# Properties

 Label 380.2.bj Level $380$ Weight $2$ Character orbit 380.bj Rep. character $\chi_{380}(23,\cdot)$ Character field $\Q(\zeta_{36})$ Dimension $672$ Newform subspaces $1$ Sturm bound $120$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$380 = 2^{2} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 380.bj (of order $$36$$ and degree $$12$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$380$$ Character field: $$\Q(\zeta_{36})$$ Newform subspaces: $$1$$ Sturm bound: $$120$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(380, [\chi])$$.

Total New Old
Modular forms 768 768 0
Cusp forms 672 672 0
Eisenstein series 96 96 0

## Trace form

 $$672 q - 12 q^{2} - 24 q^{5} - 36 q^{6} - 6 q^{8} + O(q^{10})$$ $$672 q - 12 q^{2} - 24 q^{5} - 36 q^{6} - 6 q^{8} - 12 q^{10} - 6 q^{12} - 24 q^{13} - 36 q^{16} - 24 q^{17} - 24 q^{18} + 36 q^{20} - 48 q^{21} - 24 q^{22} - 24 q^{25} - 60 q^{26} - 24 q^{28} - 6 q^{30} + 18 q^{32} - 60 q^{33} + 24 q^{36} - 48 q^{37} - 114 q^{38} - 42 q^{40} - 24 q^{41} - 48 q^{42} - 12 q^{45} - 12 q^{46} - 96 q^{48} - 6 q^{50} - 12 q^{52} - 24 q^{53} - 48 q^{56} - 24 q^{57} + 120 q^{58} - 12 q^{60} - 48 q^{61} + 36 q^{62} - 12 q^{65} - 96 q^{66} - 6 q^{68} - 12 q^{70} + 120 q^{72} - 24 q^{73} - 96 q^{76} - 360 q^{77} - 126 q^{78} + 48 q^{80} - 48 q^{81} + 228 q^{82} - 24 q^{85} - 132 q^{86} - 102 q^{88} + 78 q^{90} + 108 q^{92} - 60 q^{93} - 144 q^{96} - 24 q^{97} + 18 q^{98} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(380, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
380.2.bj.a $672$ $3.034$ None $$-12$$ $$0$$ $$-24$$ $$0$$