Properties

Label 380.2.bh.a.33.7
Level $380$
Weight $2$
Character 380.33
Analytic conductor $3.034$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(13,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 27, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bh (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 33.7
Character \(\chi\) \(=\) 380.33
Dual form 380.2.bh.a.357.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.377219 + 0.538725i) q^{3} +(2.02714 + 0.943776i) q^{5} +(1.97160 + 0.528288i) q^{7} +(0.878130 - 2.41264i) q^{9} +O(q^{10})\) \(q+(0.377219 + 0.538725i) q^{3} +(2.02714 + 0.943776i) q^{5} +(1.97160 + 0.528288i) q^{7} +(0.878130 - 2.41264i) q^{9} +(-0.906926 + 1.57084i) q^{11} +(-1.44805 - 1.01394i) q^{13} +(0.256239 + 1.44808i) q^{15} +(0.0577770 - 0.123903i) q^{17} +(-2.93922 + 3.21885i) q^{19} +(0.459122 + 1.26143i) q^{21} +(6.07446 + 0.531447i) q^{23} +(3.21857 + 3.82633i) q^{25} +(3.53675 - 0.947670i) q^{27} +(-3.14393 - 1.14430i) q^{29} +(0.680748 - 0.393030i) q^{31} +(-1.18836 + 0.103968i) q^{33} +(3.49811 + 2.93166i) q^{35} +(-4.83846 - 4.83846i) q^{37} -1.16258i q^{39} +(5.31428 + 0.937051i) q^{41} +(0.277984 + 3.17737i) q^{43} +(4.05709 - 4.06200i) q^{45} +(-5.00993 + 2.33617i) q^{47} +(-2.45407 - 1.41686i) q^{49} +(0.0885442 - 0.0156127i) q^{51} +(0.933570 - 10.6708i) q^{53} +(-3.32099 + 2.32838i) q^{55} +(-2.84280 - 0.369220i) q^{57} +(-8.38425 + 3.05162i) q^{59} +(-5.98020 + 5.01798i) q^{61} +(3.00589 - 4.29286i) q^{63} +(-1.97847 - 3.42202i) q^{65} +(-3.83106 - 8.21573i) q^{67} +(2.00510 + 3.47293i) q^{69} +(-1.87804 + 2.23816i) q^{71} +(2.70247 - 1.89229i) q^{73} +(-0.847230 + 3.17729i) q^{75} +(-2.61795 + 2.61795i) q^{77} +(-2.28065 + 12.9342i) q^{79} +(-4.05575 - 3.40318i) q^{81} +(4.13317 - 15.4252i) q^{83} +(0.234059 - 0.196640i) q^{85} +(-0.569489 - 2.12536i) q^{87} +(-1.72877 - 9.80435i) q^{89} +(-2.31932 - 2.76406i) q^{91} +(0.468526 + 0.218477i) q^{93} +(-8.99608 + 3.75108i) q^{95} +(-5.79625 - 2.70284i) q^{97} +(2.99348 + 3.56749i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 6 q^{7} + 18 q^{15} - 18 q^{17} + 48 q^{21} - 36 q^{23} - 24 q^{25} - 60 q^{33} - 18 q^{35} - 12 q^{41} - 36 q^{43} + 18 q^{45} - 24 q^{47} + 96 q^{51} - 18 q^{53} + 72 q^{55} - 6 q^{57} - 24 q^{61} + 36 q^{63} + 90 q^{65} - 24 q^{67} + 18 q^{73} - 36 q^{77} - 30 q^{83} - 24 q^{85} - 72 q^{87} - 144 q^{91} - 132 q^{93} - 12 q^{95} - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.377219 + 0.538725i 0.217787 + 0.311033i 0.913148 0.407628i \(-0.133644\pi\)
−0.695360 + 0.718661i \(0.744755\pi\)
\(4\) 0 0
\(5\) 2.02714 + 0.943776i 0.906563 + 0.422070i
\(6\) 0 0
\(7\) 1.97160 + 0.528288i 0.745194 + 0.199674i 0.611385 0.791333i \(-0.290613\pi\)
0.133809 + 0.991007i \(0.457279\pi\)
\(8\) 0 0
\(9\) 0.878130 2.41264i 0.292710 0.804215i
\(10\) 0 0
\(11\) −0.906926 + 1.57084i −0.273448 + 0.473626i −0.969742 0.244130i \(-0.921498\pi\)
0.696294 + 0.717757i \(0.254831\pi\)
\(12\) 0 0
\(13\) −1.44805 1.01394i −0.401617 0.281215i 0.355267 0.934765i \(-0.384390\pi\)
−0.756883 + 0.653550i \(0.773279\pi\)
\(14\) 0 0
\(15\) 0.256239 + 1.44808i 0.0661607 + 0.373892i
\(16\) 0 0
\(17\) 0.0577770 0.123903i 0.0140130 0.0300509i −0.899177 0.437586i \(-0.855834\pi\)
0.913190 + 0.407535i \(0.133611\pi\)
\(18\) 0 0
\(19\) −2.93922 + 3.21885i −0.674304 + 0.738454i
\(20\) 0 0
\(21\) 0.459122 + 1.26143i 0.100189 + 0.275266i
\(22\) 0 0
\(23\) 6.07446 + 0.531447i 1.26661 + 0.110814i 0.700583 0.713571i \(-0.252923\pi\)
0.566030 + 0.824385i \(0.308479\pi\)
\(24\) 0 0
\(25\) 3.21857 + 3.82633i 0.643715 + 0.765266i
\(26\) 0 0
\(27\) 3.53675 0.947670i 0.680649 0.182379i
\(28\) 0 0
\(29\) −3.14393 1.14430i −0.583813 0.212491i 0.0331929 0.999449i \(-0.489432\pi\)
−0.617006 + 0.786958i \(0.711655\pi\)
\(30\) 0 0
\(31\) 0.680748 0.393030i 0.122266 0.0705903i −0.437620 0.899160i \(-0.644178\pi\)
0.559886 + 0.828570i \(0.310845\pi\)
\(32\) 0 0
\(33\) −1.18836 + 0.103968i −0.206867 + 0.0180985i
\(34\) 0 0
\(35\) 3.49811 + 2.93166i 0.591289 + 0.495541i
\(36\) 0 0
\(37\) −4.83846 4.83846i −0.795439 0.795439i 0.186934 0.982372i \(-0.440145\pi\)
−0.982372 + 0.186934i \(0.940145\pi\)
\(38\) 0 0
\(39\) 1.16258i 0.186161i
\(40\) 0 0
\(41\) 5.31428 + 0.937051i 0.829951 + 0.146343i 0.572455 0.819936i \(-0.305991\pi\)
0.257497 + 0.966279i \(0.417102\pi\)
\(42\) 0 0
\(43\) 0.277984 + 3.17737i 0.0423922 + 0.484545i 0.987482 + 0.157733i \(0.0504186\pi\)
−0.945090 + 0.326811i \(0.894026\pi\)
\(44\) 0 0
\(45\) 4.05709 4.06200i 0.604795 0.605527i
\(46\) 0 0
\(47\) −5.00993 + 2.33617i −0.730773 + 0.340765i −0.752137 0.659007i \(-0.770977\pi\)
0.0213641 + 0.999772i \(0.493199\pi\)
\(48\) 0 0
\(49\) −2.45407 1.41686i −0.350581 0.202408i
\(50\) 0 0
\(51\) 0.0885442 0.0156127i 0.0123987 0.00218622i
\(52\) 0 0
\(53\) 0.933570 10.6708i 0.128236 1.46574i −0.610645 0.791905i \(-0.709090\pi\)
0.738881 0.673836i \(-0.235355\pi\)
\(54\) 0 0
\(55\) −3.32099 + 2.32838i −0.447802 + 0.313958i
\(56\) 0 0
\(57\) −2.84280 0.369220i −0.376538 0.0489044i
\(58\) 0 0
\(59\) −8.38425 + 3.05162i −1.09154 + 0.397287i −0.824190 0.566314i \(-0.808369\pi\)
−0.267346 + 0.963601i \(0.586147\pi\)
\(60\) 0 0
\(61\) −5.98020 + 5.01798i −0.765686 + 0.642487i −0.939600 0.342274i \(-0.888803\pi\)
0.173914 + 0.984761i \(0.444359\pi\)
\(62\) 0 0
\(63\) 3.00589 4.29286i 0.378707 0.540849i
\(64\) 0 0
\(65\) −1.97847 3.42202i −0.245399 0.424449i
\(66\) 0 0
\(67\) −3.83106 8.21573i −0.468038 1.00371i −0.988694 0.149944i \(-0.952091\pi\)
0.520657 0.853766i \(-0.325687\pi\)
\(68\) 0 0
\(69\) 2.00510 + 3.47293i 0.241386 + 0.418092i
\(70\) 0 0
\(71\) −1.87804 + 2.23816i −0.222883 + 0.265621i −0.865885 0.500243i \(-0.833244\pi\)
0.643002 + 0.765864i \(0.277688\pi\)
\(72\) 0 0
\(73\) 2.70247 1.89229i 0.316300 0.221476i −0.404635 0.914478i \(-0.632601\pi\)
0.720935 + 0.693003i \(0.243713\pi\)
\(74\) 0 0
\(75\) −0.847230 + 3.17729i −0.0978297 + 0.366882i
\(76\) 0 0
\(77\) −2.61795 + 2.61795i −0.298343 + 0.298343i
\(78\) 0 0
\(79\) −2.28065 + 12.9342i −0.256593 + 1.45521i 0.535357 + 0.844626i \(0.320177\pi\)
−0.791950 + 0.610586i \(0.790934\pi\)
\(80\) 0 0
\(81\) −4.05575 3.40318i −0.450639 0.378131i
\(82\) 0 0
\(83\) 4.13317 15.4252i 0.453674 1.69313i −0.238284 0.971196i \(-0.576585\pi\)
0.691957 0.721938i \(-0.256749\pi\)
\(84\) 0 0
\(85\) 0.234059 0.196640i 0.0253872 0.0213286i
\(86\) 0 0
\(87\) −0.569489 2.12536i −0.0610557 0.227863i
\(88\) 0 0
\(89\) −1.72877 9.80435i −0.183249 1.03926i −0.928184 0.372121i \(-0.878631\pi\)
0.744935 0.667137i \(-0.232481\pi\)
\(90\) 0 0
\(91\) −2.31932 2.76406i −0.243131 0.289752i
\(92\) 0 0
\(93\) 0.468526 + 0.218477i 0.0485839 + 0.0226550i
\(94\) 0 0
\(95\) −8.99608 + 3.75108i −0.922978 + 0.384853i
\(96\) 0 0
\(97\) −5.79625 2.70284i −0.588520 0.274431i 0.105462 0.994423i \(-0.466368\pi\)
−0.693982 + 0.719992i \(0.744145\pi\)
\(98\) 0 0
\(99\) 2.99348 + 3.56749i 0.300856 + 0.358546i
\(100\) 0 0
\(101\) −0.454754 2.57904i −0.0452497 0.256624i 0.953788 0.300480i \(-0.0971469\pi\)
−0.999038 + 0.0438559i \(0.986036\pi\)
\(102\) 0 0
\(103\) −0.187345 0.699181i −0.0184596 0.0688923i 0.956082 0.293101i \(-0.0946871\pi\)
−0.974541 + 0.224208i \(0.928020\pi\)
\(104\) 0 0
\(105\) −0.259802 + 2.99040i −0.0253541 + 0.291833i
\(106\) 0 0
\(107\) −1.34364 + 5.01454i −0.129895 + 0.484774i −0.999967 0.00815086i \(-0.997405\pi\)
0.870072 + 0.492925i \(0.164072\pi\)
\(108\) 0 0
\(109\) −10.4748 8.78943i −1.00331 0.841875i −0.0158679 0.999874i \(-0.505051\pi\)
−0.987439 + 0.157999i \(0.949496\pi\)
\(110\) 0 0
\(111\) 0.781439 4.43176i 0.0741709 0.420644i
\(112\) 0 0
\(113\) 8.31069 8.31069i 0.781804 0.781804i −0.198331 0.980135i \(-0.563552\pi\)
0.980135 + 0.198331i \(0.0635522\pi\)
\(114\) 0 0
\(115\) 11.8122 + 6.81025i 1.10149 + 0.635059i
\(116\) 0 0
\(117\) −3.71784 + 2.60326i −0.343714 + 0.240671i
\(118\) 0 0
\(119\) 0.179370 0.213764i 0.0164428 0.0195957i
\(120\) 0 0
\(121\) 3.85497 + 6.67701i 0.350452 + 0.607001i
\(122\) 0 0
\(123\) 1.49984 + 3.21641i 0.135236 + 0.290014i
\(124\) 0 0
\(125\) 2.91329 + 10.7941i 0.260573 + 0.965454i
\(126\) 0 0
\(127\) −0.391459 + 0.559061i −0.0347363 + 0.0496086i −0.836145 0.548509i \(-0.815196\pi\)
0.801408 + 0.598118i \(0.204084\pi\)
\(128\) 0 0
\(129\) −1.60687 + 1.34832i −0.141477 + 0.118713i
\(130\) 0 0
\(131\) −2.88051 + 1.04842i −0.251671 + 0.0916007i −0.464775 0.885429i \(-0.653865\pi\)
0.213104 + 0.977029i \(0.431643\pi\)
\(132\) 0 0
\(133\) −7.49544 + 4.79352i −0.649937 + 0.415651i
\(134\) 0 0
\(135\) 8.06387 + 1.41685i 0.694028 + 0.121943i
\(136\) 0 0
\(137\) 0.652163 7.45426i 0.0557180 0.636860i −0.916072 0.401013i \(-0.868658\pi\)
0.971790 0.235847i \(-0.0757863\pi\)
\(138\) 0 0
\(139\) −16.6418 + 2.93440i −1.41154 + 0.248892i −0.826876 0.562384i \(-0.809884\pi\)
−0.584663 + 0.811276i \(0.698773\pi\)
\(140\) 0 0
\(141\) −3.14839 1.81772i −0.265142 0.153080i
\(142\) 0 0
\(143\) 2.90600 1.35509i 0.243012 0.113318i
\(144\) 0 0
\(145\) −5.29322 5.28682i −0.439578 0.439046i
\(146\) 0 0
\(147\) −0.162425 1.85653i −0.0133966 0.153124i
\(148\) 0 0
\(149\) 17.2889 + 3.04850i 1.41636 + 0.249743i 0.828849 0.559473i \(-0.188996\pi\)
0.587512 + 0.809216i \(0.300108\pi\)
\(150\) 0 0
\(151\) 3.52091i 0.286528i 0.989685 + 0.143264i \(0.0457598\pi\)
−0.989685 + 0.143264i \(0.954240\pi\)
\(152\) 0 0
\(153\) −0.248198 0.248198i −0.0200657 0.0200657i
\(154\) 0 0
\(155\) 1.75090 0.154252i 0.140636 0.0123898i
\(156\) 0 0
\(157\) −8.11439 + 0.709917i −0.647599 + 0.0566576i −0.406223 0.913774i \(-0.633154\pi\)
−0.241376 + 0.970432i \(0.577599\pi\)
\(158\) 0 0
\(159\) 6.10076 3.52227i 0.483822 0.279335i
\(160\) 0 0
\(161\) 11.6956 + 4.25686i 0.921746 + 0.335488i
\(162\) 0 0
\(163\) 11.2866 3.02424i 0.884036 0.236877i 0.211889 0.977294i \(-0.432039\pi\)
0.672148 + 0.740417i \(0.265372\pi\)
\(164\) 0 0
\(165\) −2.50709 0.910789i −0.195177 0.0709048i
\(166\) 0 0
\(167\) 11.6099 + 1.01573i 0.898400 + 0.0785998i 0.526992 0.849870i \(-0.323320\pi\)
0.371408 + 0.928470i \(0.378875\pi\)
\(168\) 0 0
\(169\) −3.37748 9.27955i −0.259806 0.713811i
\(170\) 0 0
\(171\) 5.18491 + 9.91786i 0.396500 + 0.758438i
\(172\) 0 0
\(173\) −0.461058 + 0.988742i −0.0350536 + 0.0751727i −0.923055 0.384668i \(-0.874316\pi\)
0.888001 + 0.459841i \(0.152094\pi\)
\(174\) 0 0
\(175\) 4.32433 + 9.24431i 0.326888 + 0.698805i
\(176\) 0 0
\(177\) −4.80668 3.36567i −0.361292 0.252979i
\(178\) 0 0
\(179\) 8.87732 15.3760i 0.663522 1.14925i −0.316162 0.948705i \(-0.602394\pi\)
0.979684 0.200548i \(-0.0642723\pi\)
\(180\) 0 0
\(181\) −7.47461 + 20.5363i −0.555583 + 1.52645i 0.270394 + 0.962750i \(0.412846\pi\)
−0.825978 + 0.563703i \(0.809376\pi\)
\(182\) 0 0
\(183\) −4.95916 1.32880i −0.366591 0.0982279i
\(184\) 0 0
\(185\) −5.24180 14.3747i −0.385385 1.05685i
\(186\) 0 0
\(187\) 0.142233 + 0.203129i 0.0104011 + 0.0148543i
\(188\) 0 0
\(189\) 7.47370 0.543632
\(190\) 0 0
\(191\) 4.85947 0.351619 0.175810 0.984424i \(-0.443746\pi\)
0.175810 + 0.984424i \(0.443746\pi\)
\(192\) 0 0
\(193\) 14.6232 + 20.8842i 1.05260 + 1.50327i 0.851957 + 0.523611i \(0.175415\pi\)
0.200647 + 0.979664i \(0.435696\pi\)
\(194\) 0 0
\(195\) 1.09721 2.35670i 0.0785729 0.168767i
\(196\) 0 0
\(197\) 12.7952 + 3.42845i 0.911617 + 0.244267i 0.683999 0.729483i \(-0.260239\pi\)
0.227619 + 0.973750i \(0.426906\pi\)
\(198\) 0 0
\(199\) −5.22333 + 14.3510i −0.370272 + 1.01731i 0.604984 + 0.796238i \(0.293180\pi\)
−0.975256 + 0.221077i \(0.929043\pi\)
\(200\) 0 0
\(201\) 2.98087 5.16301i 0.210254 0.364171i
\(202\) 0 0
\(203\) −5.59405 3.91700i −0.392625 0.274919i
\(204\) 0 0
\(205\) 9.88841 + 6.91502i 0.690637 + 0.482966i
\(206\) 0 0
\(207\) 6.61636 14.1888i 0.459869 0.986192i
\(208\) 0 0
\(209\) −2.39064 7.53630i −0.165364 0.521297i
\(210\) 0 0
\(211\) 1.62398 + 4.46185i 0.111800 + 0.307167i 0.982957 0.183838i \(-0.0588521\pi\)
−0.871157 + 0.491004i \(0.836630\pi\)
\(212\) 0 0
\(213\) −1.91419 0.167470i −0.131158 0.0114748i
\(214\) 0 0
\(215\) −2.43522 + 6.70332i −0.166080 + 0.457163i
\(216\) 0 0
\(217\) 1.54979 0.415266i 0.105207 0.0281901i
\(218\) 0 0
\(219\) 2.03884 + 0.742079i 0.137772 + 0.0501450i
\(220\) 0 0
\(221\) −0.209294 + 0.120836i −0.0140786 + 0.00812829i
\(222\) 0 0
\(223\) −16.5158 + 1.44494i −1.10598 + 0.0967605i −0.625483 0.780238i \(-0.715098\pi\)
−0.480494 + 0.876998i \(0.659543\pi\)
\(224\) 0 0
\(225\) 12.0579 4.40525i 0.803860 0.293684i
\(226\) 0 0
\(227\) 16.8095 + 16.8095i 1.11569 + 1.11569i 0.992367 + 0.123318i \(0.0393535\pi\)
0.123318 + 0.992367i \(0.460647\pi\)
\(228\) 0 0
\(229\) 11.3431i 0.749574i 0.927111 + 0.374787i \(0.122284\pi\)
−0.927111 + 0.374787i \(0.877716\pi\)
\(230\) 0 0
\(231\) −2.39789 0.422813i −0.157770 0.0278191i
\(232\) 0 0
\(233\) 1.29005 + 14.7454i 0.0845141 + 0.966001i 0.913529 + 0.406774i \(0.133346\pi\)
−0.829015 + 0.559227i \(0.811098\pi\)
\(234\) 0 0
\(235\) −12.3606 + 0.00748234i −0.806318 + 0.000488094i
\(236\) 0 0
\(237\) −7.82827 + 3.65038i −0.508501 + 0.237118i
\(238\) 0 0
\(239\) 1.87782 + 1.08416i 0.121466 + 0.0701283i 0.559502 0.828829i \(-0.310992\pi\)
−0.438036 + 0.898957i \(0.644326\pi\)
\(240\) 0 0
\(241\) 29.6663 5.23098i 1.91098 0.336957i 0.913432 0.406991i \(-0.133422\pi\)
0.997545 + 0.0700339i \(0.0223107\pi\)
\(242\) 0 0
\(243\) 1.26084 14.4114i 0.0808827 0.924494i
\(244\) 0 0
\(245\) −3.63754 5.18825i −0.232394 0.331465i
\(246\) 0 0
\(247\) 7.51984 1.68087i 0.478476 0.106951i
\(248\) 0 0
\(249\) 9.86903 3.59203i 0.625425 0.227636i
\(250\) 0 0
\(251\) 7.77884 6.52722i 0.490996 0.411995i −0.363387 0.931638i \(-0.618380\pi\)
0.854383 + 0.519644i \(0.173935\pi\)
\(252\) 0 0
\(253\) −6.34390 + 9.06003i −0.398838 + 0.569599i
\(254\) 0 0
\(255\) 0.194226 + 0.0519168i 0.0121629 + 0.00325115i
\(256\) 0 0
\(257\) −5.89006 12.6313i −0.367412 0.787917i −0.999911 0.0133560i \(-0.995749\pi\)
0.632499 0.774561i \(-0.282029\pi\)
\(258\) 0 0
\(259\) −6.98340 12.0956i −0.433927 0.751584i
\(260\) 0 0
\(261\) −5.52156 + 6.58034i −0.341776 + 0.407313i
\(262\) 0 0
\(263\) −2.91929 + 2.04411i −0.180011 + 0.126045i −0.660109 0.751170i \(-0.729490\pi\)
0.480098 + 0.877215i \(0.340601\pi\)
\(264\) 0 0
\(265\) 11.9633 20.7500i 0.734898 1.27466i
\(266\) 0 0
\(267\) 4.62972 4.62972i 0.283334 0.283334i
\(268\) 0 0
\(269\) −5.16456 + 29.2897i −0.314889 + 1.78582i 0.257952 + 0.966158i \(0.416952\pi\)
−0.572841 + 0.819667i \(0.694159\pi\)
\(270\) 0 0
\(271\) −9.68046 8.12287i −0.588046 0.493429i 0.299532 0.954086i \(-0.403169\pi\)
−0.887578 + 0.460657i \(0.847614\pi\)
\(272\) 0 0
\(273\) 0.614175 2.29213i 0.0371715 0.138726i
\(274\) 0 0
\(275\) −8.92956 + 1.58567i −0.538473 + 0.0956196i
\(276\) 0 0
\(277\) 3.58839 + 13.3920i 0.215605 + 0.804650i 0.985953 + 0.167025i \(0.0534162\pi\)
−0.770347 + 0.637624i \(0.779917\pi\)
\(278\) 0 0
\(279\) −0.350456 1.98753i −0.0209812 0.118991i
\(280\) 0 0
\(281\) −11.8512 14.1237i −0.706982 0.842549i 0.286315 0.958136i \(-0.407570\pi\)
−0.993297 + 0.115587i \(0.963125\pi\)
\(282\) 0 0
\(283\) −22.7099 10.5898i −1.34996 0.629498i −0.392954 0.919558i \(-0.628547\pi\)
−0.957008 + 0.290060i \(0.906325\pi\)
\(284\) 0 0
\(285\) −5.41429 3.43143i −0.320715 0.203260i
\(286\) 0 0
\(287\) 9.98259 + 4.65496i 0.589254 + 0.274774i
\(288\) 0 0
\(289\) 10.9154 + 13.0084i 0.642081 + 0.765202i
\(290\) 0 0
\(291\) −0.730372 4.14214i −0.0428151 0.242817i
\(292\) 0 0
\(293\) 0.419255 + 1.56468i 0.0244931 + 0.0914096i 0.977090 0.212824i \(-0.0682662\pi\)
−0.952597 + 0.304234i \(0.901600\pi\)
\(294\) 0 0
\(295\) −19.8761 1.72681i −1.15723 0.100539i
\(296\) 0 0
\(297\) −1.71893 + 6.41514i −0.0997426 + 0.372244i
\(298\) 0 0
\(299\) −8.25727 6.92867i −0.477530 0.400695i
\(300\) 0 0
\(301\) −1.13049 + 6.41135i −0.0651606 + 0.369544i
\(302\) 0 0
\(303\) 1.21785 1.21785i 0.0699636 0.0699636i
\(304\) 0 0
\(305\) −16.8585 + 4.52817i −0.965317 + 0.259282i
\(306\) 0 0
\(307\) −12.5645 + 8.79773i −0.717092 + 0.502113i −0.874259 0.485459i \(-0.838653\pi\)
0.157168 + 0.987572i \(0.449764\pi\)
\(308\) 0 0
\(309\) 0.305996 0.364672i 0.0174075 0.0207454i
\(310\) 0 0
\(311\) −13.9713 24.1991i −0.792242 1.37220i −0.924576 0.380998i \(-0.875581\pi\)
0.132334 0.991205i \(-0.457753\pi\)
\(312\) 0 0
\(313\) 14.4856 + 31.0645i 0.818776 + 1.75587i 0.634384 + 0.773018i \(0.281254\pi\)
0.184392 + 0.982853i \(0.440968\pi\)
\(314\) 0 0
\(315\) 10.1449 5.86532i 0.571598 0.330474i
\(316\) 0 0
\(317\) −20.3150 + 29.0129i −1.14101 + 1.62952i −0.485810 + 0.874064i \(0.661475\pi\)
−0.655195 + 0.755460i \(0.727414\pi\)
\(318\) 0 0
\(319\) 4.64882 3.90082i 0.260284 0.218404i
\(320\) 0 0
\(321\) −3.20830 + 1.16773i −0.179070 + 0.0651761i
\(322\) 0 0
\(323\) 0.229006 + 0.550154i 0.0127422 + 0.0306114i
\(324\) 0 0
\(325\) −0.781004 8.80414i −0.0433223 0.488366i
\(326\) 0 0
\(327\) 0.783775 8.95859i 0.0433429 0.495411i
\(328\) 0 0
\(329\) −11.1117 + 1.95930i −0.612609 + 0.108020i
\(330\) 0 0
\(331\) −20.5987 11.8927i −1.13221 0.653680i −0.187718 0.982223i \(-0.560109\pi\)
−0.944489 + 0.328543i \(0.893442\pi\)
\(332\) 0 0
\(333\) −15.9223 + 7.42469i −0.872536 + 0.406870i
\(334\) 0 0
\(335\) −0.0122702 20.2701i −0.000670393 1.10747i
\(336\) 0 0
\(337\) −1.60012 18.2895i −0.0871643 0.996293i −0.906284 0.422670i \(-0.861093\pi\)
0.819119 0.573623i \(-0.194463\pi\)
\(338\) 0 0
\(339\) 7.61212 + 1.34222i 0.413434 + 0.0728995i
\(340\) 0 0
\(341\) 1.42580i 0.0772111i
\(342\) 0 0
\(343\) −14.1931 14.1931i −0.766355 0.766355i
\(344\) 0 0
\(345\) 0.786939 + 8.93248i 0.0423674 + 0.480908i
\(346\) 0 0
\(347\) 17.9028 1.56629i 0.961072 0.0840829i 0.404190 0.914675i \(-0.367553\pi\)
0.556881 + 0.830592i \(0.311998\pi\)
\(348\) 0 0
\(349\) 13.2462 7.64767i 0.709050 0.409370i −0.101659 0.994819i \(-0.532415\pi\)
0.810709 + 0.585449i \(0.199082\pi\)
\(350\) 0 0
\(351\) −6.08227 2.21377i −0.324648 0.118162i
\(352\) 0 0
\(353\) 17.4171 4.66689i 0.927017 0.248393i 0.236435 0.971647i \(-0.424021\pi\)
0.690582 + 0.723254i \(0.257354\pi\)
\(354\) 0 0
\(355\) −5.91938 + 2.76461i −0.314168 + 0.146730i
\(356\) 0 0
\(357\) 0.182822 + 0.0159948i 0.00967595 + 0.000846536i
\(358\) 0 0
\(359\) −4.24571 11.6650i −0.224080 0.615655i 0.775803 0.630976i \(-0.217345\pi\)
−0.999883 + 0.0153210i \(0.995123\pi\)
\(360\) 0 0
\(361\) −1.72196 18.9218i −0.0906295 0.995885i
\(362\) 0 0
\(363\) −2.14290 + 4.59546i −0.112473 + 0.241199i
\(364\) 0 0
\(365\) 7.26417 1.28540i 0.380224 0.0672811i
\(366\) 0 0
\(367\) 0.492964 + 0.345177i 0.0257325 + 0.0180181i 0.586372 0.810042i \(-0.300556\pi\)
−0.560639 + 0.828060i \(0.689445\pi\)
\(368\) 0 0
\(369\) 6.92740 11.9986i 0.360626 0.624623i
\(370\) 0 0
\(371\) 7.47786 20.5452i 0.388231 1.06666i
\(372\) 0 0
\(373\) −13.7423 3.68224i −0.711550 0.190659i −0.115152 0.993348i \(-0.536735\pi\)
−0.596398 + 0.802689i \(0.703402\pi\)
\(374\) 0 0
\(375\) −4.71610 + 5.64120i −0.243538 + 0.291310i
\(376\) 0 0
\(377\) 3.39232 + 4.84474i 0.174714 + 0.249517i
\(378\) 0 0
\(379\) 13.3727 0.686911 0.343455 0.939169i \(-0.388403\pi\)
0.343455 + 0.939169i \(0.388403\pi\)
\(380\) 0 0
\(381\) −0.448846 −0.0229951
\(382\) 0 0
\(383\) 10.8886 + 15.5505i 0.556381 + 0.794594i 0.994546 0.104300i \(-0.0332604\pi\)
−0.438165 + 0.898895i \(0.644371\pi\)
\(384\) 0 0
\(385\) −7.77770 + 2.83618i −0.396388 + 0.144545i
\(386\) 0 0
\(387\) 7.90997 + 2.11947i 0.402086 + 0.107739i
\(388\) 0 0
\(389\) −3.99288 + 10.9703i −0.202447 + 0.556218i −0.998819 0.0485888i \(-0.984528\pi\)
0.796372 + 0.604807i \(0.206750\pi\)
\(390\) 0 0
\(391\) 0.416812 0.721940i 0.0210791 0.0365100i
\(392\) 0 0
\(393\) −1.65139 1.15632i −0.0833016 0.0583284i
\(394\) 0 0
\(395\) −16.8302 + 24.0670i −0.846818 + 1.21094i
\(396\) 0 0
\(397\) 0.567803 1.21766i 0.0284972 0.0611125i −0.891544 0.452934i \(-0.850377\pi\)
0.920041 + 0.391822i \(0.128155\pi\)
\(398\) 0 0
\(399\) −5.40981 2.22977i −0.270829 0.111628i
\(400\) 0 0
\(401\) −2.58253 7.09543i −0.128965 0.354329i 0.858358 0.513051i \(-0.171485\pi\)
−0.987323 + 0.158722i \(0.949263\pi\)
\(402\) 0 0
\(403\) −1.38426 0.121107i −0.0689551 0.00603279i
\(404\) 0 0
\(405\) −5.00973 10.7264i −0.248935 0.533001i
\(406\) 0 0
\(407\) 11.9886 3.21233i 0.594252 0.159229i
\(408\) 0 0
\(409\) 13.4389 + 4.89136i 0.664510 + 0.241862i 0.652183 0.758062i \(-0.273854\pi\)
0.0123279 + 0.999924i \(0.496076\pi\)
\(410\) 0 0
\(411\) 4.26180 2.46055i 0.210219 0.121370i
\(412\) 0 0
\(413\) −18.1425 + 1.58726i −0.892734 + 0.0781041i
\(414\) 0 0
\(415\) 22.9364 27.3682i 1.12590 1.34345i
\(416\) 0 0
\(417\) −7.85844 7.85844i −0.384829 0.384829i
\(418\) 0 0
\(419\) 4.23569i 0.206927i 0.994633 + 0.103463i \(0.0329925\pi\)
−0.994633 + 0.103463i \(0.967008\pi\)
\(420\) 0 0
\(421\) 12.3792 + 2.18279i 0.603326 + 0.106383i 0.466964 0.884276i \(-0.345348\pi\)
0.136362 + 0.990659i \(0.456459\pi\)
\(422\) 0 0
\(423\) 1.23697 + 14.1386i 0.0601435 + 0.687444i
\(424\) 0 0
\(425\) 0.660054 0.177718i 0.0320173 0.00862057i
\(426\) 0 0
\(427\) −14.4415 + 6.73418i −0.698873 + 0.325890i
\(428\) 0 0
\(429\) 1.82622 + 1.05437i 0.0881708 + 0.0509054i
\(430\) 0 0
\(431\) −20.4402 + 3.60415i −0.984568 + 0.173606i −0.642680 0.766135i \(-0.722177\pi\)
−0.341888 + 0.939741i \(0.611066\pi\)
\(432\) 0 0
\(433\) −1.28181 + 14.6512i −0.0616001 + 0.704092i 0.901116 + 0.433578i \(0.142749\pi\)
−0.962716 + 0.270514i \(0.912806\pi\)
\(434\) 0 0
\(435\) 0.851434 4.84587i 0.0408231 0.232342i
\(436\) 0 0
\(437\) −19.5648 + 17.9907i −0.935913 + 0.860613i
\(438\) 0 0
\(439\) 14.5168 5.28369i 0.692850 0.252177i 0.0284951 0.999594i \(-0.490929\pi\)
0.664355 + 0.747417i \(0.268706\pi\)
\(440\) 0 0
\(441\) −5.57336 + 4.67661i −0.265398 + 0.222696i
\(442\) 0 0
\(443\) −12.6779 + 18.1059i −0.602344 + 0.860236i −0.998315 0.0580266i \(-0.981519\pi\)
0.395971 + 0.918263i \(0.370408\pi\)
\(444\) 0 0
\(445\) 5.74865 21.5063i 0.272512 1.01950i
\(446\) 0 0
\(447\) 4.87939 + 10.4639i 0.230787 + 0.494925i
\(448\) 0 0
\(449\) −8.29048 14.3595i −0.391252 0.677668i 0.601363 0.798976i \(-0.294625\pi\)
−0.992615 + 0.121308i \(0.961291\pi\)
\(450\) 0 0
\(451\) −6.29162 + 7.49806i −0.296261 + 0.353070i
\(452\) 0 0
\(453\) −1.89680 + 1.32816i −0.0891196 + 0.0624022i
\(454\) 0 0
\(455\) −2.09293 7.79205i −0.0981180 0.365297i
\(456\) 0 0
\(457\) 7.39801 7.39801i 0.346064 0.346064i −0.512577 0.858641i \(-0.671309\pi\)
0.858641 + 0.512577i \(0.171309\pi\)
\(458\) 0 0
\(459\) 0.0869236 0.492968i 0.00405725 0.0230098i
\(460\) 0 0
\(461\) 2.82051 + 2.36669i 0.131364 + 0.110228i 0.706103 0.708110i \(-0.250452\pi\)
−0.574738 + 0.818337i \(0.694896\pi\)
\(462\) 0 0
\(463\) 4.14385 15.4650i 0.192581 0.718722i −0.800299 0.599601i \(-0.795326\pi\)
0.992880 0.119120i \(-0.0380075\pi\)
\(464\) 0 0
\(465\) 0.743573 + 0.885067i 0.0344824 + 0.0410440i
\(466\) 0 0
\(467\) 7.66461 + 28.6047i 0.354676 + 1.32367i 0.880892 + 0.473318i \(0.156944\pi\)
−0.526216 + 0.850351i \(0.676390\pi\)
\(468\) 0 0
\(469\) −3.21303 18.2220i −0.148364 0.841414i
\(470\) 0 0
\(471\) −3.44335 4.10363i −0.158661 0.189085i
\(472\) 0 0
\(473\) −5.24326 2.44497i −0.241085 0.112420i
\(474\) 0 0
\(475\) −21.7765 0.886328i −0.999173 0.0406675i
\(476\) 0 0
\(477\) −24.9249 11.6227i −1.14123 0.532166i
\(478\) 0 0
\(479\) 22.5979 + 26.9311i 1.03252 + 1.23051i 0.972642 + 0.232308i \(0.0746276\pi\)
0.0598807 + 0.998206i \(0.480928\pi\)
\(480\) 0 0
\(481\) 2.10045 + 11.9122i 0.0957721 + 0.543151i
\(482\) 0 0
\(483\) 2.11854 + 7.90650i 0.0963969 + 0.359758i
\(484\) 0 0
\(485\) −9.19892 10.9494i −0.417702 0.497186i
\(486\) 0 0
\(487\) 2.69013 10.0397i 0.121901 0.454943i −0.877809 0.479011i \(-0.840995\pi\)
0.999710 + 0.0240686i \(0.00766201\pi\)
\(488\) 0 0
\(489\) 5.88676 + 4.93958i 0.266209 + 0.223375i
\(490\) 0 0
\(491\) 1.01529 5.75802i 0.0458196 0.259856i −0.953290 0.302058i \(-0.902326\pi\)
0.999109 + 0.0422025i \(0.0134375\pi\)
\(492\) 0 0
\(493\) −0.323429 + 0.323429i −0.0145665 + 0.0145665i
\(494\) 0 0
\(495\) 2.70128 + 10.0570i 0.121414 + 0.452027i
\(496\) 0 0
\(497\) −4.88514 + 3.42061i −0.219128 + 0.153435i
\(498\) 0 0
\(499\) 9.13280 10.8840i 0.408840 0.487237i −0.521854 0.853035i \(-0.674759\pi\)
0.930694 + 0.365798i \(0.119204\pi\)
\(500\) 0 0
\(501\) 3.83227 + 6.63769i 0.171213 + 0.296550i
\(502\) 0 0
\(503\) −0.908594 1.94849i −0.0405122 0.0868787i 0.885010 0.465572i \(-0.154151\pi\)
−0.925522 + 0.378693i \(0.876374\pi\)
\(504\) 0 0
\(505\) 1.51219 5.65725i 0.0672914 0.251744i
\(506\) 0 0
\(507\) 3.72507 5.31995i 0.165436 0.236267i
\(508\) 0 0
\(509\) 6.22207 5.22094i 0.275788 0.231414i −0.494394 0.869238i \(-0.664610\pi\)
0.770182 + 0.637824i \(0.220165\pi\)
\(510\) 0 0
\(511\) 6.32785 2.30315i 0.279928 0.101885i
\(512\) 0 0
\(513\) −7.34489 + 14.1697i −0.324285 + 0.625607i
\(514\) 0 0
\(515\) 0.280096 1.59415i 0.0123425 0.0702465i
\(516\) 0 0
\(517\) 0.873883 9.98853i 0.0384333 0.439295i
\(518\) 0 0
\(519\) −0.706580 + 0.124589i −0.0310154 + 0.00546885i
\(520\) 0 0
\(521\) 16.1921 + 9.34849i 0.709387 + 0.409565i 0.810834 0.585276i \(-0.199014\pi\)
−0.101447 + 0.994841i \(0.532347\pi\)
\(522\) 0 0
\(523\) −6.12577 + 2.85649i −0.267861 + 0.124906i −0.551909 0.833904i \(-0.686100\pi\)
0.284048 + 0.958810i \(0.408323\pi\)
\(524\) 0 0
\(525\) −3.34892 + 5.81675i −0.146159 + 0.253864i
\(526\) 0 0
\(527\) −0.00936609 0.107055i −0.000407993 0.00466338i
\(528\) 0 0
\(529\) 13.9661 + 2.46260i 0.607221 + 0.107069i
\(530\) 0 0
\(531\) 22.9079i 0.994119i
\(532\) 0 0
\(533\) −6.74523 6.74523i −0.292168 0.292168i
\(534\) 0 0
\(535\) −7.45635 + 8.89706i −0.322366 + 0.384653i
\(536\) 0 0
\(537\) 11.6321 1.01768i 0.501962 0.0439160i
\(538\) 0 0
\(539\) 4.45131 2.56997i 0.191732 0.110696i
\(540\) 0 0
\(541\) 30.6180 + 11.1440i 1.31637 + 0.479120i 0.902294 0.431122i \(-0.141882\pi\)
0.414077 + 0.910242i \(0.364104\pi\)
\(542\) 0 0
\(543\) −13.8830 + 3.71993i −0.595776 + 0.159638i
\(544\) 0 0
\(545\) −12.9387 27.7033i −0.554232 1.18668i
\(546\) 0 0
\(547\) 37.9950 + 3.32414i 1.62455 + 0.142130i 0.862732 0.505661i \(-0.168751\pi\)
0.761818 + 0.647791i \(0.224307\pi\)
\(548\) 0 0
\(549\) 6.85521 + 18.8345i 0.292573 + 0.803838i
\(550\) 0 0
\(551\) 12.9240 6.75649i 0.550582 0.287836i
\(552\) 0 0
\(553\) −11.3295 + 24.2962i −0.481780 + 1.03318i
\(554\) 0 0
\(555\) 5.76667 8.24628i 0.244782 0.350035i
\(556\) 0 0
\(557\) 32.8728 + 23.0178i 1.39287 + 0.975295i 0.998409 + 0.0563797i \(0.0179557\pi\)
0.394456 + 0.918915i \(0.370933\pi\)
\(558\) 0 0
\(559\) 2.81911 4.88285i 0.119236 0.206522i
\(560\) 0 0
\(561\) −0.0557779 + 0.153249i −0.00235494 + 0.00647016i
\(562\) 0 0
\(563\) 38.6358 + 10.3524i 1.62830 + 0.436303i 0.953426 0.301627i \(-0.0975297\pi\)
0.674878 + 0.737930i \(0.264196\pi\)
\(564\) 0 0
\(565\) 24.6903 9.00348i 1.03873 0.378779i
\(566\) 0 0
\(567\) −6.19845 8.85231i −0.260311 0.371762i
\(568\) 0 0
\(569\) −10.0913 −0.423048 −0.211524 0.977373i \(-0.567843\pi\)
−0.211524 + 0.977373i \(0.567843\pi\)
\(570\) 0 0
\(571\) −3.55333 −0.148702 −0.0743510 0.997232i \(-0.523689\pi\)
−0.0743510 + 0.997232i \(0.523689\pi\)
\(572\) 0 0
\(573\) 1.83309 + 2.61792i 0.0765782 + 0.109365i
\(574\) 0 0
\(575\) 17.5176 + 24.9534i 0.730535 + 1.04063i
\(576\) 0 0
\(577\) 32.7254 + 8.76874i 1.36238 + 0.365047i 0.864688 0.502309i \(-0.167516\pi\)
0.497687 + 0.867356i \(0.334183\pi\)
\(578\) 0 0
\(579\) −5.73464 + 15.7558i −0.238324 + 0.654789i
\(580\) 0 0
\(581\) 16.2979 28.2288i 0.676150 1.17113i
\(582\) 0 0
\(583\) 15.9154 + 11.1441i 0.659148 + 0.461540i
\(584\) 0 0
\(585\) −9.99347 + 1.76836i −0.413179 + 0.0731125i
\(586\) 0 0
\(587\) 12.3061 26.3905i 0.507926 1.08925i −0.470452 0.882426i \(-0.655909\pi\)
0.978378 0.206825i \(-0.0663132\pi\)
\(588\) 0 0
\(589\) −0.735765 + 3.34643i −0.0303167 + 0.137887i
\(590\) 0 0
\(591\) 2.97959 + 8.18634i 0.122564 + 0.336741i
\(592\) 0 0
\(593\) 0.0877813 + 0.00767986i 0.00360474 + 0.000315374i 0.0889580 0.996035i \(-0.471646\pi\)
−0.0853532 + 0.996351i \(0.527202\pi\)
\(594\) 0 0
\(595\) 0.565352 0.264045i 0.0231772 0.0108248i
\(596\) 0 0
\(597\) −9.70157 + 2.59953i −0.397059 + 0.106392i
\(598\) 0 0
\(599\) −44.5968 16.2319i −1.82218 0.663218i −0.994833 0.101524i \(-0.967628\pi\)
−0.827345 0.561695i \(-0.810150\pi\)
\(600\) 0 0
\(601\) −2.87963 + 1.66255i −0.117462 + 0.0678169i −0.557580 0.830123i \(-0.688270\pi\)
0.440118 + 0.897940i \(0.354937\pi\)
\(602\) 0 0
\(603\) −23.1858 + 2.02849i −0.944198 + 0.0826066i
\(604\) 0 0
\(605\) 1.51296 + 17.1734i 0.0615105 + 0.698200i
\(606\) 0 0
\(607\) 9.34016 + 9.34016i 0.379106 + 0.379106i 0.870779 0.491674i \(-0.163615\pi\)
−0.491674 + 0.870779i \(0.663615\pi\)
\(608\) 0 0
\(609\) 4.49122i 0.181993i
\(610\) 0 0
\(611\) 9.62334 + 1.69685i 0.389319 + 0.0686474i
\(612\) 0 0
\(613\) −2.72812 31.1826i −0.110188 1.25945i −0.827006 0.562193i \(-0.809958\pi\)
0.716818 0.697260i \(-0.245598\pi\)
\(614\) 0 0
\(615\) 0.00480371 + 7.93561i 0.000193704 + 0.319995i
\(616\) 0 0
\(617\) 10.6078 4.94649i 0.427054 0.199138i −0.197195 0.980364i \(-0.563183\pi\)
0.624248 + 0.781226i \(0.285405\pi\)
\(618\) 0 0
\(619\) 27.4876 + 15.8700i 1.10482 + 0.637868i 0.937483 0.348032i \(-0.113150\pi\)
0.167337 + 0.985900i \(0.446483\pi\)
\(620\) 0 0
\(621\) 21.9875 3.87699i 0.882328 0.155578i
\(622\) 0 0
\(623\) 1.77108 20.2435i 0.0709568 0.811040i
\(624\) 0 0
\(625\) −4.28158 + 24.6306i −0.171263 + 0.985225i
\(626\) 0 0
\(627\) 3.15820 4.13074i 0.126126 0.164966i
\(628\) 0 0
\(629\) −0.879053 + 0.319949i −0.0350501 + 0.0127572i
\(630\) 0 0
\(631\) −27.5987 + 23.1580i −1.09869 + 0.921907i −0.997336 0.0729443i \(-0.976760\pi\)
−0.101349 + 0.994851i \(0.532316\pi\)
\(632\) 0 0
\(633\) −1.79111 + 2.55797i −0.0711904 + 0.101670i
\(634\) 0 0
\(635\) −1.32117 + 0.763844i −0.0524290 + 0.0303122i
\(636\) 0 0
\(637\) 2.11701 + 4.53994i 0.0838790 + 0.179879i
\(638\) 0 0
\(639\) 3.75073 + 6.49645i 0.148376 + 0.256995i
\(640\) 0 0
\(641\) −14.2560 + 16.9896i −0.563077 + 0.671050i −0.970195 0.242326i \(-0.922090\pi\)
0.407117 + 0.913376i \(0.366534\pi\)
\(642\) 0 0
\(643\) 4.17663 2.92451i 0.164710 0.115331i −0.488315 0.872667i \(-0.662388\pi\)
0.653025 + 0.757336i \(0.273499\pi\)
\(644\) 0 0
\(645\) −4.52985 + 1.21671i −0.178363 + 0.0479079i
\(646\) 0 0
\(647\) 8.23341 8.23341i 0.323689 0.323689i −0.526492 0.850180i \(-0.676493\pi\)
0.850180 + 0.526492i \(0.176493\pi\)
\(648\) 0 0
\(649\) 2.81028 15.9379i 0.110313 0.625618i
\(650\) 0 0
\(651\) 0.808326 + 0.678266i 0.0316808 + 0.0265833i
\(652\) 0 0
\(653\) 6.20696 23.1647i 0.242897 0.906504i −0.731532 0.681808i \(-0.761194\pi\)
0.974429 0.224697i \(-0.0721392\pi\)
\(654\) 0 0
\(655\) −6.82865 0.593265i −0.266818 0.0231808i
\(656\) 0 0
\(657\) −2.19230 8.18177i −0.0855297 0.319201i
\(658\) 0 0
\(659\) −4.43073 25.1279i −0.172597 0.978844i −0.940881 0.338736i \(-0.890001\pi\)
0.768285 0.640108i \(-0.221111\pi\)
\(660\) 0 0
\(661\) −4.69706 5.59774i −0.182695 0.217727i 0.666922 0.745127i \(-0.267611\pi\)
−0.849617 + 0.527400i \(0.823167\pi\)
\(662\) 0 0
\(663\) −0.144047 0.0671701i −0.00559431 0.00260867i
\(664\) 0 0
\(665\) −19.7183 + 2.64310i −0.764643 + 0.102495i
\(666\) 0 0
\(667\) −18.4896 8.62182i −0.715918 0.333838i
\(668\) 0 0
\(669\) −7.00849 8.35239i −0.270964 0.322922i
\(670\) 0 0
\(671\) −2.45886 13.9449i −0.0949232 0.538336i
\(672\) 0 0
\(673\) −8.99066 33.5536i −0.346565 1.29340i −0.890774 0.454447i \(-0.849837\pi\)
0.544209 0.838949i \(-0.316830\pi\)
\(674\) 0 0
\(675\) 15.0094 + 10.4826i 0.577712 + 0.403477i
\(676\) 0 0
\(677\) −9.74556 + 36.3709i −0.374552 + 1.39785i 0.479446 + 0.877572i \(0.340838\pi\)
−0.853998 + 0.520277i \(0.825829\pi\)
\(678\) 0 0
\(679\) −10.0000 8.39100i −0.383765 0.322017i
\(680\) 0 0
\(681\) −2.71483 + 15.3965i −0.104032 + 0.589997i
\(682\) 0 0
\(683\) −7.84329 + 7.84329i −0.300115 + 0.300115i −0.841059 0.540944i \(-0.818067\pi\)
0.540944 + 0.841059i \(0.318067\pi\)
\(684\) 0 0
\(685\) 8.35717 14.4953i 0.319311 0.553837i
\(686\) 0 0
\(687\) −6.11081 + 4.27884i −0.233142 + 0.163248i
\(688\) 0 0
\(689\) −12.1713 + 14.5052i −0.463690 + 0.552604i
\(690\) 0 0
\(691\) −14.3362 24.8310i −0.545374 0.944616i −0.998583 0.0532115i \(-0.983054\pi\)
0.453209 0.891404i \(-0.350279\pi\)
\(692\) 0 0
\(693\) 4.01728 + 8.61508i 0.152604 + 0.327260i
\(694\) 0 0
\(695\) −36.5046 9.75771i −1.38470 0.370131i
\(696\) 0 0
\(697\) 0.423147 0.604316i 0.0160278 0.0228901i
\(698\) 0 0
\(699\) −7.45706 + 6.25721i −0.282052 + 0.236670i
\(700\) 0 0
\(701\) −19.5726 + 7.12384i −0.739246 + 0.269064i −0.684073 0.729413i \(-0.739793\pi\)
−0.0551727 + 0.998477i \(0.517571\pi\)
\(702\) 0 0
\(703\) 29.7956 1.35296i 1.12376 0.0510280i
\(704\) 0 0
\(705\) −4.66669 6.65615i −0.175758 0.250685i
\(706\) 0 0
\(707\) 0.465883 5.32507i 0.0175213 0.200270i
\(708\) 0 0
\(709\) 9.90503 1.74652i 0.371991 0.0655921i 0.0154726 0.999880i \(-0.495075\pi\)
0.356519 + 0.934288i \(0.383964\pi\)
\(710\) 0 0
\(711\) 29.2029 + 16.8603i 1.09519 + 0.632311i
\(712\) 0 0
\(713\) 4.34405 2.02566i 0.162686 0.0758617i
\(714\) 0 0
\(715\) 7.16977 0.00434012i 0.268134 0.000162311i
\(716\) 0 0
\(717\) 0.124286 + 1.42059i 0.00464153 + 0.0530529i
\(718\) 0 0
\(719\) 21.2738 + 3.75115i 0.793381 + 0.139894i 0.555628 0.831431i \(-0.312478\pi\)
0.237753 + 0.971326i \(0.423589\pi\)
\(720\) 0 0
\(721\) 1.47748i 0.0550241i
\(722\) 0 0
\(723\) 14.0088 + 14.0088i 0.520991 + 0.520991i
\(724\) 0 0
\(725\) −5.74051 15.7127i −0.213197 0.583556i
\(726\) 0 0
\(727\) −50.1855 + 4.39066i −1.86128 + 0.162841i −0.961733 0.273989i \(-0.911657\pi\)
−0.899544 + 0.436829i \(0.856101\pi\)
\(728\) 0 0
\(729\) −5.51587 + 3.18459i −0.204292 + 0.117948i
\(730\) 0 0
\(731\) 0.409747 + 0.149136i 0.0151551 + 0.00551599i
\(732\) 0 0
\(733\) 16.3259 4.37450i 0.603009 0.161576i 0.0556171 0.998452i \(-0.482287\pi\)
0.547392 + 0.836876i \(0.315621\pi\)
\(734\) 0 0
\(735\) 1.42289 3.91674i 0.0524842 0.144471i
\(736\) 0 0
\(737\) 16.3801 + 1.43307i 0.603368 + 0.0527879i
\(738\) 0 0
\(739\) 13.5232 + 37.1547i 0.497459 + 1.36676i 0.893723 + 0.448620i \(0.148084\pi\)
−0.396264 + 0.918137i \(0.629694\pi\)
\(740\) 0 0
\(741\) 3.74215 + 3.41707i 0.137471 + 0.125529i
\(742\) 0 0
\(743\) −5.93144 + 12.7200i −0.217603 + 0.466652i −0.984560 0.175047i \(-0.943992\pi\)
0.766957 + 0.641699i \(0.221770\pi\)
\(744\) 0 0
\(745\) 32.1698 + 22.4966i 1.17861 + 0.824210i
\(746\) 0 0
\(747\) −33.5860 23.5172i −1.22885 0.860449i
\(748\) 0 0
\(749\) −5.29824 + 9.17682i −0.193594 + 0.335314i
\(750\) 0 0
\(751\) −6.39068 + 17.5582i −0.233199 + 0.640709i −0.999999 0.00117667i \(-0.999625\pi\)
0.766800 + 0.641886i \(0.221848\pi\)
\(752\) 0 0
\(753\) 6.45070 + 1.72846i 0.235077 + 0.0629886i
\(754\) 0 0
\(755\) −3.32295 + 7.13738i −0.120935 + 0.259756i
\(756\) 0 0
\(757\) −25.4177 36.3002i −0.923822 1.31935i −0.947540 0.319636i \(-0.896439\pi\)
0.0237184 0.999719i \(-0.492449\pi\)
\(758\) 0 0
\(759\) −7.27390 −0.264026
\(760\) 0 0
\(761\) −28.6386 −1.03815 −0.519073 0.854730i \(-0.673723\pi\)
−0.519073 + 0.854730i \(0.673723\pi\)
\(762\) 0 0
\(763\) −16.0088 22.8629i −0.579558 0.827694i
\(764\) 0 0
\(765\) −0.268889 0.737376i −0.00972168 0.0266599i
\(766\) 0 0
\(767\) 15.2349 + 4.08219i 0.550102 + 0.147399i
\(768\) 0 0
\(769\) 16.7378 45.9866i 0.603579 1.65832i −0.140382 0.990097i \(-0.544833\pi\)
0.743961 0.668223i \(-0.232945\pi\)
\(770\) 0 0
\(771\) 4.58293 7.93788i 0.165050 0.285876i
\(772\) 0 0
\(773\) 25.9019 + 18.1367i 0.931626 + 0.652331i 0.937624 0.347651i \(-0.113020\pi\)
−0.00599844 + 0.999982i \(0.501909\pi\)
\(774\) 0 0
\(775\) 3.69490 + 1.33977i 0.132725 + 0.0481259i
\(776\) 0 0
\(777\) 3.88193 8.32482i 0.139263 0.298651i
\(778\) 0 0
\(779\) −18.6361 + 14.3517i −0.667707 + 0.514202i
\(780\) 0 0
\(781\) −1.81255 4.97995i −0.0648583 0.178197i
\(782\) 0 0
\(783\) −12.2037 1.06769i −0.436126 0.0381560i
\(784\) 0 0
\(785\) −17.1190 6.21907i −0.611003 0.221968i
\(786\) 0 0
\(787\) −42.2003 + 11.3075i −1.50428 + 0.403070i −0.914531 0.404516i \(-0.867440\pi\)
−0.589749 + 0.807587i \(0.700773\pi\)
\(788\) 0 0
\(789\) −2.20242 0.801616i −0.0784083 0.0285383i
\(790\) 0 0
\(791\) 20.7758 11.9949i 0.738701 0.426490i