Properties

Label 380.2.bj
Level $380$
Weight $2$
Character orbit 380.bj
Rep. character $\chi_{380}(23,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $672$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bj (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 380 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(380, [\chi])\).

Total New Old
Modular forms 768 768 0
Cusp forms 672 672 0
Eisenstein series 96 96 0

Trace form

\( 672 q - 12 q^{2} - 24 q^{5} - 36 q^{6} - 6 q^{8} - 12 q^{10} - 6 q^{12} - 24 q^{13} - 36 q^{16} - 24 q^{17} - 24 q^{18} + 36 q^{20} - 48 q^{21} - 24 q^{22} - 24 q^{25} - 60 q^{26} - 24 q^{28} - 6 q^{30}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(380, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
380.2.bj.a 380.bj 380.aj $672$ $3.034$ None 380.2.bj.a \(-12\) \(0\) \(-24\) \(0\) $\mathrm{SU}(2)[C_{36}]$