Properties

Label 380.2.bh.a.33.6
Level $380$
Weight $2$
Character 380.33
Analytic conductor $3.034$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(13,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 27, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bh (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 33.6
Character \(\chi\) \(=\) 380.33
Dual form 380.2.bh.a.357.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.230238 + 0.328814i) q^{3} +(-0.244120 - 2.22270i) q^{5} +(1.71755 + 0.460216i) q^{7} +(0.970951 - 2.66767i) q^{9} +O(q^{10})\) \(q+(0.230238 + 0.328814i) q^{3} +(-0.244120 - 2.22270i) q^{5} +(1.71755 + 0.460216i) q^{7} +(0.970951 - 2.66767i) q^{9} +(-0.811761 + 1.40601i) q^{11} +(-1.34171 - 0.939476i) q^{13} +(0.674649 - 0.592020i) q^{15} +(1.80828 - 3.87786i) q^{17} +(3.68688 - 2.32528i) q^{19} +(0.244119 + 0.670713i) q^{21} +(-2.59687 - 0.227196i) q^{23} +(-4.88081 + 1.08521i) q^{25} +(2.26390 - 0.606611i) q^{27} +(5.22957 + 1.90341i) q^{29} +(7.83030 - 4.52083i) q^{31} +(-0.649214 + 0.0567989i) q^{33} +(0.603635 - 3.92995i) q^{35} +(7.41769 + 7.41769i) q^{37} -0.657476i q^{39} +(-11.8810 - 2.09494i) q^{41} +(0.964681 + 11.0263i) q^{43} +(-6.16646 - 1.50691i) q^{45} +(-6.43188 + 2.99924i) q^{47} +(-3.32400 - 1.91911i) q^{49} +(1.69143 - 0.298244i) q^{51} +(-0.111246 + 1.27154i) q^{53} +(3.32331 + 1.46107i) q^{55} +(1.61344 + 0.676931i) q^{57} +(2.72183 - 0.990665i) q^{59} +(-3.26714 + 2.74146i) q^{61} +(2.89536 - 4.13500i) q^{63} +(-1.76064 + 3.21157i) q^{65} +(-1.53379 - 3.28923i) q^{67} +(-0.523192 - 0.906195i) q^{69} +(2.47896 - 2.95431i) q^{71} +(-9.16796 + 6.41948i) q^{73} +(-1.48058 - 1.35502i) q^{75} +(-2.04131 + 2.04131i) q^{77} +(-0.420678 + 2.38578i) q^{79} +(-5.80341 - 4.86964i) q^{81} +(-2.41572 + 9.01558i) q^{83} +(-9.06076 - 3.07260i) q^{85} +(0.578178 + 2.15779i) q^{87} +(0.807422 + 4.57912i) q^{89} +(-1.87209 - 2.23107i) q^{91} +(3.28934 + 1.53385i) q^{93} +(-6.06844 - 7.62719i) q^{95} +(1.40699 + 0.656091i) q^{97} +(2.96259 + 3.53068i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 6 q^{7} + 18 q^{15} - 18 q^{17} + 48 q^{21} - 36 q^{23} - 24 q^{25} - 60 q^{33} - 18 q^{35} - 12 q^{41} - 36 q^{43} + 18 q^{45} - 24 q^{47} + 96 q^{51} - 18 q^{53} + 72 q^{55} - 6 q^{57} - 24 q^{61} + 36 q^{63} + 90 q^{65} - 24 q^{67} + 18 q^{73} - 36 q^{77} - 30 q^{83} - 24 q^{85} - 72 q^{87} - 144 q^{91} - 132 q^{93} - 12 q^{95} - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.230238 + 0.328814i 0.132928 + 0.189841i 0.880098 0.474792i \(-0.157477\pi\)
−0.747170 + 0.664633i \(0.768588\pi\)
\(4\) 0 0
\(5\) −0.244120 2.22270i −0.109174 0.994023i
\(6\) 0 0
\(7\) 1.71755 + 0.460216i 0.649172 + 0.173945i 0.568355 0.822784i \(-0.307580\pi\)
0.0808177 + 0.996729i \(0.474247\pi\)
\(8\) 0 0
\(9\) 0.970951 2.66767i 0.323650 0.889222i
\(10\) 0 0
\(11\) −0.811761 + 1.40601i −0.244755 + 0.423929i −0.962063 0.272828i \(-0.912041\pi\)
0.717307 + 0.696757i \(0.245374\pi\)
\(12\) 0 0
\(13\) −1.34171 0.939476i −0.372124 0.260564i 0.372523 0.928023i \(-0.378493\pi\)
−0.744646 + 0.667459i \(0.767382\pi\)
\(14\) 0 0
\(15\) 0.674649 0.592020i 0.174194 0.152859i
\(16\) 0 0
\(17\) 1.80828 3.87786i 0.438571 0.940519i −0.555472 0.831535i \(-0.687463\pi\)
0.994044 0.108984i \(-0.0347597\pi\)
\(18\) 0 0
\(19\) 3.68688 2.32528i 0.845829 0.533455i
\(20\) 0 0
\(21\) 0.244119 + 0.670713i 0.0532712 + 0.146361i
\(22\) 0 0
\(23\) −2.59687 0.227196i −0.541484 0.0473737i −0.186867 0.982385i \(-0.559833\pi\)
−0.354617 + 0.935012i \(0.615389\pi\)
\(24\) 0 0
\(25\) −4.88081 + 1.08521i −0.976162 + 0.217042i
\(26\) 0 0
\(27\) 2.26390 0.606611i 0.435689 0.116742i
\(28\) 0 0
\(29\) 5.22957 + 1.90341i 0.971107 + 0.353454i 0.778376 0.627798i \(-0.216044\pi\)
0.192730 + 0.981252i \(0.438266\pi\)
\(30\) 0 0
\(31\) 7.83030 4.52083i 1.40636 0.811965i 0.411329 0.911487i \(-0.365065\pi\)
0.995035 + 0.0995225i \(0.0317315\pi\)
\(32\) 0 0
\(33\) −0.649214 + 0.0567989i −0.113014 + 0.00988742i
\(34\) 0 0
\(35\) 0.603635 3.92995i 0.102033 0.664282i
\(36\) 0 0
\(37\) 7.41769 + 7.41769i 1.21946 + 1.21946i 0.967821 + 0.251639i \(0.0809695\pi\)
0.251639 + 0.967821i \(0.419031\pi\)
\(38\) 0 0
\(39\) 0.657476i 0.105280i
\(40\) 0 0
\(41\) −11.8810 2.09494i −1.85550 0.327174i −0.869500 0.493934i \(-0.835559\pi\)
−0.985998 + 0.166759i \(0.946670\pi\)
\(42\) 0 0
\(43\) 0.964681 + 11.0263i 0.147112 + 1.68150i 0.607917 + 0.794001i \(0.292005\pi\)
−0.460804 + 0.887502i \(0.652439\pi\)
\(44\) 0 0
\(45\) −6.16646 1.50691i −0.919241 0.224636i
\(46\) 0 0
\(47\) −6.43188 + 2.99924i −0.938187 + 0.437484i −0.830698 0.556723i \(-0.812059\pi\)
−0.107488 + 0.994206i \(0.534281\pi\)
\(48\) 0 0
\(49\) −3.32400 1.91911i −0.474858 0.274159i
\(50\) 0 0
\(51\) 1.69143 0.298244i 0.236847 0.0417625i
\(52\) 0 0
\(53\) −0.111246 + 1.27154i −0.0152808 + 0.174660i 0.984719 + 0.174150i \(0.0557178\pi\)
−1.00000 0.000509831i \(0.999838\pi\)
\(54\) 0 0
\(55\) 3.32331 + 1.46107i 0.448115 + 0.197010i
\(56\) 0 0
\(57\) 1.61344 + 0.676931i 0.213706 + 0.0896617i
\(58\) 0 0
\(59\) 2.72183 0.990665i 0.354352 0.128974i −0.158710 0.987325i \(-0.550733\pi\)
0.513062 + 0.858352i \(0.328511\pi\)
\(60\) 0 0
\(61\) −3.26714 + 2.74146i −0.418315 + 0.351008i −0.827522 0.561434i \(-0.810250\pi\)
0.409207 + 0.912442i \(0.365805\pi\)
\(62\) 0 0
\(63\) 2.89536 4.13500i 0.364781 0.520961i
\(64\) 0 0
\(65\) −1.76064 + 3.21157i −0.218380 + 0.398346i
\(66\) 0 0
\(67\) −1.53379 3.28923i −0.187383 0.401843i 0.790064 0.613024i \(-0.210047\pi\)
−0.977447 + 0.211180i \(0.932269\pi\)
\(68\) 0 0
\(69\) −0.523192 0.906195i −0.0629849 0.109093i
\(70\) 0 0
\(71\) 2.47896 2.95431i 0.294198 0.350612i −0.598617 0.801036i \(-0.704283\pi\)
0.892815 + 0.450424i \(0.148727\pi\)
\(72\) 0 0
\(73\) −9.16796 + 6.41948i −1.07303 + 0.751343i −0.969944 0.243330i \(-0.921760\pi\)
−0.103085 + 0.994673i \(0.532871\pi\)
\(74\) 0 0
\(75\) −1.48058 1.35502i −0.170963 0.156464i
\(76\) 0 0
\(77\) −2.04131 + 2.04131i −0.232629 + 0.232629i
\(78\) 0 0
\(79\) −0.420678 + 2.38578i −0.0473300 + 0.268422i −0.999285 0.0378172i \(-0.987960\pi\)
0.951955 + 0.306239i \(0.0990707\pi\)
\(80\) 0 0
\(81\) −5.80341 4.86964i −0.644823 0.541071i
\(82\) 0 0
\(83\) −2.41572 + 9.01558i −0.265159 + 0.989588i 0.696993 + 0.717078i \(0.254521\pi\)
−0.962153 + 0.272511i \(0.912146\pi\)
\(84\) 0 0
\(85\) −9.06076 3.07260i −0.982778 0.333270i
\(86\) 0 0
\(87\) 0.578178 + 2.15779i 0.0619872 + 0.231339i
\(88\) 0 0
\(89\) 0.807422 + 4.57912i 0.0855865 + 0.485385i 0.997228 + 0.0744000i \(0.0237042\pi\)
−0.911642 + 0.410985i \(0.865185\pi\)
\(90\) 0 0
\(91\) −1.87209 2.23107i −0.196249 0.233880i
\(92\) 0 0
\(93\) 3.28934 + 1.53385i 0.341089 + 0.159052i
\(94\) 0 0
\(95\) −6.06844 7.62719i −0.622608 0.782534i
\(96\) 0 0
\(97\) 1.40699 + 0.656091i 0.142858 + 0.0666160i 0.492733 0.870181i \(-0.335998\pi\)
−0.349874 + 0.936797i \(0.613776\pi\)
\(98\) 0 0
\(99\) 2.96259 + 3.53068i 0.297752 + 0.354847i
\(100\) 0 0
\(101\) −1.68580 9.56064i −0.167743 0.951320i −0.946191 0.323610i \(-0.895104\pi\)
0.778447 0.627710i \(-0.216008\pi\)
\(102\) 0 0
\(103\) 4.44353 + 16.5835i 0.437834 + 1.63402i 0.734191 + 0.678942i \(0.237561\pi\)
−0.296357 + 0.955077i \(0.595772\pi\)
\(104\) 0 0
\(105\) 1.43120 0.706339i 0.139671 0.0689316i
\(106\) 0 0
\(107\) −0.425125 + 1.58659i −0.0410984 + 0.153381i −0.983426 0.181311i \(-0.941966\pi\)
0.942327 + 0.334693i \(0.108633\pi\)
\(108\) 0 0
\(109\) 4.47131 + 3.75187i 0.428274 + 0.359364i 0.831300 0.555824i \(-0.187597\pi\)
−0.403026 + 0.915188i \(0.632042\pi\)
\(110\) 0 0
\(111\) −0.731205 + 4.14687i −0.0694029 + 0.393603i
\(112\) 0 0
\(113\) −7.42948 + 7.42948i −0.698907 + 0.698907i −0.964175 0.265268i \(-0.914540\pi\)
0.265268 + 0.964175i \(0.414540\pi\)
\(114\) 0 0
\(115\) 0.128956 + 5.82752i 0.0120252 + 0.543419i
\(116\) 0 0
\(117\) −3.80895 + 2.66705i −0.352137 + 0.246569i
\(118\) 0 0
\(119\) 4.89045 5.82821i 0.448307 0.534272i
\(120\) 0 0
\(121\) 4.18209 + 7.24359i 0.380190 + 0.658508i
\(122\) 0 0
\(123\) −2.04661 4.38896i −0.184536 0.395739i
\(124\) 0 0
\(125\) 3.60360 + 10.5837i 0.322316 + 0.946632i
\(126\) 0 0
\(127\) −2.40243 + 3.43103i −0.213181 + 0.304455i −0.911474 0.411358i \(-0.865055\pi\)
0.698292 + 0.715813i \(0.253944\pi\)
\(128\) 0 0
\(129\) −3.40351 + 2.85588i −0.299662 + 0.251447i
\(130\) 0 0
\(131\) 12.7933 4.65637i 1.11775 0.406829i 0.283921 0.958848i \(-0.408365\pi\)
0.833832 + 0.552019i \(0.186142\pi\)
\(132\) 0 0
\(133\) 7.40253 2.29701i 0.641880 0.199176i
\(134\) 0 0
\(135\) −1.90098 4.88390i −0.163610 0.420339i
\(136\) 0 0
\(137\) 0.894323 10.2222i 0.0764072 0.873338i −0.857187 0.515006i \(-0.827790\pi\)
0.933594 0.358332i \(-0.116655\pi\)
\(138\) 0 0
\(139\) −0.690358 + 0.121729i −0.0585554 + 0.0103249i −0.202849 0.979210i \(-0.565020\pi\)
0.144294 + 0.989535i \(0.453909\pi\)
\(140\) 0 0
\(141\) −2.46705 1.42435i −0.207763 0.119952i
\(142\) 0 0
\(143\) 2.41006 1.12383i 0.201540 0.0939795i
\(144\) 0 0
\(145\) 2.95407 12.0884i 0.245322 1.00389i
\(146\) 0 0
\(147\) −0.134280 1.53483i −0.0110753 0.126591i
\(148\) 0 0
\(149\) 4.00991 + 0.707054i 0.328504 + 0.0579242i 0.335468 0.942052i \(-0.391106\pi\)
−0.00696379 + 0.999976i \(0.502217\pi\)
\(150\) 0 0
\(151\) 12.4523i 1.01335i 0.862137 + 0.506676i \(0.169126\pi\)
−0.862137 + 0.506676i \(0.830874\pi\)
\(152\) 0 0
\(153\) −8.58909 8.58909i −0.694387 0.694387i
\(154\) 0 0
\(155\) −11.9600 16.3008i −0.960649 1.30931i
\(156\) 0 0
\(157\) 14.3387 1.25448i 1.14436 0.100118i 0.500832 0.865544i \(-0.333027\pi\)
0.643524 + 0.765426i \(0.277472\pi\)
\(158\) 0 0
\(159\) −0.443714 + 0.256179i −0.0351888 + 0.0203163i
\(160\) 0 0
\(161\) −4.35569 1.58534i −0.343276 0.124942i
\(162\) 0 0
\(163\) −10.5220 + 2.81936i −0.824146 + 0.220829i −0.646158 0.763204i \(-0.723625\pi\)
−0.177988 + 0.984033i \(0.556959\pi\)
\(164\) 0 0
\(165\) 0.284733 + 1.42914i 0.0221664 + 0.111259i
\(166\) 0 0
\(167\) 17.6634 + 1.54535i 1.36684 + 0.119583i 0.746830 0.665015i \(-0.231575\pi\)
0.620006 + 0.784597i \(0.287130\pi\)
\(168\) 0 0
\(169\) −3.52869 9.69499i −0.271438 0.745769i
\(170\) 0 0
\(171\) −2.62328 12.0931i −0.200607 0.924783i
\(172\) 0 0
\(173\) 0.143103 0.306886i 0.0108799 0.0233321i −0.900793 0.434249i \(-0.857014\pi\)
0.911673 + 0.410917i \(0.134791\pi\)
\(174\) 0 0
\(175\) −8.88246 0.382324i −0.671451 0.0289010i
\(176\) 0 0
\(177\) 0.952412 + 0.666886i 0.0715877 + 0.0501262i
\(178\) 0 0
\(179\) 7.84205 13.5828i 0.586143 1.01523i −0.408589 0.912718i \(-0.633979\pi\)
0.994732 0.102510i \(-0.0326875\pi\)
\(180\) 0 0
\(181\) 1.86778 5.13168i 0.138831 0.381435i −0.850720 0.525619i \(-0.823834\pi\)
0.989551 + 0.144185i \(0.0460559\pi\)
\(182\) 0 0
\(183\) −1.65365 0.443094i −0.122241 0.0327545i
\(184\) 0 0
\(185\) 14.6765 18.2981i 1.07904 1.34530i
\(186\) 0 0
\(187\) 3.98443 + 5.69035i 0.291370 + 0.416120i
\(188\) 0 0
\(189\) 4.16754 0.303144
\(190\) 0 0
\(191\) −4.08203 −0.295366 −0.147683 0.989035i \(-0.547181\pi\)
−0.147683 + 0.989035i \(0.547181\pi\)
\(192\) 0 0
\(193\) −10.0063 14.2905i −0.720269 1.02865i −0.997692 0.0679032i \(-0.978369\pi\)
0.277423 0.960748i \(-0.410520\pi\)
\(194\) 0 0
\(195\) −1.46137 + 0.160503i −0.104651 + 0.0114938i
\(196\) 0 0
\(197\) 10.6794 + 2.86153i 0.760874 + 0.203876i 0.618336 0.785914i \(-0.287807\pi\)
0.142538 + 0.989789i \(0.454474\pi\)
\(198\) 0 0
\(199\) 2.15054 5.90855i 0.152448 0.418846i −0.839835 0.542841i \(-0.817348\pi\)
0.992283 + 0.123995i \(0.0395707\pi\)
\(200\) 0 0
\(201\) 0.728407 1.26164i 0.0513779 0.0889890i
\(202\) 0 0
\(203\) 8.10606 + 5.67593i 0.568934 + 0.398372i
\(204\) 0 0
\(205\) −1.75604 + 26.9193i −0.122647 + 1.88013i
\(206\) 0 0
\(207\) −3.12752 + 6.70698i −0.217377 + 0.466167i
\(208\) 0 0
\(209\) 0.276497 + 7.07137i 0.0191257 + 0.489137i
\(210\) 0 0
\(211\) 2.01223 + 5.52855i 0.138527 + 0.380601i 0.989485 0.144633i \(-0.0462001\pi\)
−0.850958 + 0.525234i \(0.823978\pi\)
\(212\) 0 0
\(213\) 1.54217 + 0.134922i 0.105668 + 0.00924471i
\(214\) 0 0
\(215\) 24.2728 4.83595i 1.65539 0.329809i
\(216\) 0 0
\(217\) 15.5295 4.16111i 1.05421 0.282475i
\(218\) 0 0
\(219\) −4.22162 1.53655i −0.285271 0.103830i
\(220\) 0 0
\(221\) −6.06934 + 3.50414i −0.408268 + 0.235714i
\(222\) 0 0
\(223\) 21.4736 1.87870i 1.43798 0.125807i 0.658662 0.752439i \(-0.271123\pi\)
0.779315 + 0.626632i \(0.215567\pi\)
\(224\) 0 0
\(225\) −1.84405 + 14.0741i −0.122937 + 0.938271i
\(226\) 0 0
\(227\) −15.0579 15.0579i −0.999425 0.999425i 0.000574688 1.00000i \(-0.499817\pi\)
−1.00000 0.000574688i \(0.999817\pi\)
\(228\) 0 0
\(229\) 0.953108i 0.0629831i 0.999504 + 0.0314916i \(0.0100257\pi\)
−0.999504 + 0.0314916i \(0.989974\pi\)
\(230\) 0 0
\(231\) −1.14120 0.201224i −0.0750852 0.0132396i
\(232\) 0 0
\(233\) −1.46969 16.7986i −0.0962827 1.10052i −0.878575 0.477604i \(-0.841505\pi\)
0.782292 0.622911i \(-0.214050\pi\)
\(234\) 0 0
\(235\) 8.23656 + 13.5640i 0.537294 + 0.884817i
\(236\) 0 0
\(237\) −0.881335 + 0.410973i −0.0572488 + 0.0266956i
\(238\) 0 0
\(239\) −10.2823 5.93650i −0.665108 0.384000i 0.129113 0.991630i \(-0.458787\pi\)
−0.794220 + 0.607630i \(0.792120\pi\)
\(240\) 0 0
\(241\) 22.8845 4.03516i 1.47412 0.259927i 0.621895 0.783101i \(-0.286363\pi\)
0.852226 + 0.523173i \(0.175252\pi\)
\(242\) 0 0
\(243\) 0.877858 10.0340i 0.0563146 0.643679i
\(244\) 0 0
\(245\) −3.45417 + 7.85676i −0.220679 + 0.501950i
\(246\) 0 0
\(247\) −7.13127 0.343890i −0.453752 0.0218812i
\(248\) 0 0
\(249\) −3.52064 + 1.28141i −0.223111 + 0.0812058i
\(250\) 0 0
\(251\) −19.7231 + 16.5496i −1.24491 + 1.04460i −0.247785 + 0.968815i \(0.579703\pi\)
−0.997124 + 0.0757875i \(0.975853\pi\)
\(252\) 0 0
\(253\) 2.42748 3.46680i 0.152614 0.217956i
\(254\) 0 0
\(255\) −1.07582 3.68673i −0.0673704 0.230872i
\(256\) 0 0
\(257\) −7.90898 16.9609i −0.493349 1.05799i −0.982581 0.185836i \(-0.940501\pi\)
0.489232 0.872154i \(-0.337277\pi\)
\(258\) 0 0
\(259\) 9.32650 + 16.1540i 0.579520 + 1.00376i
\(260\) 0 0
\(261\) 10.1553 12.1026i 0.628598 0.749134i
\(262\) 0 0
\(263\) −19.4077 + 13.5894i −1.19673 + 0.837959i −0.990087 0.140457i \(-0.955143\pi\)
−0.206643 + 0.978416i \(0.566254\pi\)
\(264\) 0 0
\(265\) 2.85342 0.0631429i 0.175284 0.00387884i
\(266\) 0 0
\(267\) −1.31978 + 1.31978i −0.0807691 + 0.0807691i
\(268\) 0 0
\(269\) 0.598005 3.39146i 0.0364610 0.206781i −0.961135 0.276079i \(-0.910965\pi\)
0.997596 + 0.0692982i \(0.0220760\pi\)
\(270\) 0 0
\(271\) −12.0550 10.1154i −0.732291 0.614465i 0.198464 0.980108i \(-0.436405\pi\)
−0.930755 + 0.365643i \(0.880849\pi\)
\(272\) 0 0
\(273\) 0.302581 1.12925i 0.0183130 0.0683451i
\(274\) 0 0
\(275\) 2.43623 7.74341i 0.146910 0.466945i
\(276\) 0 0
\(277\) 2.12399 + 7.92685i 0.127618 + 0.476278i 0.999919 0.0126908i \(-0.00403971\pi\)
−0.872301 + 0.488969i \(0.837373\pi\)
\(278\) 0 0
\(279\) −4.45722 25.2781i −0.266847 1.51336i
\(280\) 0 0
\(281\) 1.73446 + 2.06705i 0.103469 + 0.123310i 0.815294 0.579047i \(-0.196575\pi\)
−0.711825 + 0.702357i \(0.752131\pi\)
\(282\) 0 0
\(283\) 15.4404 + 7.19999i 0.917838 + 0.427995i 0.823352 0.567531i \(-0.192101\pi\)
0.0944861 + 0.995526i \(0.469879\pi\)
\(284\) 0 0
\(285\) 1.11074 3.75145i 0.0657947 0.222217i
\(286\) 0 0
\(287\) −19.4420 9.06597i −1.14763 0.535147i
\(288\) 0 0
\(289\) −0.840542 1.00172i −0.0494436 0.0589246i
\(290\) 0 0
\(291\) 0.108211 + 0.613695i 0.00634344 + 0.0359755i
\(292\) 0 0
\(293\) 3.91641 + 14.6162i 0.228799 + 0.853889i 0.980847 + 0.194781i \(0.0623995\pi\)
−0.752048 + 0.659108i \(0.770934\pi\)
\(294\) 0 0
\(295\) −2.86641 5.80798i −0.166889 0.338153i
\(296\) 0 0
\(297\) −0.984848 + 3.67550i −0.0571467 + 0.213274i
\(298\) 0 0
\(299\) 3.27080 + 2.74453i 0.189155 + 0.158720i
\(300\) 0 0
\(301\) −3.41761 + 19.3823i −0.196988 + 1.11717i
\(302\) 0 0
\(303\) 2.75554 2.75554i 0.158301 0.158301i
\(304\) 0 0
\(305\) 6.89102 + 6.59264i 0.394579 + 0.377494i
\(306\) 0 0
\(307\) −20.2148 + 14.1546i −1.15372 + 0.807844i −0.984091 0.177664i \(-0.943146\pi\)
−0.169629 + 0.985508i \(0.554257\pi\)
\(308\) 0 0
\(309\) −4.42981 + 5.27924i −0.252003 + 0.300326i
\(310\) 0 0
\(311\) 11.7457 + 20.3442i 0.666038 + 1.15361i 0.979003 + 0.203847i \(0.0653446\pi\)
−0.312965 + 0.949765i \(0.601322\pi\)
\(312\) 0 0
\(313\) −0.361610 0.775475i −0.0204394 0.0438324i 0.895823 0.444411i \(-0.146587\pi\)
−0.916262 + 0.400578i \(0.868809\pi\)
\(314\) 0 0
\(315\) −9.89769 5.42609i −0.557672 0.305725i
\(316\) 0 0
\(317\) −10.1717 + 14.5267i −0.571298 + 0.815898i −0.995992 0.0894387i \(-0.971493\pi\)
0.424694 + 0.905337i \(0.360382\pi\)
\(318\) 0 0
\(319\) −6.92138 + 5.80773i −0.387523 + 0.325170i
\(320\) 0 0
\(321\) −0.619572 + 0.225506i −0.0345812 + 0.0125865i
\(322\) 0 0
\(323\) −2.35019 18.5019i −0.130768 1.02948i
\(324\) 0 0
\(325\) 7.56817 + 3.12937i 0.419807 + 0.173586i
\(326\) 0 0
\(327\) −0.204203 + 2.33405i −0.0112924 + 0.129073i
\(328\) 0 0
\(329\) −12.4274 + 2.19128i −0.685143 + 0.120809i
\(330\) 0 0
\(331\) 13.7804 + 7.95612i 0.757439 + 0.437308i 0.828376 0.560173i \(-0.189265\pi\)
−0.0709364 + 0.997481i \(0.522599\pi\)
\(332\) 0 0
\(333\) 26.9901 12.5857i 1.47905 0.689692i
\(334\) 0 0
\(335\) −6.93655 + 4.21213i −0.378984 + 0.230133i
\(336\) 0 0
\(337\) −0.640167 7.31714i −0.0348721 0.398590i −0.993492 0.113901i \(-0.963665\pi\)
0.958620 0.284689i \(-0.0918903\pi\)
\(338\) 0 0
\(339\) −4.15347 0.732368i −0.225585 0.0397768i
\(340\) 0 0
\(341\) 14.6793i 0.794931i
\(342\) 0 0
\(343\) −13.6273 13.6273i −0.735803 0.735803i
\(344\) 0 0
\(345\) −1.88648 + 1.38412i −0.101565 + 0.0745185i
\(346\) 0 0
\(347\) −35.1086 + 3.07160i −1.88473 + 0.164892i −0.970626 0.240595i \(-0.922657\pi\)
−0.914101 + 0.405487i \(0.867102\pi\)
\(348\) 0 0
\(349\) −20.8646 + 12.0462i −1.11686 + 0.644818i −0.940597 0.339525i \(-0.889734\pi\)
−0.176261 + 0.984343i \(0.556400\pi\)
\(350\) 0 0
\(351\) −3.60740 1.31299i −0.192549 0.0700821i
\(352\) 0 0
\(353\) 13.8653 3.71520i 0.737977 0.197740i 0.129798 0.991540i \(-0.458567\pi\)
0.608179 + 0.793800i \(0.291900\pi\)
\(354\) 0 0
\(355\) −7.17171 4.78878i −0.380635 0.254162i
\(356\) 0 0
\(357\) 3.04236 + 0.266172i 0.161019 + 0.0140873i
\(358\) 0 0
\(359\) 10.9858 + 30.1831i 0.579806 + 1.59301i 0.788507 + 0.615026i \(0.210854\pi\)
−0.208701 + 0.977980i \(0.566923\pi\)
\(360\) 0 0
\(361\) 8.18619 17.1460i 0.430852 0.902423i
\(362\) 0 0
\(363\) −1.41892 + 3.04288i −0.0744738 + 0.159710i
\(364\) 0 0
\(365\) 16.5067 + 18.8105i 0.863998 + 0.984588i
\(366\) 0 0
\(367\) −15.2082 10.6489i −0.793859 0.555866i 0.104810 0.994492i \(-0.466576\pi\)
−0.898670 + 0.438626i \(0.855465\pi\)
\(368\) 0 0
\(369\) −17.1244 + 29.6604i −0.891463 + 1.54406i
\(370\) 0 0
\(371\) −0.776255 + 2.13274i −0.0403011 + 0.110726i
\(372\) 0 0
\(373\) 5.43066 + 1.45514i 0.281189 + 0.0753444i 0.396657 0.917967i \(-0.370170\pi\)
−0.115468 + 0.993311i \(0.536837\pi\)
\(374\) 0 0
\(375\) −2.65037 + 3.62168i −0.136865 + 0.187023i
\(376\) 0 0
\(377\) −5.22837 7.46688i −0.269275 0.384564i
\(378\) 0 0
\(379\) −18.4277 −0.946568 −0.473284 0.880910i \(-0.656932\pi\)
−0.473284 + 0.880910i \(0.656932\pi\)
\(380\) 0 0
\(381\) −1.68130 −0.0861356
\(382\) 0 0
\(383\) −11.8973 16.9912i −0.607926 0.868208i 0.390705 0.920516i \(-0.372231\pi\)
−0.998631 + 0.0523080i \(0.983342\pi\)
\(384\) 0 0
\(385\) 5.03554 + 4.03890i 0.256635 + 0.205841i
\(386\) 0 0
\(387\) 30.3513 + 8.13260i 1.54284 + 0.413403i
\(388\) 0 0
\(389\) 0.376845 1.03537i 0.0191068 0.0524955i −0.929773 0.368134i \(-0.879997\pi\)
0.948879 + 0.315639i \(0.102219\pi\)
\(390\) 0 0
\(391\) −5.57689 + 9.65945i −0.282035 + 0.488499i
\(392\) 0 0
\(393\) 4.47657 + 3.13453i 0.225813 + 0.158116i
\(394\) 0 0
\(395\) 5.40559 + 0.352625i 0.271985 + 0.0177425i
\(396\) 0 0
\(397\) 15.8441 33.9777i 0.795190 1.70529i 0.0903667 0.995909i \(-0.471196\pi\)
0.704824 0.709383i \(-0.251026\pi\)
\(398\) 0 0
\(399\) 2.45963 + 1.90519i 0.123136 + 0.0953789i
\(400\) 0 0
\(401\) −4.22889 11.6188i −0.211181 0.580214i 0.788199 0.615420i \(-0.211014\pi\)
−0.999380 + 0.0352056i \(0.988791\pi\)
\(402\) 0 0
\(403\) −14.7532 1.29074i −0.734910 0.0642963i
\(404\) 0 0
\(405\) −9.40703 + 14.0880i −0.467439 + 0.700039i
\(406\) 0 0
\(407\) −16.4507 + 4.40796i −0.815433 + 0.218495i
\(408\) 0 0
\(409\) 20.0360 + 7.29251i 0.990716 + 0.360591i 0.785998 0.618230i \(-0.212150\pi\)
0.204719 + 0.978821i \(0.434372\pi\)
\(410\) 0 0
\(411\) 3.56709 2.05946i 0.175952 0.101586i
\(412\) 0 0
\(413\) 5.13079 0.448886i 0.252470 0.0220882i
\(414\) 0 0
\(415\) 20.6287 + 3.16854i 1.01262 + 0.155537i
\(416\) 0 0
\(417\) −0.198973 0.198973i −0.00974374 0.00974374i
\(418\) 0 0
\(419\) 4.51709i 0.220675i 0.993894 + 0.110337i \(0.0351931\pi\)
−0.993894 + 0.110337i \(0.964807\pi\)
\(420\) 0 0
\(421\) −30.2872 5.34045i −1.47611 0.260278i −0.623086 0.782153i \(-0.714121\pi\)
−0.853022 + 0.521876i \(0.825232\pi\)
\(422\) 0 0
\(423\) 1.75592 + 20.0702i 0.0853757 + 0.975848i
\(424\) 0 0
\(425\) −4.61756 + 20.8895i −0.223984 + 1.01329i
\(426\) 0 0
\(427\) −6.87314 + 3.20500i −0.332615 + 0.155101i
\(428\) 0 0
\(429\) 0.924419 + 0.533714i 0.0446314 + 0.0257679i
\(430\) 0 0
\(431\) 29.7998 5.25451i 1.43541 0.253101i 0.598797 0.800901i \(-0.295645\pi\)
0.836610 + 0.547800i \(0.184534\pi\)
\(432\) 0 0
\(433\) 1.12033 12.8054i 0.0538394 0.615387i −0.920566 0.390588i \(-0.872272\pi\)
0.974405 0.224800i \(-0.0721727\pi\)
\(434\) 0 0
\(435\) 4.65498 1.81188i 0.223189 0.0868729i
\(436\) 0 0
\(437\) −10.1026 + 5.20078i −0.483275 + 0.248787i
\(438\) 0 0
\(439\) −17.0871 + 6.21918i −0.815521 + 0.296825i −0.715902 0.698200i \(-0.753984\pi\)
−0.0996184 + 0.995026i \(0.531762\pi\)
\(440\) 0 0
\(441\) −8.34700 + 7.00397i −0.397476 + 0.333522i
\(442\) 0 0
\(443\) 11.8993 16.9939i 0.565351 0.807405i −0.430090 0.902786i \(-0.641518\pi\)
0.995441 + 0.0953810i \(0.0304069\pi\)
\(444\) 0 0
\(445\) 9.98090 2.91251i 0.473140 0.138066i
\(446\) 0 0
\(447\) 0.690743 + 1.48130i 0.0326710 + 0.0700632i
\(448\) 0 0
\(449\) −11.9599 20.7151i −0.564422 0.977607i −0.997103 0.0760604i \(-0.975766\pi\)
0.432681 0.901547i \(-0.357568\pi\)
\(450\) 0 0
\(451\) 12.5900 15.0042i 0.592841 0.706521i
\(452\) 0 0
\(453\) −4.09448 + 2.86699i −0.192375 + 0.134703i
\(454\) 0 0
\(455\) −4.50200 + 4.70575i −0.211057 + 0.220609i
\(456\) 0 0
\(457\) 12.7595 12.7595i 0.596864 0.596864i −0.342613 0.939477i \(-0.611312\pi\)
0.939477 + 0.342613i \(0.111312\pi\)
\(458\) 0 0
\(459\) 1.74141 9.87602i 0.0812820 0.460973i
\(460\) 0 0
\(461\) 3.68477 + 3.09189i 0.171617 + 0.144004i 0.724551 0.689222i \(-0.242047\pi\)
−0.552934 + 0.833225i \(0.686492\pi\)
\(462\) 0 0
\(463\) 3.57621 13.3466i 0.166201 0.620269i −0.831683 0.555250i \(-0.812623\pi\)
0.997884 0.0650189i \(-0.0207108\pi\)
\(464\) 0 0
\(465\) 2.60629 7.68567i 0.120864 0.356414i
\(466\) 0 0
\(467\) 0.155885 + 0.581772i 0.00721351 + 0.0269212i 0.969439 0.245333i \(-0.0788974\pi\)
−0.962225 + 0.272255i \(0.912231\pi\)
\(468\) 0 0
\(469\) −1.12061 6.35529i −0.0517449 0.293460i
\(470\) 0 0
\(471\) 3.71381 + 4.42594i 0.171123 + 0.203937i
\(472\) 0 0
\(473\) −16.2863 7.59441i −0.748844 0.349191i
\(474\) 0 0
\(475\) −15.4716 + 15.3503i −0.709884 + 0.704319i
\(476\) 0 0
\(477\) 3.28404 + 1.53137i 0.150366 + 0.0701168i
\(478\) 0 0
\(479\) −2.58927 3.08577i −0.118307 0.140992i 0.703641 0.710556i \(-0.251557\pi\)
−0.821947 + 0.569564i \(0.807112\pi\)
\(480\) 0 0
\(481\) −2.98365 16.9211i −0.136043 0.771537i
\(482\) 0 0
\(483\) −0.481562 1.79721i −0.0219118 0.0817761i
\(484\) 0 0
\(485\) 1.11482 3.28749i 0.0506214 0.149277i
\(486\) 0 0
\(487\) −11.2391 + 41.9448i −0.509292 + 1.90070i −0.0818884 + 0.996642i \(0.526095\pi\)
−0.427403 + 0.904061i \(0.640572\pi\)
\(488\) 0 0
\(489\) −3.34960 2.81065i −0.151474 0.127102i
\(490\) 0 0
\(491\) −6.61275 + 37.5028i −0.298429 + 1.69248i 0.354500 + 0.935056i \(0.384651\pi\)
−0.652929 + 0.757419i \(0.726460\pi\)
\(492\) 0 0
\(493\) 16.8376 16.8376i 0.758330 0.758330i
\(494\) 0 0
\(495\) 7.12442 7.44687i 0.320219 0.334712i
\(496\) 0 0
\(497\) 5.61735 3.93331i 0.251973 0.176433i
\(498\) 0 0
\(499\) 1.01589 1.21069i 0.0454774 0.0541978i −0.742826 0.669484i \(-0.766515\pi\)
0.788304 + 0.615286i \(0.210960\pi\)
\(500\) 0 0
\(501\) 3.55865 + 6.16377i 0.158989 + 0.275377i
\(502\) 0 0
\(503\) −7.98292 17.1194i −0.355941 0.763317i 0.644058 0.764977i \(-0.277250\pi\)
−0.999999 + 0.00165954i \(0.999472\pi\)
\(504\) 0 0
\(505\) −20.8389 + 6.08097i −0.927320 + 0.270600i
\(506\) 0 0
\(507\) 2.37541 3.39244i 0.105496 0.150663i
\(508\) 0 0
\(509\) −6.95872 + 5.83906i −0.308440 + 0.258812i −0.783847 0.620954i \(-0.786745\pi\)
0.475407 + 0.879766i \(0.342301\pi\)
\(510\) 0 0
\(511\) −18.7008 + 6.80652i −0.827273 + 0.301103i
\(512\) 0 0
\(513\) 6.93621 7.50071i 0.306241 0.331164i
\(514\) 0 0
\(515\) 35.7754 13.9250i 1.57645 0.613609i
\(516\) 0 0
\(517\) 1.00419 11.4780i 0.0441643 0.504801i
\(518\) 0 0
\(519\) 0.133856 0.0236024i 0.00587563 0.00103603i
\(520\) 0 0
\(521\) 23.4292 + 13.5268i 1.02645 + 0.592621i 0.915966 0.401257i \(-0.131426\pi\)
0.110485 + 0.993878i \(0.464760\pi\)
\(522\) 0 0
\(523\) 10.8279 5.04911i 0.473469 0.220782i −0.171211 0.985234i \(-0.554768\pi\)
0.644681 + 0.764452i \(0.276990\pi\)
\(524\) 0 0
\(525\) −1.91937 3.00870i −0.0837680 0.131310i
\(526\) 0 0
\(527\) −3.37179 38.5397i −0.146877 1.67882i
\(528\) 0 0
\(529\) −15.9585 2.81391i −0.693847 0.122344i
\(530\) 0 0
\(531\) 8.22282i 0.356840i
\(532\) 0 0
\(533\) 13.9727 + 13.9727i 0.605225 + 0.605225i
\(534\) 0 0
\(535\) 3.63030 + 0.557610i 0.156951 + 0.0241076i
\(536\) 0 0
\(537\) 6.27176 0.548708i 0.270646 0.0236785i
\(538\) 0 0
\(539\) 5.39660 3.11573i 0.232448 0.134204i
\(540\) 0 0
\(541\) −21.2367 7.72953i −0.913037 0.332318i −0.157572 0.987507i \(-0.550367\pi\)
−0.755465 + 0.655189i \(0.772589\pi\)
\(542\) 0 0
\(543\) 2.11740 0.567355i 0.0908663 0.0243475i
\(544\) 0 0
\(545\) 7.24776 10.8543i 0.310460 0.464947i
\(546\) 0 0
\(547\) 11.0261 + 0.964659i 0.471442 + 0.0412458i 0.320402 0.947282i \(-0.396182\pi\)
0.151040 + 0.988528i \(0.451738\pi\)
\(548\) 0 0
\(549\) 4.14106 + 11.3775i 0.176736 + 0.485579i
\(550\) 0 0
\(551\) 23.7068 5.14255i 1.00994 0.219080i
\(552\) 0 0
\(553\) −1.82051 + 3.90410i −0.0774160 + 0.166019i
\(554\) 0 0
\(555\) 9.39576 + 0.612918i 0.398828 + 0.0260169i
\(556\) 0 0
\(557\) 17.4404 + 12.2119i 0.738972 + 0.517433i 0.881399 0.472372i \(-0.156602\pi\)
−0.142428 + 0.989805i \(0.545491\pi\)
\(558\) 0 0
\(559\) 9.06467 15.7005i 0.383395 0.664059i
\(560\) 0 0
\(561\) −0.953700 + 2.62027i −0.0402653 + 0.110628i
\(562\) 0 0
\(563\) 38.8368 + 10.4063i 1.63678 + 0.438573i 0.955868 0.293796i \(-0.0949188\pi\)
0.680908 + 0.732369i \(0.261585\pi\)
\(564\) 0 0
\(565\) 18.3272 + 14.6998i 0.771032 + 0.618427i
\(566\) 0 0
\(567\) −7.72655 11.0347i −0.324485 0.463412i
\(568\) 0 0
\(569\) 11.1892 0.469076 0.234538 0.972107i \(-0.424642\pi\)
0.234538 + 0.972107i \(0.424642\pi\)
\(570\) 0 0
\(571\) −5.54906 −0.232221 −0.116110 0.993236i \(-0.537043\pi\)
−0.116110 + 0.993236i \(0.537043\pi\)
\(572\) 0 0
\(573\) −0.939838 1.34223i −0.0392623 0.0560724i
\(574\) 0 0
\(575\) 12.9214 1.70924i 0.538858 0.0712804i
\(576\) 0 0
\(577\) −0.243158 0.0651540i −0.0101228 0.00271240i 0.253754 0.967269i \(-0.418335\pi\)
−0.263877 + 0.964556i \(0.585001\pi\)
\(578\) 0 0
\(579\) 2.39508 6.58042i 0.0995360 0.273473i
\(580\) 0 0
\(581\) −8.29822 + 14.3729i −0.344268 + 0.596290i
\(582\) 0 0
\(583\) −1.69750 1.18860i −0.0703033 0.0492269i
\(584\) 0 0
\(585\) 6.85790 + 7.81507i 0.283539 + 0.323114i
\(586\) 0 0
\(587\) 9.11075 19.5381i 0.376041 0.806422i −0.623654 0.781701i \(-0.714352\pi\)
0.999694 0.0247211i \(-0.00786978\pi\)
\(588\) 0 0
\(589\) 18.3572 34.8754i 0.756396 1.43701i
\(590\) 0 0
\(591\) 1.51789 + 4.17036i 0.0624375 + 0.171546i
\(592\) 0 0
\(593\) −44.5928 3.90137i −1.83121 0.160210i −0.881262 0.472628i \(-0.843306\pi\)
−0.949945 + 0.312418i \(0.898861\pi\)
\(594\) 0 0
\(595\) −14.1482 9.44724i −0.580021 0.387299i
\(596\) 0 0
\(597\) 2.43795 0.653246i 0.0997786 0.0267356i
\(598\) 0 0
\(599\) −20.5392 7.47564i −0.839207 0.305446i −0.113575 0.993529i \(-0.536230\pi\)
−0.725632 + 0.688083i \(0.758452\pi\)
\(600\) 0 0
\(601\) 23.9752 13.8421i 0.977967 0.564630i 0.0763113 0.997084i \(-0.475686\pi\)
0.901656 + 0.432455i \(0.142352\pi\)
\(602\) 0 0
\(603\) −10.2638 + 0.897967i −0.417975 + 0.0365680i
\(604\) 0 0
\(605\) 15.0794 11.0638i 0.613065 0.449809i
\(606\) 0 0
\(607\) 17.4146 + 17.4146i 0.706839 + 0.706839i 0.965869 0.259030i \(-0.0834030\pi\)
−0.259030 + 0.965869i \(0.583403\pi\)
\(608\) 0 0
\(609\) 3.97220i 0.160962i
\(610\) 0 0
\(611\) 11.4474 + 2.01849i 0.463114 + 0.0816595i
\(612\) 0 0
\(613\) −2.10515 24.0619i −0.0850261 0.971852i −0.912156 0.409842i \(-0.865584\pi\)
0.827130 0.562010i \(-0.189972\pi\)
\(614\) 0 0
\(615\) −9.25574 + 5.62043i −0.373227 + 0.226638i
\(616\) 0 0
\(617\) −39.5363 + 18.4361i −1.59167 + 0.742208i −0.998043 0.0625322i \(-0.980082\pi\)
−0.593627 + 0.804740i \(0.702305\pi\)
\(618\) 0 0
\(619\) −14.8899 8.59667i −0.598474 0.345529i 0.169967 0.985450i \(-0.445634\pi\)
−0.768441 + 0.639921i \(0.778967\pi\)
\(620\) 0 0
\(621\) −6.01688 + 1.06094i −0.241449 + 0.0425740i
\(622\) 0 0
\(623\) −0.720595 + 8.23644i −0.0288700 + 0.329986i
\(624\) 0 0
\(625\) 22.6446 10.5934i 0.905785 0.423737i
\(626\) 0 0
\(627\) −2.26150 + 1.71901i −0.0903157 + 0.0686508i
\(628\) 0 0
\(629\) 42.1780 15.3515i 1.68175 0.612105i
\(630\) 0 0
\(631\) 9.27401 7.78182i 0.369193 0.309789i −0.439249 0.898365i \(-0.644756\pi\)
0.808442 + 0.588576i \(0.200311\pi\)
\(632\) 0 0
\(633\) −1.35457 + 1.93453i −0.0538394 + 0.0768906i
\(634\) 0 0
\(635\) 8.21264 + 4.50231i 0.325909 + 0.178669i
\(636\) 0 0
\(637\) 2.65689 + 5.69772i 0.105270 + 0.225752i
\(638\) 0 0
\(639\) −5.47416 9.48153i −0.216554 0.375083i
\(640\) 0 0
\(641\) −30.5448 + 36.4019i −1.20645 + 1.43779i −0.338620 + 0.940923i \(0.609960\pi\)
−0.867828 + 0.496865i \(0.834484\pi\)
\(642\) 0 0
\(643\) −1.10850 + 0.776183i −0.0437151 + 0.0306097i −0.595230 0.803556i \(-0.702939\pi\)
0.551515 + 0.834165i \(0.314050\pi\)
\(644\) 0 0
\(645\) 7.17864 + 6.86781i 0.282659 + 0.270420i
\(646\) 0 0
\(647\) 8.12755 8.12755i 0.319527 0.319527i −0.529059 0.848585i \(-0.677455\pi\)
0.848585 + 0.529059i \(0.177455\pi\)
\(648\) 0 0
\(649\) −0.816589 + 4.63111i −0.0320539 + 0.181787i
\(650\) 0 0
\(651\) 4.94370 + 4.14826i 0.193759 + 0.162583i
\(652\) 0 0
\(653\) −4.34918 + 16.2314i −0.170197 + 0.635182i 0.827124 + 0.562020i \(0.189976\pi\)
−0.997320 + 0.0731619i \(0.976691\pi\)
\(654\) 0 0
\(655\) −13.4728 27.2989i −0.526426 1.06666i
\(656\) 0 0
\(657\) 8.22338 + 30.6901i 0.320825 + 1.19733i
\(658\) 0 0
\(659\) 1.98022 + 11.2304i 0.0771386 + 0.437475i 0.998778 + 0.0494267i \(0.0157394\pi\)
−0.921639 + 0.388048i \(0.873149\pi\)
\(660\) 0 0
\(661\) −27.8656 33.2090i −1.08385 1.29168i −0.953889 0.300159i \(-0.902960\pi\)
−0.129958 0.991520i \(-0.541484\pi\)
\(662\) 0 0
\(663\) −2.54960 1.18890i −0.0990183 0.0461730i
\(664\) 0 0
\(665\) −6.91268 15.8929i −0.268062 0.616299i
\(666\) 0 0
\(667\) −13.1480 6.13104i −0.509094 0.237395i
\(668\) 0 0
\(669\) 5.56177 + 6.62826i 0.215031 + 0.256263i
\(670\) 0 0
\(671\) −1.20238 6.81905i −0.0464175 0.263247i
\(672\) 0 0
\(673\) −8.64329 32.2572i −0.333174 1.24342i −0.905835 0.423631i \(-0.860755\pi\)
0.572661 0.819792i \(-0.305911\pi\)
\(674\) 0 0
\(675\) −10.3914 + 5.41757i −0.399965 + 0.208522i
\(676\) 0 0
\(677\) 11.4706 42.8088i 0.440850 1.64528i −0.285816 0.958285i \(-0.592265\pi\)
0.726666 0.686991i \(-0.241069\pi\)
\(678\) 0 0
\(679\) 2.11463 + 1.77439i 0.0811522 + 0.0680948i
\(680\) 0 0
\(681\) 1.48434 8.41812i 0.0568801 0.322583i
\(682\) 0 0
\(683\) −35.6299 + 35.6299i −1.36334 + 1.36334i −0.493721 + 0.869621i \(0.664363\pi\)
−0.869621 + 0.493721i \(0.835637\pi\)
\(684\) 0 0
\(685\) −22.9391 + 0.507616i −0.876459 + 0.0193950i
\(686\) 0 0
\(687\) −0.313395 + 0.219442i −0.0119568 + 0.00837222i
\(688\) 0 0
\(689\) 1.34385 1.60153i 0.0511964 0.0610135i
\(690\) 0 0
\(691\) −21.9173 37.9619i −0.833773 1.44414i −0.895026 0.446015i \(-0.852843\pi\)
0.0612526 0.998122i \(-0.480490\pi\)
\(692\) 0 0
\(693\) 3.46352 + 7.42754i 0.131568 + 0.282149i
\(694\) 0 0
\(695\) 0.439097 + 1.50474i 0.0166559 + 0.0570782i
\(696\) 0 0
\(697\) −29.6080 + 42.2845i −1.12148 + 1.60164i
\(698\) 0 0
\(699\) 5.18525 4.35094i 0.196124 0.164568i
\(700\) 0 0
\(701\) 5.22521 1.90182i 0.197353 0.0718307i −0.241453 0.970413i \(-0.577624\pi\)
0.438806 + 0.898582i \(0.355402\pi\)
\(702\) 0 0
\(703\) 44.5963 + 10.1000i 1.68198 + 0.380927i
\(704\) 0 0
\(705\) −2.56366 + 5.83124i −0.0965530 + 0.219617i
\(706\) 0 0
\(707\) 1.50452 17.1967i 0.0565832 0.646749i
\(708\) 0 0
\(709\) −18.6302 + 3.28501i −0.699672 + 0.123371i −0.512158 0.858891i \(-0.671154\pi\)
−0.187513 + 0.982262i \(0.560043\pi\)
\(710\) 0 0
\(711\) 5.95602 + 3.43871i 0.223368 + 0.128962i
\(712\) 0 0
\(713\) −21.3614 + 9.96097i −0.799990 + 0.373041i
\(714\) 0 0
\(715\) −3.08629 5.08251i −0.115421 0.190075i
\(716\) 0 0
\(717\) −0.415376 4.74777i −0.0155125 0.177309i
\(718\) 0 0
\(719\) 50.2784 + 8.86545i 1.87507 + 0.330625i 0.990689 0.136142i \(-0.0434704\pi\)
0.884380 + 0.466768i \(0.154582\pi\)
\(720\) 0 0
\(721\) 30.5279i 1.13692i
\(722\) 0 0
\(723\) 6.59570 + 6.59570i 0.245297 + 0.245297i
\(724\) 0 0
\(725\) −27.5901 3.61499i −1.02467 0.134257i
\(726\) 0 0
\(727\) 21.5255 1.88324i 0.798336 0.0698454i 0.319315 0.947649i \(-0.396547\pi\)
0.479021 + 0.877803i \(0.340992\pi\)
\(728\) 0 0
\(729\) −16.1811 + 9.34217i −0.599301 + 0.346006i
\(730\) 0 0
\(731\) 44.5030 + 16.1978i 1.64600 + 0.599097i
\(732\) 0 0
\(733\) −0.949951 + 0.254538i −0.0350872 + 0.00940159i −0.276320 0.961066i \(-0.589115\pi\)
0.241233 + 0.970467i \(0.422448\pi\)
\(734\) 0 0
\(735\) −3.37869 + 0.673148i −0.124625 + 0.0248294i
\(736\) 0 0
\(737\) 5.86977 + 0.513538i 0.216216 + 0.0189164i
\(738\) 0 0
\(739\) 1.44989 + 3.98355i 0.0533352 + 0.146537i 0.963499 0.267710i \(-0.0862670\pi\)
−0.910164 + 0.414248i \(0.864045\pi\)
\(740\) 0 0
\(741\) −1.52881 2.42404i −0.0561624 0.0890492i
\(742\) 0 0
\(743\) −11.4075 + 24.4634i −0.418500 + 0.897476i 0.578169 + 0.815917i \(0.303768\pi\)
−0.996669 + 0.0815587i \(0.974010\pi\)
\(744\) 0 0
\(745\) 0.592675 9.08543i 0.0217139 0.332864i
\(746\) 0 0
\(747\) 21.7050 + 15.1980i 0.794145 + 0.556066i
\(748\) 0 0
\(749\) −1.46035 + 2.52940i −0.0533599 + 0.0924221i
\(750\) 0 0
\(751\) 16.6302 45.6910i 0.606844 1.66729i −0.130235 0.991483i \(-0.541573\pi\)
0.737079 0.675807i \(-0.236205\pi\)
\(752\) 0 0
\(753\) −9.98274 2.67487i −0.363791 0.0974776i
\(754\) 0 0
\(755\) 27.6777 3.03985i 1.00729 0.110631i
\(756\) 0 0
\(757\) −12.6341 18.0433i −0.459193 0.655795i 0.521066 0.853517i \(-0.325535\pi\)
−0.980258 + 0.197722i \(0.936646\pi\)
\(758\) 0 0
\(759\) 1.69883 0.0616635
\(760\) 0 0
\(761\) −5.23743 −0.189857 −0.0949284 0.995484i \(-0.530262\pi\)
−0.0949284 + 0.995484i \(0.530262\pi\)
\(762\) 0 0
\(763\) 5.95302 + 8.50179i 0.215514 + 0.307785i
\(764\) 0 0
\(765\) −16.9942 + 21.1878i −0.614427 + 0.766045i
\(766\) 0 0
\(767\) −4.58262 1.22791i −0.165469 0.0443372i
\(768\) 0 0
\(769\) −8.83572 + 24.2760i −0.318624 + 0.875413i 0.672214 + 0.740357i \(0.265344\pi\)
−0.990838 + 0.135056i \(0.956879\pi\)
\(770\) 0 0
\(771\) 3.75602 6.50562i 0.135270 0.234294i
\(772\) 0 0
\(773\) 35.7168 + 25.0092i 1.28465 + 0.899518i 0.998281 0.0586028i \(-0.0186645\pi\)
0.286364 + 0.958121i \(0.407553\pi\)
\(774\) 0 0
\(775\) −33.3122 + 30.5628i −1.19661 + 1.09785i
\(776\) 0 0
\(777\) −3.16433 + 6.78594i −0.113520 + 0.243444i
\(778\) 0 0
\(779\) −48.6751 + 19.9028i −1.74397 + 0.713090i
\(780\) 0 0
\(781\) 2.14147 + 5.88364i 0.0766278 + 0.210533i
\(782\) 0 0
\(783\) 12.9939 + 1.13682i 0.464363 + 0.0406265i
\(784\) 0 0
\(785\) −6.28870 31.5645i −0.224453 1.12659i
\(786\) 0 0
\(787\) −24.9028 + 6.67268i −0.887689 + 0.237855i −0.673721 0.738985i \(-0.735305\pi\)
−0.213967 + 0.976841i \(0.568639\pi\)
\(788\) 0 0
\(789\) −8.93677 3.25272i −0.318157 0.115800i
\(790\) 0 0
\(791\) −16.1797 + 9.34133i −0.575283 + 0.332140i