331 | −2.95462 | − | 1.12705i | |||||
379.18 | −0.440015 | − | 1.34402i | − | 0.562756i | −1.61277 | + | 1.18278i | 1.40743 | + | 1.73757i | −0.756355 | + | 0.247621i | −3.12767 | 2.29932 | + | 1.64716i | 2.68331 | 1.71604 | − | 2.65617i | |||||
379.19 | −0.440015 | + | 1.34402i | 0.562756i | −1.61277 | − | 1.18278i | 1.40743 | − | 1.73757i | −0.756355 | − | 0.247621i | −3.12767 | 2.29932 | − | 1.64716i | 2.68331 | 1.71604 | + | 2.65617i | ||||||
379.20 | −0.440015 | + | 1.34402i | 0.562756i | −1.61277 | − | 1.18278i | 1.40743 | + | 1.73757i | −0.756355 | − | 0.247621i | 3.12767 | 2.29932 | − | 1.64716i | 2.68331 | −2.95462 | + | 1.12705i | ||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
20.d | odd | 2 | 1 | inner |
76.d | even | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
380.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 380.2.d.b | ✓ | 40 |
4.b | odd | 2 | 1 | inner | 380.2.d.b | ✓ | 40 |
5.b | even | 2 | 1 | inner | 380.2.d.b | ✓ | 40 |
19.b | odd | 2 | 1 | inner | 380.2.d.b | ✓ | 40 |
20.d | odd | 2 | 1 | inner | 380.2.d.b | ✓ | 40 |
76.d | even | 2 | 1 | inner | 380.2.d.b | ✓ | 40 |
95.d | odd | 2 | 1 | inner | 380.2.d.b | ✓ | 40 |
380.d | even | 2 | 1 | inner | 380.2.d.b | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
380.2.d.b | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
380.2.d.b | ✓ | 40 | 4.b | odd | 2 | 1 | inner |
380.2.d.b | ✓ | 40 | 5.b | even | 2 | 1 | inner |
380.2.d.b | ✓ | 40 | 19.b | odd | 2 | 1 | inner |
380.2.d.b | ✓ | 40 | 20.d | odd | 2 | 1 | inner |
380.2.d.b | ✓ | 40 | 76.d | even | 2 | 1 | inner |
380.2.d.b | ✓ | 40 | 95.d | odd | 2 | 1 | inner |
380.2.d.b | ✓ | 40 | 380.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{10} + 16T_{3}^{8} + 83T_{3}^{6} + 162T_{3}^{4} + 94T_{3}^{2} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(380, [\chi])\).