Properties

Label 380.2.bh.a.13.9
Level $380$
Weight $2$
Character 380.13
Analytic conductor $3.034$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(13,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 27, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bh (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 13.9
Character \(\chi\) \(=\) 380.13
Dual form 380.2.bh.a.117.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.84872 - 0.862074i) q^{3} +(2.22179 + 0.252247i) q^{5} +(-1.05366 - 3.93231i) q^{7} +(0.746246 - 0.889341i) q^{9} +O(q^{10})\) \(q+(1.84872 - 0.862074i) q^{3} +(2.22179 + 0.252247i) q^{5} +(-1.05366 - 3.93231i) q^{7} +(0.746246 - 0.889341i) q^{9} +(-2.62986 - 4.55506i) q^{11} +(-0.168100 + 0.360492i) q^{13} +(4.32494 - 1.44902i) q^{15} +(-0.612760 + 7.00388i) q^{17} +(3.17822 + 2.98311i) q^{19} +(-5.33787 - 6.36142i) q^{21} +(-2.31544 + 1.62129i) q^{23} +(4.87274 + 1.12088i) q^{25} +(-0.970925 + 3.62354i) q^{27} +(2.22257 + 1.86496i) q^{29} +(3.19971 + 1.84735i) q^{31} +(-8.78869 - 6.15390i) q^{33} +(-1.34910 - 9.00257i) q^{35} +(0.837316 + 0.837316i) q^{37} +0.811364i q^{39} +(2.89465 - 7.95299i) q^{41} +(-1.46246 + 2.08860i) q^{43} +(1.88234 - 1.78769i) q^{45} +(3.24199 - 0.283638i) q^{47} +(-8.29069 + 4.78663i) q^{49} +(4.90504 + 13.4765i) q^{51} +(3.42197 + 4.88708i) q^{53} +(-4.69402 - 10.7838i) q^{55} +(8.44731 + 2.77509i) q^{57} +(-9.57764 + 8.03660i) q^{59} +(0.260608 - 1.47798i) q^{61} +(-4.28345 - 1.99741i) q^{63} +(-0.464416 + 0.758536i) q^{65} +(-0.959802 - 10.9706i) q^{67} +(-2.88294 + 4.99339i) q^{69} +(9.90257 - 1.74609i) q^{71} +(-4.60382 - 9.87292i) q^{73} +(9.97464 - 2.12847i) q^{75} +(-15.1409 + 15.1409i) q^{77} +(11.6936 + 4.25614i) q^{79} +(1.93358 + 10.9659i) q^{81} +(-9.88658 + 2.64910i) q^{83} +(-3.12813 + 15.4066i) q^{85} +(5.71664 + 1.53177i) q^{87} +(-5.85780 + 2.13206i) q^{89} +(1.59468 + 0.281186i) q^{91} +(7.50794 + 0.656859i) q^{93} +(6.30887 + 7.42955i) q^{95} +(-6.89617 - 0.603337i) q^{97} +(-6.01352 - 1.06035i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 6 q^{7} + 18 q^{15} - 18 q^{17} + 48 q^{21} - 36 q^{23} - 24 q^{25} - 60 q^{33} - 18 q^{35} - 12 q^{41} - 36 q^{43} + 18 q^{45} - 24 q^{47} + 96 q^{51} - 18 q^{53} + 72 q^{55} - 6 q^{57} - 24 q^{61} + 36 q^{63} + 90 q^{65} - 24 q^{67} + 18 q^{73} - 36 q^{77} - 30 q^{83} - 24 q^{85} - 72 q^{87} - 144 q^{91} - 132 q^{93} - 12 q^{95} - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.84872 0.862074i 1.06736 0.497719i 0.192103 0.981375i \(-0.438469\pi\)
0.875258 + 0.483656i \(0.160691\pi\)
\(4\) 0 0
\(5\) 2.22179 + 0.252247i 0.993617 + 0.112808i
\(6\) 0 0
\(7\) −1.05366 3.93231i −0.398246 1.48627i −0.816181 0.577797i \(-0.803913\pi\)
0.417935 0.908477i \(-0.362754\pi\)
\(8\) 0 0
\(9\) 0.746246 0.889341i 0.248749 0.296447i
\(10\) 0 0
\(11\) −2.62986 4.55506i −0.792934 1.37340i −0.924143 0.382047i \(-0.875219\pi\)
0.131210 0.991355i \(-0.458114\pi\)
\(12\) 0 0
\(13\) −0.168100 + 0.360492i −0.0466225 + 0.0999824i −0.928239 0.371984i \(-0.878678\pi\)
0.881617 + 0.471966i \(0.156456\pi\)
\(14\) 0 0
\(15\) 4.32494 1.44902i 1.11669 0.374135i
\(16\) 0 0
\(17\) −0.612760 + 7.00388i −0.148616 + 1.69869i 0.446285 + 0.894891i \(0.352747\pi\)
−0.594901 + 0.803799i \(0.702809\pi\)
\(18\) 0 0
\(19\) 3.17822 + 2.98311i 0.729133 + 0.684372i
\(20\) 0 0
\(21\) −5.33787 6.36142i −1.16482 1.38818i
\(22\) 0 0
\(23\) −2.31544 + 1.62129i −0.482802 + 0.338062i −0.789506 0.613743i \(-0.789663\pi\)
0.306703 + 0.951805i \(0.400774\pi\)
\(24\) 0 0
\(25\) 4.87274 + 1.12088i 0.974549 + 0.224176i
\(26\) 0 0
\(27\) −0.970925 + 3.62354i −0.186855 + 0.697351i
\(28\) 0 0
\(29\) 2.22257 + 1.86496i 0.412720 + 0.346313i 0.825386 0.564569i \(-0.190958\pi\)
−0.412665 + 0.910883i \(0.635402\pi\)
\(30\) 0 0
\(31\) 3.19971 + 1.84735i 0.574685 + 0.331794i 0.759018 0.651069i \(-0.225679\pi\)
−0.184333 + 0.982864i \(0.559013\pi\)
\(32\) 0 0
\(33\) −8.78869 6.15390i −1.52991 1.07126i
\(34\) 0 0
\(35\) −1.34910 9.00257i −0.228040 1.52171i
\(36\) 0 0
\(37\) 0.837316 + 0.837316i 0.137654 + 0.137654i 0.772576 0.634922i \(-0.218968\pi\)
−0.634922 + 0.772576i \(0.718968\pi\)
\(38\) 0 0
\(39\) 0.811364i 0.129922i
\(40\) 0 0
\(41\) 2.89465 7.95299i 0.452069 1.24205i −0.479197 0.877707i \(-0.659072\pi\)
0.931266 0.364341i \(-0.118706\pi\)
\(42\) 0 0
\(43\) −1.46246 + 2.08860i −0.223023 + 0.318509i −0.915034 0.403378i \(-0.867836\pi\)
0.692011 + 0.721887i \(0.256725\pi\)
\(44\) 0 0
\(45\) 1.88234 1.78769i 0.280602 0.266494i
\(46\) 0 0
\(47\) 3.24199 0.283638i 0.472894 0.0413728i 0.151782 0.988414i \(-0.451499\pi\)
0.321112 + 0.947041i \(0.395943\pi\)
\(48\) 0 0
\(49\) −8.29069 + 4.78663i −1.18438 + 0.683805i
\(50\) 0 0
\(51\) 4.90504 + 13.4765i 0.686843 + 1.88709i
\(52\) 0 0
\(53\) 3.42197 + 4.88708i 0.470044 + 0.671292i 0.982251 0.187570i \(-0.0600611\pi\)
−0.512208 + 0.858862i \(0.671172\pi\)
\(54\) 0 0
\(55\) −4.69402 10.7838i −0.632941 1.45408i
\(56\) 0 0
\(57\) 8.44731 + 2.77509i 1.11887 + 0.367569i
\(58\) 0 0
\(59\) −9.57764 + 8.03660i −1.24690 + 1.04628i −0.249951 + 0.968259i \(0.580414\pi\)
−0.996952 + 0.0780171i \(0.975141\pi\)
\(60\) 0 0
\(61\) 0.260608 1.47798i 0.0333674 0.189236i −0.963568 0.267463i \(-0.913815\pi\)
0.996936 + 0.0782267i \(0.0249258\pi\)
\(62\) 0 0
\(63\) −4.28345 1.99741i −0.539664 0.251650i
\(64\) 0 0
\(65\) −0.464416 + 0.758536i −0.0576038 + 0.0940848i
\(66\) 0 0
\(67\) −0.959802 10.9706i −0.117258 1.34027i −0.795733 0.605647i \(-0.792914\pi\)
0.678475 0.734624i \(-0.262641\pi\)
\(68\) 0 0
\(69\) −2.88294 + 4.99339i −0.347065 + 0.601134i
\(70\) 0 0
\(71\) 9.90257 1.74609i 1.17522 0.207223i 0.448260 0.893903i \(-0.352044\pi\)
0.726959 + 0.686681i \(0.240933\pi\)
\(72\) 0 0
\(73\) −4.60382 9.87292i −0.538836 1.15554i −0.967685 0.252162i \(-0.918859\pi\)
0.428849 0.903376i \(-0.358919\pi\)
\(74\) 0 0
\(75\) 9.97464 2.12847i 1.15177 0.245774i
\(76\) 0 0
\(77\) −15.1409 + 15.1409i −1.72547 + 1.72547i
\(78\) 0 0
\(79\) 11.6936 + 4.25614i 1.31564 + 0.478853i 0.902058 0.431615i \(-0.142056\pi\)
0.413580 + 0.910468i \(0.364278\pi\)
\(80\) 0 0
\(81\) 1.93358 + 10.9659i 0.214842 + 1.21843i
\(82\) 0 0
\(83\) −9.88658 + 2.64910i −1.08519 + 0.290777i −0.756722 0.653737i \(-0.773200\pi\)
−0.328472 + 0.944514i \(0.606534\pi\)
\(84\) 0 0
\(85\) −3.12813 + 15.4066i −0.339294 + 1.67108i
\(86\) 0 0
\(87\) 5.71664 + 1.53177i 0.612888 + 0.164223i
\(88\) 0 0
\(89\) −5.85780 + 2.13206i −0.620925 + 0.225998i −0.633277 0.773925i \(-0.718291\pi\)
0.0123514 + 0.999924i \(0.496068\pi\)
\(90\) 0 0
\(91\) 1.59468 + 0.281186i 0.167168 + 0.0294763i
\(92\) 0 0
\(93\) 7.50794 + 0.656859i 0.778537 + 0.0681131i
\(94\) 0 0
\(95\) 6.30887 + 7.42955i 0.647276 + 0.762256i
\(96\) 0 0
\(97\) −6.89617 0.603337i −0.700200 0.0612596i −0.268504 0.963279i \(-0.586529\pi\)
−0.431696 + 0.902019i \(0.642085\pi\)
\(98\) 0 0
\(99\) −6.01352 1.06035i −0.604382 0.106569i
\(100\) 0 0
\(101\) −5.62463 + 2.04720i −0.559672 + 0.203704i −0.606338 0.795207i \(-0.707362\pi\)
0.0466668 + 0.998911i \(0.485140\pi\)
\(102\) 0 0
\(103\) −10.9932 2.94562i −1.08319 0.290240i −0.327289 0.944924i \(-0.606135\pi\)
−0.755903 + 0.654684i \(0.772802\pi\)
\(104\) 0 0
\(105\) −10.2550 15.4802i −1.00079 1.51072i
\(106\) 0 0
\(107\) 2.58131 0.691659i 0.249544 0.0668652i −0.131879 0.991266i \(-0.542101\pi\)
0.381423 + 0.924401i \(0.375434\pi\)
\(108\) 0 0
\(109\) −2.65819 15.0753i −0.254608 1.44395i −0.797076 0.603879i \(-0.793621\pi\)
0.542468 0.840076i \(-0.317490\pi\)
\(110\) 0 0
\(111\) 2.26979 + 0.826137i 0.215439 + 0.0784135i
\(112\) 0 0
\(113\) −12.2464 + 12.2464i −1.15204 + 1.15204i −0.165901 + 0.986142i \(0.553053\pi\)
−0.986142 + 0.165901i \(0.946947\pi\)
\(114\) 0 0
\(115\) −5.55339 + 3.01811i −0.517856 + 0.281440i
\(116\) 0 0
\(117\) 0.195156 + 0.418513i 0.0180422 + 0.0386916i
\(118\) 0 0
\(119\) 28.1871 4.97014i 2.58390 0.455612i
\(120\) 0 0
\(121\) −8.33236 + 14.4321i −0.757487 + 1.31201i
\(122\) 0 0
\(123\) −1.50466 17.1983i −0.135670 1.55072i
\(124\) 0 0
\(125\) 10.5435 + 3.71950i 0.943039 + 0.332682i
\(126\) 0 0
\(127\) −19.3007 9.00008i −1.71266 0.798628i −0.994731 0.102515i \(-0.967311\pi\)
−0.717932 0.696113i \(-0.754911\pi\)
\(128\) 0 0
\(129\) −0.903147 + 5.12200i −0.0795176 + 0.450967i
\(130\) 0 0
\(131\) −2.93763 + 2.46496i −0.256662 + 0.215365i −0.762035 0.647536i \(-0.775799\pi\)
0.505373 + 0.862901i \(0.331355\pi\)
\(132\) 0 0
\(133\) 8.38175 15.6409i 0.726790 1.35624i
\(134\) 0 0
\(135\) −3.07122 + 7.80585i −0.264329 + 0.671821i
\(136\) 0 0
\(137\) 0.829699 + 1.18493i 0.0708859 + 0.101236i 0.853030 0.521863i \(-0.174763\pi\)
−0.782144 + 0.623098i \(0.785874\pi\)
\(138\) 0 0
\(139\) −1.85801 5.10484i −0.157594 0.432987i 0.835617 0.549313i \(-0.185110\pi\)
−0.993211 + 0.116326i \(0.962888\pi\)
\(140\) 0 0
\(141\) 5.74904 3.31921i 0.484156 0.279528i
\(142\) 0 0
\(143\) 2.08414 0.182339i 0.174284 0.0152479i
\(144\) 0 0
\(145\) 4.46766 + 4.70418i 0.371019 + 0.390661i
\(146\) 0 0
\(147\) −11.2008 + 15.9964i −0.923824 + 1.31936i
\(148\) 0 0
\(149\) 1.23147 3.38343i 0.100886 0.277181i −0.878973 0.476871i \(-0.841771\pi\)
0.979859 + 0.199689i \(0.0639932\pi\)
\(150\) 0 0
\(151\) 15.6972i 1.27742i −0.769448 0.638709i \(-0.779469\pi\)
0.769448 0.638709i \(-0.220531\pi\)
\(152\) 0 0
\(153\) 5.77157 + 5.77157i 0.466603 + 0.466603i
\(154\) 0 0
\(155\) 6.64311 + 4.91156i 0.533587 + 0.394506i
\(156\) 0 0
\(157\) −3.65663 2.56040i −0.291831 0.204342i 0.418488 0.908222i \(-0.362560\pi\)
−0.710319 + 0.703880i \(0.751449\pi\)
\(158\) 0 0
\(159\) 10.5393 + 6.08487i 0.835821 + 0.482561i
\(160\) 0 0
\(161\) 8.81509 + 7.39674i 0.694726 + 0.582944i
\(162\) 0 0
\(163\) −1.59204 + 5.94158i −0.124698 + 0.465381i −0.999829 0.0185066i \(-0.994109\pi\)
0.875130 + 0.483887i \(0.160775\pi\)
\(164\) 0 0
\(165\) −17.9744 15.8896i −1.39930 1.23701i
\(166\) 0 0
\(167\) 3.72654 2.60935i 0.288368 0.201917i −0.420437 0.907322i \(-0.638123\pi\)
0.708805 + 0.705404i \(0.249234\pi\)
\(168\) 0 0
\(169\) 8.25454 + 9.83738i 0.634965 + 0.756722i
\(170\) 0 0
\(171\) 5.02473 0.600386i 0.384251 0.0459127i
\(172\) 0 0
\(173\) 0.318280 3.63796i 0.0241984 0.276589i −0.974450 0.224606i \(-0.927890\pi\)
0.998648 0.0519827i \(-0.0165541\pi\)
\(174\) 0 0
\(175\) −0.726561 20.3422i −0.0549228 1.53772i
\(176\) 0 0
\(177\) −10.7783 + 23.1141i −0.810145 + 1.73736i
\(178\) 0 0
\(179\) 5.59134 + 9.68449i 0.417916 + 0.723852i 0.995730 0.0923165i \(-0.0294272\pi\)
−0.577813 + 0.816169i \(0.696094\pi\)
\(180\) 0 0
\(181\) 12.4728 14.8645i 0.927098 1.10487i −0.0671470 0.997743i \(-0.521390\pi\)
0.994245 0.107129i \(-0.0341659\pi\)
\(182\) 0 0
\(183\) −0.792338 2.95704i −0.0585713 0.218591i
\(184\) 0 0
\(185\) 1.64913 + 2.07155i 0.121247 + 0.152304i
\(186\) 0 0
\(187\) 33.5145 15.6281i 2.45083 1.14284i
\(188\) 0 0
\(189\) 15.2719 1.11087
\(190\) 0 0
\(191\) 19.5898 1.41747 0.708734 0.705476i \(-0.249267\pi\)
0.708734 + 0.705476i \(0.249267\pi\)
\(192\) 0 0
\(193\) −11.0040 + 5.13126i −0.792088 + 0.369357i −0.776176 0.630517i \(-0.782843\pi\)
−0.0159121 + 0.999873i \(0.505065\pi\)
\(194\) 0 0
\(195\) −0.204664 + 1.80268i −0.0146563 + 0.129093i
\(196\) 0 0
\(197\) −0.0253016 0.0944268i −0.00180266 0.00672763i 0.965019 0.262181i \(-0.0844418\pi\)
−0.966821 + 0.255454i \(0.917775\pi\)
\(198\) 0 0
\(199\) −4.28819 + 5.11047i −0.303982 + 0.362271i −0.896312 0.443424i \(-0.853764\pi\)
0.592330 + 0.805695i \(0.298208\pi\)
\(200\) 0 0
\(201\) −11.2319 19.4542i −0.792235 1.37219i
\(202\) 0 0
\(203\) 4.99175 10.7049i 0.350352 0.751333i
\(204\) 0 0
\(205\) 8.43744 16.9397i 0.589296 1.18312i
\(206\) 0 0
\(207\) −0.286008 + 3.26909i −0.0198790 + 0.227218i
\(208\) 0 0
\(209\) 5.22995 22.3221i 0.361763 1.54405i
\(210\) 0 0
\(211\) −10.1097 12.0482i −0.695978 0.829434i 0.296087 0.955161i \(-0.404318\pi\)
−0.992065 + 0.125727i \(0.959874\pi\)
\(212\) 0 0
\(213\) 16.8019 11.7648i 1.15124 0.806110i
\(214\) 0 0
\(215\) −3.77612 + 4.27155i −0.257529 + 0.291317i
\(216\) 0 0
\(217\) 3.89296 14.5287i 0.264272 0.986275i
\(218\) 0 0
\(219\) −17.0224 14.2835i −1.15027 0.965187i
\(220\) 0 0
\(221\) −2.42183 1.39825i −0.162910 0.0940562i
\(222\) 0 0
\(223\) −2.36749 1.65774i −0.158539 0.111010i 0.491615 0.870813i \(-0.336407\pi\)
−0.650154 + 0.759802i \(0.725296\pi\)
\(224\) 0 0
\(225\) 4.63311 3.49708i 0.308874 0.233138i
\(226\) 0 0
\(227\) −16.8631 16.8631i −1.11924 1.11924i −0.991853 0.127388i \(-0.959341\pi\)
−0.127388 0.991853i \(-0.540659\pi\)
\(228\) 0 0
\(229\) 4.66862i 0.308511i −0.988031 0.154255i \(-0.950702\pi\)
0.988031 0.154255i \(-0.0492979\pi\)
\(230\) 0 0
\(231\) −14.9388 + 41.0440i −0.982900 + 2.70049i
\(232\) 0 0
\(233\) 15.2434 21.7698i 0.998628 1.42619i 0.0961929 0.995363i \(-0.469333\pi\)
0.902435 0.430826i \(-0.141778\pi\)
\(234\) 0 0
\(235\) 7.27459 + 0.187597i 0.474542 + 0.0122375i
\(236\) 0 0
\(237\) 25.2874 2.21236i 1.64259 0.143708i
\(238\) 0 0
\(239\) −19.0167 + 10.9793i −1.23009 + 0.710192i −0.967048 0.254593i \(-0.918058\pi\)
−0.263040 + 0.964785i \(0.584725\pi\)
\(240\) 0 0
\(241\) −0.217853 0.598547i −0.0140332 0.0385558i 0.932478 0.361226i \(-0.117642\pi\)
−0.946511 + 0.322670i \(0.895420\pi\)
\(242\) 0 0
\(243\) 6.57297 + 9.38718i 0.421656 + 0.602188i
\(244\) 0 0
\(245\) −19.6276 + 8.54362i −1.25396 + 0.545832i
\(246\) 0 0
\(247\) −1.60964 + 0.644260i −0.102419 + 0.0409933i
\(248\) 0 0
\(249\) −15.9938 + 13.4204i −1.01357 + 0.850485i
\(250\) 0 0
\(251\) −0.494465 + 2.80425i −0.0312104 + 0.177003i −0.996428 0.0844442i \(-0.973089\pi\)
0.965218 + 0.261447i \(0.0841997\pi\)
\(252\) 0 0
\(253\) 13.4743 + 6.28319i 0.847124 + 0.395021i
\(254\) 0 0
\(255\) 7.49859 + 31.1793i 0.469580 + 1.95252i
\(256\) 0 0
\(257\) 0.600604 + 6.86493i 0.0374646 + 0.428223i 0.991646 + 0.128992i \(0.0411743\pi\)
−0.954181 + 0.299230i \(0.903270\pi\)
\(258\) 0 0
\(259\) 2.41034 4.17483i 0.149771 0.259411i
\(260\) 0 0
\(261\) 3.31716 0.584905i 0.205327 0.0362047i
\(262\) 0 0
\(263\) 9.58685 + 20.5591i 0.591151 + 1.26773i 0.943349 + 0.331801i \(0.107656\pi\)
−0.352199 + 0.935925i \(0.614566\pi\)
\(264\) 0 0
\(265\) 6.37016 + 11.7213i 0.391316 + 0.720031i
\(266\) 0 0
\(267\) −8.99146 + 8.99146i −0.550268 + 0.550268i
\(268\) 0 0
\(269\) 15.1901 + 5.52876i 0.926159 + 0.337094i 0.760686 0.649120i \(-0.224863\pi\)
0.165473 + 0.986214i \(0.447085\pi\)
\(270\) 0 0
\(271\) −2.69830 15.3028i −0.163910 0.929580i −0.950181 0.311698i \(-0.899102\pi\)
0.786271 0.617882i \(-0.212009\pi\)
\(272\) 0 0
\(273\) 3.19054 0.854901i 0.193100 0.0517410i
\(274\) 0 0
\(275\) −7.70897 25.1434i −0.464869 1.51620i
\(276\) 0 0
\(277\) 16.3234 + 4.37384i 0.980778 + 0.262799i 0.713372 0.700785i \(-0.247167\pi\)
0.267406 + 0.963584i \(0.413834\pi\)
\(278\) 0 0
\(279\) 4.03070 1.46705i 0.241311 0.0878302i
\(280\) 0 0
\(281\) −22.7557 4.01245i −1.35749 0.239363i −0.552929 0.833228i \(-0.686490\pi\)
−0.804564 + 0.593866i \(0.797601\pi\)
\(282\) 0 0
\(283\) −2.17185 0.190012i −0.129103 0.0112951i 0.0224210 0.999749i \(-0.492863\pi\)
−0.151524 + 0.988454i \(0.548418\pi\)
\(284\) 0 0
\(285\) 18.0682 + 8.29648i 1.07027 + 0.491441i
\(286\) 0 0
\(287\) −34.3236 3.00293i −2.02606 0.177257i
\(288\) 0 0
\(289\) −31.9371 5.63137i −1.87865 0.331257i
\(290\) 0 0
\(291\) −13.2692 + 4.82961i −0.777856 + 0.283117i
\(292\) 0 0
\(293\) −11.0113 2.95046i −0.643285 0.172368i −0.0775942 0.996985i \(-0.524724\pi\)
−0.565691 + 0.824617i \(0.691391\pi\)
\(294\) 0 0
\(295\) −23.3068 + 15.4397i −1.35697 + 0.898936i
\(296\) 0 0
\(297\) 19.0588 5.10680i 1.10591 0.296327i
\(298\) 0 0
\(299\) −0.195235 1.10723i −0.0112907 0.0640330i
\(300\) 0 0
\(301\) 9.75398 + 3.55016i 0.562210 + 0.204628i
\(302\) 0 0
\(303\) −8.63355 + 8.63355i −0.495985 + 0.495985i
\(304\) 0 0
\(305\) 0.951834 3.21804i 0.0545018 0.184264i
\(306\) 0 0
\(307\) 5.88095 + 12.6117i 0.335644 + 0.719790i 0.999609 0.0279735i \(-0.00890542\pi\)
−0.663965 + 0.747764i \(0.731128\pi\)
\(308\) 0 0
\(309\) −22.8627 + 4.03131i −1.30061 + 0.229333i
\(310\) 0 0
\(311\) −16.2585 + 28.1606i −0.921936 + 1.59684i −0.125520 + 0.992091i \(0.540060\pi\)
−0.796416 + 0.604749i \(0.793273\pi\)
\(312\) 0 0
\(313\) 1.67825 + 19.1825i 0.0948603 + 1.08426i 0.883193 + 0.469009i \(0.155389\pi\)
−0.788333 + 0.615249i \(0.789056\pi\)
\(314\) 0 0
\(315\) −9.01311 5.51831i −0.507831 0.310922i
\(316\) 0 0
\(317\) 15.1734 + 7.07545i 0.852221 + 0.397397i 0.799105 0.601191i \(-0.205307\pi\)
0.0531156 + 0.998588i \(0.483085\pi\)
\(318\) 0 0
\(319\) 2.64993 15.0285i 0.148368 0.841434i
\(320\) 0 0
\(321\) 4.17586 3.50396i 0.233074 0.195572i
\(322\) 0 0
\(323\) −22.8408 + 20.4319i −1.27090 + 1.13686i
\(324\) 0 0
\(325\) −1.22318 + 1.56816i −0.0678496 + 0.0869860i
\(326\) 0 0
\(327\) −17.9103 25.5786i −0.990442 1.41450i
\(328\) 0 0
\(329\) −4.53131 12.4497i −0.249819 0.686373i
\(330\) 0 0
\(331\) 16.6870 9.63424i 0.917200 0.529545i 0.0344590 0.999406i \(-0.489029\pi\)
0.882741 + 0.469861i \(0.155696\pi\)
\(332\) 0 0
\(333\) 1.36950 0.119816i 0.0750482 0.00656587i
\(334\) 0 0
\(335\) 0.634811 24.6165i 0.0346834 1.34494i
\(336\) 0 0
\(337\) 13.0318 18.6113i 0.709886 1.01382i −0.288526 0.957472i \(-0.593165\pi\)
0.998411 0.0563494i \(-0.0179461\pi\)
\(338\) 0 0
\(339\) −12.0829 + 33.1975i −0.656253 + 1.80304i
\(340\) 0 0
\(341\) 19.4331i 1.05236i
\(342\) 0 0
\(343\) 7.40753 + 7.40753i 0.399969 + 0.399969i
\(344\) 0 0
\(345\) −7.66486 + 10.3671i −0.412662 + 0.558145i
\(346\) 0 0
\(347\) 6.08353 + 4.25973i 0.326581 + 0.228674i 0.725355 0.688375i \(-0.241676\pi\)
−0.398775 + 0.917049i \(0.630564\pi\)
\(348\) 0 0
\(349\) 10.7167 + 6.18731i 0.573653 + 0.331199i 0.758607 0.651548i \(-0.225880\pi\)
−0.184954 + 0.982747i \(0.559214\pi\)
\(350\) 0 0
\(351\) −1.14304 0.959127i −0.0610111 0.0511944i
\(352\) 0 0
\(353\) −0.735596 + 2.74528i −0.0391518 + 0.146117i −0.982735 0.185019i \(-0.940765\pi\)
0.943583 + 0.331136i \(0.107432\pi\)
\(354\) 0 0
\(355\) 22.4419 1.38156i 1.19109 0.0733258i
\(356\) 0 0
\(357\) 47.8255 33.4878i 2.53119 1.77236i
\(358\) 0 0
\(359\) 4.44916 + 5.30230i 0.234817 + 0.279845i 0.870566 0.492052i \(-0.163753\pi\)
−0.635749 + 0.771896i \(0.719308\pi\)
\(360\) 0 0
\(361\) 1.20212 + 18.9619i 0.0632697 + 0.997996i
\(362\) 0 0
\(363\) −2.96272 + 33.8640i −0.155502 + 1.77740i
\(364\) 0 0
\(365\) −7.73833 23.0969i −0.405043 1.20895i
\(366\) 0 0
\(367\) −10.4094 + 22.3231i −0.543367 + 1.16525i 0.422535 + 0.906347i \(0.361140\pi\)
−0.965902 + 0.258908i \(0.916637\pi\)
\(368\) 0 0
\(369\) −4.91280 8.50921i −0.255750 0.442972i
\(370\) 0 0
\(371\) 15.6119 18.6056i 0.810530 0.965952i
\(372\) 0 0
\(373\) 4.38742 + 16.3741i 0.227172 + 0.847817i 0.981523 + 0.191346i \(0.0612852\pi\)
−0.754351 + 0.656472i \(0.772048\pi\)
\(374\) 0 0
\(375\) 22.6985 2.21295i 1.17215 0.114276i
\(376\) 0 0
\(377\) −1.04591 + 0.487718i −0.0538673 + 0.0251187i
\(378\) 0 0
\(379\) −4.98516 −0.256071 −0.128035 0.991770i \(-0.540867\pi\)
−0.128035 + 0.991770i \(0.540867\pi\)
\(380\) 0 0
\(381\) −43.4405 −2.22552
\(382\) 0 0
\(383\) −10.8911 + 5.07862i −0.556511 + 0.259505i −0.680462 0.732783i \(-0.738221\pi\)
0.123952 + 0.992288i \(0.460443\pi\)
\(384\) 0 0
\(385\) −37.4593 + 29.8208i −1.90910 + 1.51981i
\(386\) 0 0
\(387\) 0.766130 + 2.85923i 0.0389446 + 0.145343i
\(388\) 0 0
\(389\) 17.1250 20.4087i 0.868271 1.03476i −0.130789 0.991410i \(-0.541751\pi\)
0.999060 0.0433544i \(-0.0138045\pi\)
\(390\) 0 0
\(391\) −9.93649 17.2105i −0.502510 0.870373i
\(392\) 0 0
\(393\) −3.30588 + 7.08949i −0.166760 + 0.357617i
\(394\) 0 0
\(395\) 24.9073 + 12.4059i 1.25322 + 0.624211i
\(396\) 0 0
\(397\) −0.813936 + 9.30333i −0.0408503 + 0.466921i 0.948027 + 0.318189i \(0.103075\pi\)
−0.988878 + 0.148732i \(0.952481\pi\)
\(398\) 0 0
\(399\) 2.01192 36.1414i 0.100722 1.80933i
\(400\) 0 0
\(401\) 2.44981 + 2.91957i 0.122338 + 0.145796i 0.823737 0.566972i \(-0.191885\pi\)
−0.701399 + 0.712769i \(0.747441\pi\)
\(402\) 0 0
\(403\) −1.20383 + 0.842928i −0.0599669 + 0.0419893i
\(404\) 0 0
\(405\) 1.52991 + 24.8517i 0.0760219 + 1.23489i
\(406\) 0 0
\(407\) 1.61199 6.01604i 0.0799036 0.298204i
\(408\) 0 0
\(409\) 6.42996 + 5.39538i 0.317941 + 0.266784i 0.787765 0.615976i \(-0.211238\pi\)
−0.469824 + 0.882760i \(0.655683\pi\)
\(410\) 0 0
\(411\) 2.55538 + 1.47535i 0.126048 + 0.0727737i
\(412\) 0 0
\(413\) 41.6940 + 29.1944i 2.05163 + 1.43656i
\(414\) 0 0
\(415\) −22.6342 + 3.39190i −1.11107 + 0.166502i
\(416\) 0 0
\(417\) −7.83570 7.83570i −0.383716 0.383716i
\(418\) 0 0
\(419\) 16.3902i 0.800715i −0.916359 0.400358i \(-0.868886\pi\)
0.916359 0.400358i \(-0.131114\pi\)
\(420\) 0 0
\(421\) 10.8336 29.7649i 0.527995 1.45065i −0.333432 0.942774i \(-0.608207\pi\)
0.861428 0.507881i \(-0.169571\pi\)
\(422\) 0 0
\(423\) 2.16707 3.09490i 0.105367 0.150479i
\(424\) 0 0
\(425\) −10.8363 + 33.4413i −0.525639 + 1.62214i
\(426\) 0 0
\(427\) −6.08648 + 0.532498i −0.294545 + 0.0257694i
\(428\) 0 0
\(429\) 3.69581 2.13378i 0.178435 0.103020i
\(430\) 0 0
\(431\) 5.21178 + 14.3193i 0.251043 + 0.689734i 0.999643 + 0.0267129i \(0.00850399\pi\)
−0.748600 + 0.663021i \(0.769274\pi\)
\(432\) 0 0
\(433\) −11.4790 16.3937i −0.551644 0.787830i 0.442399 0.896819i \(-0.354128\pi\)
−0.994043 + 0.108989i \(0.965239\pi\)
\(434\) 0 0
\(435\) 12.3148 + 4.84528i 0.590451 + 0.232313i
\(436\) 0 0
\(437\) −12.1954 1.75440i −0.583387 0.0839244i
\(438\) 0 0
\(439\) 27.5013 23.0763i 1.31256 1.10137i 0.324738 0.945804i \(-0.394724\pi\)
0.987825 0.155568i \(-0.0497206\pi\)
\(440\) 0 0
\(441\) −1.92994 + 10.9453i −0.0919021 + 0.521203i
\(442\) 0 0
\(443\) 20.1578 + 9.39973i 0.957725 + 0.446595i 0.837673 0.546173i \(-0.183916\pi\)
0.120053 + 0.992767i \(0.461694\pi\)
\(444\) 0 0
\(445\) −13.5526 + 3.25940i −0.642456 + 0.154510i
\(446\) 0 0
\(447\) −0.640124 7.31665i −0.0302768 0.346066i
\(448\) 0 0
\(449\) 5.53111 9.58017i 0.261029 0.452116i −0.705486 0.708724i \(-0.749271\pi\)
0.966516 + 0.256607i \(0.0826047\pi\)
\(450\) 0 0
\(451\) −43.8389 + 7.72997i −2.06429 + 0.363990i
\(452\) 0 0
\(453\) −13.5321 29.0198i −0.635795 1.36347i
\(454\) 0 0
\(455\) 3.47213 + 1.02699i 0.162776 + 0.0481461i
\(456\) 0 0
\(457\) −19.3619 + 19.3619i −0.905711 + 0.905711i −0.995923 0.0902119i \(-0.971246\pi\)
0.0902119 + 0.995923i \(0.471246\pi\)
\(458\) 0 0
\(459\) −24.7839 9.02060i −1.15681 0.421046i
\(460\) 0 0
\(461\) 3.18798 + 18.0799i 0.148479 + 0.842065i 0.964508 + 0.264054i \(0.0850598\pi\)
−0.816029 + 0.578011i \(0.803829\pi\)
\(462\) 0 0
\(463\) 32.4922 8.70627i 1.51004 0.404614i 0.593593 0.804766i \(-0.297709\pi\)
0.916449 + 0.400151i \(0.131042\pi\)
\(464\) 0 0
\(465\) 16.5154 + 3.35326i 0.765883 + 0.155504i
\(466\) 0 0
\(467\) −17.2230 4.61489i −0.796986 0.213552i −0.162726 0.986671i \(-0.552029\pi\)
−0.634260 + 0.773119i \(0.718695\pi\)
\(468\) 0 0
\(469\) −42.1285 + 15.3335i −1.94531 + 0.708035i
\(470\) 0 0
\(471\) −8.96735 1.58119i −0.413194 0.0728572i
\(472\) 0 0
\(473\) 13.3598 + 1.16883i 0.614283 + 0.0537428i
\(474\) 0 0
\(475\) 12.1429 + 18.0983i 0.557156 + 0.830408i
\(476\) 0 0
\(477\) 6.89991 + 0.603664i 0.315925 + 0.0276399i
\(478\) 0 0
\(479\) −2.38679 0.420856i −0.109055 0.0192294i 0.118854 0.992912i \(-0.462078\pi\)
−0.227909 + 0.973682i \(0.573189\pi\)
\(480\) 0 0
\(481\) −0.442598 + 0.161092i −0.0201807 + 0.00734518i
\(482\) 0 0
\(483\) 22.6732 + 6.07526i 1.03167 + 0.276434i
\(484\) 0 0
\(485\) −15.1697 3.08003i −0.688820 0.139857i
\(486\) 0 0
\(487\) −3.55271 + 0.951946i −0.160989 + 0.0431368i −0.338413 0.940998i \(-0.609890\pi\)
0.177424 + 0.984134i \(0.443223\pi\)
\(488\) 0 0
\(489\) 2.17884 + 12.3568i 0.0985304 + 0.558794i
\(490\) 0 0
\(491\) 16.1030 + 5.86101i 0.726718 + 0.264504i 0.678775 0.734346i \(-0.262511\pi\)
0.0479433 + 0.998850i \(0.484733\pi\)
\(492\) 0 0
\(493\) −14.4238 + 14.4238i −0.649616 + 0.649616i
\(494\) 0 0
\(495\) −13.0933 3.87276i −0.588502 0.174068i
\(496\) 0 0
\(497\) −17.3001 37.1002i −0.776016 1.66417i
\(498\) 0 0
\(499\) 14.1455 2.49424i 0.633241 0.111657i 0.152192 0.988351i \(-0.451367\pi\)
0.481049 + 0.876694i \(0.340256\pi\)
\(500\) 0 0
\(501\) 4.63988 8.03652i 0.207295 0.359045i
\(502\) 0 0
\(503\) −1.42794 16.3215i −0.0636688 0.727738i −0.959198 0.282735i \(-0.908758\pi\)
0.895529 0.445003i \(-0.146797\pi\)
\(504\) 0 0
\(505\) −13.0132 + 3.12966i −0.579079 + 0.139268i
\(506\) 0 0
\(507\) 23.7409 + 11.0706i 1.05437 + 0.491661i
\(508\) 0 0
\(509\) 4.01451 22.7674i 0.177940 1.00915i −0.756755 0.653698i \(-0.773217\pi\)
0.934695 0.355450i \(-0.115672\pi\)
\(510\) 0 0
\(511\) −33.9725 + 28.5063i −1.50286 + 1.26105i
\(512\) 0 0
\(513\) −13.8952 + 8.62003i −0.613489 + 0.380583i
\(514\) 0 0
\(515\) −23.6816 9.31755i −1.04354 0.410581i
\(516\) 0 0
\(517\) −9.81799 14.0215i −0.431795 0.616667i
\(518\) 0 0
\(519\) −2.54778 6.99997i −0.111835 0.307264i
\(520\) 0 0
\(521\) 15.5585 8.98273i 0.681632 0.393540i −0.118838 0.992914i \(-0.537917\pi\)
0.800470 + 0.599373i \(0.204583\pi\)
\(522\) 0 0
\(523\) 17.4782 1.52914i 0.764266 0.0668646i 0.301645 0.953420i \(-0.402464\pi\)
0.462622 + 0.886556i \(0.346909\pi\)
\(524\) 0 0
\(525\) −18.8797 36.9807i −0.823976 1.61397i
\(526\) 0 0
\(527\) −14.8993 + 21.2784i −0.649023 + 0.926902i
\(528\) 0 0
\(529\) −5.13378 + 14.1050i −0.223208 + 0.613259i
\(530\) 0 0
\(531\) 14.5151i 0.629900i
\(532\) 0 0
\(533\) 2.38039 + 2.38039i 0.103106 + 0.103106i
\(534\) 0 0
\(535\) 5.90960 0.885598i 0.255494 0.0382877i
\(536\) 0 0
\(537\) 18.6856 + 13.0838i 0.806343 + 0.564607i
\(538\) 0 0
\(539\) 43.6068 + 25.1764i 1.87828 + 1.08442i
\(540\) 0 0
\(541\) −11.9865 10.0579i −0.515339 0.432421i 0.347664 0.937619i \(-0.386975\pi\)
−0.863003 + 0.505198i \(0.831419\pi\)
\(542\) 0 0
\(543\) 10.2445 38.2329i 0.439633 1.64073i
\(544\) 0 0
\(545\) −2.10324 34.1648i −0.0900931 1.46346i
\(546\) 0 0
\(547\) 26.4714 18.5355i 1.13184 0.792520i 0.151228 0.988499i \(-0.451677\pi\)
0.980608 + 0.195979i \(0.0627885\pi\)
\(548\) 0 0
\(549\) −1.11995 1.33471i −0.0477984 0.0569639i
\(550\) 0 0
\(551\) 1.50044 + 12.5574i 0.0639207 + 0.534963i
\(552\) 0 0
\(553\) 4.41534 50.4675i 0.187759 2.14610i
\(554\) 0 0
\(555\) 4.83462 + 2.40806i 0.205218 + 0.102216i
\(556\) 0 0
\(557\) 8.31662 17.8351i 0.352387 0.755696i −0.647594 0.761986i \(-0.724225\pi\)
0.999980 + 0.00629033i \(0.00200229\pi\)
\(558\) 0 0
\(559\) −0.507085 0.878298i −0.0214474 0.0371480i
\(560\) 0 0
\(561\) 48.4866 57.7840i 2.04710 2.43964i
\(562\) 0 0
\(563\) 0.299976 + 1.11952i 0.0126425 + 0.0471823i 0.971959 0.235151i \(-0.0755584\pi\)
−0.959316 + 0.282333i \(0.908892\pi\)
\(564\) 0 0
\(565\) −30.2981 + 24.1199i −1.27465 + 1.01473i
\(566\) 0 0
\(567\) 41.0839 19.1577i 1.72536 0.804550i
\(568\) 0 0
\(569\) 10.4782 0.439270 0.219635 0.975582i \(-0.429513\pi\)
0.219635 + 0.975582i \(0.429513\pi\)
\(570\) 0 0
\(571\) 9.27426 0.388116 0.194058 0.980990i \(-0.437835\pi\)
0.194058 + 0.980990i \(0.437835\pi\)
\(572\) 0 0
\(573\) 36.2161 16.8879i 1.51295 0.705501i
\(574\) 0 0
\(575\) −13.0998 + 5.30479i −0.546300 + 0.221225i
\(576\) 0 0
\(577\) 10.6611 + 39.7878i 0.443828 + 1.65639i 0.719013 + 0.694996i \(0.244594\pi\)
−0.275186 + 0.961391i \(0.588739\pi\)
\(578\) 0 0
\(579\) −15.9199 + 18.9726i −0.661608 + 0.788474i
\(580\) 0 0
\(581\) 20.8342 + 36.0859i 0.864348 + 1.49709i
\(582\) 0 0
\(583\) 13.2616 28.4396i 0.549240 1.17785i
\(584\) 0 0
\(585\) 0.328028 + 0.979078i 0.0135623 + 0.0404799i
\(586\) 0 0
\(587\) −0.0480237 + 0.548913i −0.00198215 + 0.0226561i −0.997121 0.0758221i \(-0.975842\pi\)
0.995139 + 0.0984781i \(0.0313975\pi\)
\(588\) 0 0
\(589\) 4.65852 + 15.4164i 0.191951 + 0.635221i
\(590\) 0 0
\(591\) −0.128179 0.152757i −0.00527256 0.00628359i
\(592\) 0 0
\(593\) −8.04565 + 5.63362i −0.330395 + 0.231345i −0.726989 0.686649i \(-0.759081\pi\)
0.396594 + 0.917994i \(0.370192\pi\)
\(594\) 0 0
\(595\) 63.8796 3.93254i 2.61881 0.161218i
\(596\) 0 0
\(597\) −3.52208 + 13.1446i −0.144149 + 0.537972i
\(598\) 0 0
\(599\) −23.5760 19.7826i −0.963289 0.808295i 0.0181960 0.999834i \(-0.494208\pi\)
−0.981485 + 0.191539i \(0.938652\pi\)
\(600\) 0 0
\(601\) 36.2792 + 20.9458i 1.47986 + 0.854398i 0.999740 0.0228041i \(-0.00725940\pi\)
0.480121 + 0.877202i \(0.340593\pi\)
\(602\) 0 0
\(603\) −10.4728 7.33316i −0.426487 0.298629i
\(604\) 0 0
\(605\) −22.1532 + 29.9633i −0.900657 + 1.21818i
\(606\) 0 0
\(607\) −17.1418 17.1418i −0.695766 0.695766i 0.267728 0.963494i \(-0.413727\pi\)
−0.963494 + 0.267728i \(0.913727\pi\)
\(608\) 0 0
\(609\) 24.0936i 0.976321i
\(610\) 0 0
\(611\) −0.442730 + 1.21639i −0.0179109 + 0.0492099i
\(612\) 0 0
\(613\) −9.83494 + 14.0458i −0.397230 + 0.567303i −0.967089 0.254440i \(-0.918109\pi\)
0.569859 + 0.821742i \(0.306998\pi\)
\(614\) 0 0
\(615\) 0.995176 38.5906i 0.0401294 1.55612i
\(616\) 0 0
\(617\) −7.20414 + 0.630280i −0.290028 + 0.0253741i −0.231241 0.972896i \(-0.574279\pi\)
−0.0587865 + 0.998271i \(0.518723\pi\)
\(618\) 0 0
\(619\) 16.5254 9.54095i 0.664212 0.383483i −0.129668 0.991557i \(-0.541391\pi\)
0.793880 + 0.608074i \(0.208058\pi\)
\(620\) 0 0
\(621\) −3.62668 9.96423i −0.145534 0.399851i
\(622\) 0 0
\(623\) 14.5561 + 20.7882i 0.583176 + 0.832862i
\(624\) 0 0
\(625\) 22.4873 + 10.9235i 0.899490 + 0.436941i
\(626\) 0 0
\(627\) −9.57459 45.7761i −0.382372 1.82812i
\(628\) 0 0
\(629\) −6.37753 + 5.35138i −0.254289 + 0.213374i
\(630\) 0 0
\(631\) −5.30314 + 30.0756i −0.211115 + 1.19729i 0.676408 + 0.736527i \(0.263536\pi\)
−0.887523 + 0.460764i \(0.847575\pi\)
\(632\) 0 0
\(633\) −29.0765 13.5586i −1.15569 0.538905i
\(634\) 0 0
\(635\) −40.6120 24.8649i −1.61164 0.986733i
\(636\) 0 0
\(637\) −0.331876 3.79336i −0.0131494 0.150298i
\(638\) 0 0
\(639\) 5.83688 10.1098i 0.230903 0.399936i
\(640\) 0 0
\(641\) −3.58740 + 0.632556i −0.141694 + 0.0249844i −0.244045 0.969764i \(-0.578475\pi\)
0.102351 + 0.994748i \(0.467363\pi\)
\(642\) 0 0
\(643\) −1.31852 2.82757i −0.0519972 0.111508i 0.878593 0.477572i \(-0.158483\pi\)
−0.930590 + 0.366064i \(0.880705\pi\)
\(644\) 0 0
\(645\) −3.29861 + 11.1522i −0.129883 + 0.439118i
\(646\) 0 0
\(647\) 0.268782 0.268782i 0.0105669 0.0105669i −0.701804 0.712370i \(-0.747622\pi\)
0.712370 + 0.701804i \(0.247622\pi\)
\(648\) 0 0
\(649\) 61.7950 + 22.4916i 2.42567 + 0.882871i
\(650\) 0 0
\(651\) −5.32783 30.2156i −0.208814 1.18424i
\(652\) 0 0
\(653\) 24.9123 6.67522i 0.974893 0.261222i 0.264000 0.964523i \(-0.414958\pi\)
0.710892 + 0.703301i \(0.248291\pi\)
\(654\) 0 0
\(655\) −7.14858 + 4.73563i −0.279318 + 0.185036i
\(656\) 0 0
\(657\) −12.2160 3.27326i −0.476590 0.127702i
\(658\) 0 0
\(659\) −11.4747 + 4.17644i −0.446989 + 0.162691i −0.555701 0.831383i \(-0.687550\pi\)
0.108711 + 0.994073i \(0.465328\pi\)
\(660\) 0 0
\(661\) 17.7226 + 3.12498i 0.689330 + 0.121547i 0.507331 0.861751i \(-0.330632\pi\)
0.181999 + 0.983299i \(0.441743\pi\)
\(662\) 0 0
\(663\) −5.68269 0.497171i −0.220698 0.0193085i
\(664\) 0 0
\(665\) 22.5679 32.6366i 0.875146 1.26559i
\(666\) 0 0
\(667\) −8.16984 0.714769i −0.316338 0.0276760i
\(668\) 0 0
\(669\) −5.80593 1.02374i −0.224470 0.0395801i
\(670\) 0 0
\(671\) −7.41765 + 2.69981i −0.286355 + 0.104225i
\(672\) 0 0
\(673\) −19.6606 5.26805i −0.757861 0.203068i −0.140859 0.990030i \(-0.544986\pi\)
−0.617002 + 0.786961i \(0.711653\pi\)
\(674\) 0 0
\(675\) −8.79263 + 16.5683i −0.338428 + 0.637714i
\(676\) 0 0
\(677\) −31.7583 + 8.50962i −1.22057 + 0.327051i −0.810902 0.585182i \(-0.801023\pi\)
−0.409670 + 0.912234i \(0.634356\pi\)
\(678\) 0 0
\(679\) 4.89371 + 27.7536i 0.187803 + 1.06509i
\(680\) 0 0
\(681\) −45.7124 16.6379i −1.75170 0.637567i
\(682\) 0 0
\(683\) 0.945060 0.945060i 0.0361617 0.0361617i −0.688795 0.724956i \(-0.741860\pi\)
0.724956 + 0.688795i \(0.241860\pi\)
\(684\) 0 0
\(685\) 1.54452 + 2.84197i 0.0590133 + 0.108586i
\(686\) 0 0
\(687\) −4.02469 8.63099i −0.153552 0.329293i
\(688\) 0 0
\(689\) −2.33698 + 0.412073i −0.0890320 + 0.0156987i
\(690\) 0 0
\(691\) 2.61682 4.53247i 0.0995486 0.172423i −0.811949 0.583728i \(-0.801593\pi\)
0.911498 + 0.411305i \(0.134927\pi\)
\(692\) 0 0
\(693\) 2.16659 + 24.7643i 0.0823021 + 0.940717i
\(694\) 0 0
\(695\) −2.84044 11.8106i −0.107744 0.448001i
\(696\) 0 0
\(697\) 53.9280 + 25.1471i 2.04267 + 0.952513i
\(698\) 0 0
\(699\) 9.41363 53.3873i 0.356056 2.01929i
\(700\) 0 0
\(701\) 19.6502 16.4885i 0.742178 0.622761i −0.191244 0.981543i \(-0.561252\pi\)
0.933422 + 0.358781i \(0.116808\pi\)
\(702\) 0 0
\(703\) 0.163367 + 5.15897i 0.00616151 + 0.194574i
\(704\) 0 0
\(705\) 13.6104 5.92442i 0.512599 0.223127i
\(706\) 0 0
\(707\) 13.9767 + 19.9607i 0.525647 + 0.750701i
\(708\) 0 0
\(709\) −1.38818 3.81398i −0.0521340 0.143237i 0.910892 0.412644i \(-0.135395\pi\)
−0.963026 + 0.269407i \(0.913172\pi\)
\(710\) 0 0
\(711\) 12.5115 7.22351i 0.469217 0.270903i
\(712\) 0 0
\(713\) −10.4038 + 0.910216i −0.389626 + 0.0340879i
\(714\) 0 0
\(715\) 4.67652 + 0.120598i 0.174892 + 0.00451012i
\(716\) 0 0
\(717\) −25.6917 + 36.6915i −0.959473 + 1.37027i
\(718\) 0 0
\(719\) −15.8467 + 43.5384i −0.590981 + 1.62371i 0.177707 + 0.984083i \(0.443132\pi\)
−0.768688 + 0.639624i \(0.779090\pi\)
\(720\) 0 0
\(721\) 46.3323i 1.72551i
\(722\) 0 0
\(723\) −0.918742 0.918742i −0.0341684 0.0341684i
\(724\) 0 0
\(725\) 8.73961 + 11.5787i 0.324581 + 0.430021i
\(726\) 0 0
\(727\) −18.8800 13.2199i −0.700220 0.490299i 0.168438 0.985712i \(-0.446128\pi\)
−0.868657 + 0.495413i \(0.835017\pi\)
\(728\) 0 0
\(729\) −8.68564 5.01466i −0.321691 0.185728i
\(730\) 0 0
\(731\) −13.7322 11.5227i −0.507904 0.426182i
\(732\) 0 0
\(733\) −2.56734 + 9.58146i −0.0948270 + 0.353899i −0.996993 0.0774895i \(-0.975310\pi\)
0.902166 + 0.431389i \(0.141976\pi\)
\(734\) 0 0
\(735\) −28.9208 + 32.7153i −1.06676 + 1.20672i
\(736\) 0 0
\(737\) −47.4475 + 33.2231i −1.74775 + 1.22379i
\(738\) 0 0
\(739\) −21.0344 25.0678i −0.773762 0.922133i 0.224872 0.974388i \(-0.427804\pi\)
−0.998634 + 0.0522552i \(0.983359\pi\)
\(740\) 0 0
\(741\) −2.42039 + 2.57869i −0.0889151 + 0.0947306i
\(742\) 0 0
\(743\) 0.239017 2.73197i 0.00876867 0.100226i −0.990549 0.137159i \(-0.956203\pi\)
0.999318 + 0.0369322i \(0.0117586\pi\)
\(744\) 0 0
\(745\) 3.58953 7.20666i 0.131510 0.264031i
\(746\) 0 0
\(747\) −5.02186 + 10.7694i −0.183740 + 0.394033i
\(748\) 0 0
\(749\) −5.43964 9.42173i −0.198760 0.344262i
\(750\) 0 0
\(751\) −28.4315 + 33.8833i −1.03748 + 1.23642i −0.0663661 + 0.997795i \(0.521141\pi\)
−0.971112 + 0.238623i \(0.923304\pi\)
\(752\) 0 0
\(753\) 1.50334 + 5.61055i 0.0547849 + 0.204460i
\(754\) 0 0
\(755\) 3.95956 34.8759i 0.144103 1.26926i
\(756\) 0 0
\(757\) 38.3336 17.8752i 1.39326 0.649687i 0.426291 0.904586i \(-0.359820\pi\)
0.966968 + 0.254899i \(0.0820424\pi\)
\(758\) 0 0
\(759\) 30.3269 1.10080
\(760\) 0 0
\(761\) 11.9286 0.432412 0.216206 0.976348i \(-0.430632\pi\)
0.216206 + 0.976348i \(0.430632\pi\)
\(762\) 0 0
\(763\) −56.4801 + 26.3371i −2.04472 + 0.953467i
\(764\) 0 0
\(765\) 11.3674 + 14.2791i 0.410988 + 0.516262i
\(766\) 0 0
\(767\) −1.28712 4.80361i −0.0464753 0.173448i
\(768\) 0 0
\(769\) −19.7272 + 23.5099i −0.711380 + 0.847789i −0.993763 0.111512i \(-0.964431\pi\)
0.282383 + 0.959302i \(0.408875\pi\)
\(770\) 0 0
\(771\) 7.02843 + 12.1736i 0.253123 + 0.438421i
\(772\) 0 0
\(773\) 1.08502 2.32684i 0.0390255 0.0836906i −0.885828 0.464013i \(-0.846409\pi\)
0.924854 + 0.380322i \(0.124187\pi\)
\(774\) 0 0
\(775\) 13.5207 + 12.5882i 0.485678 + 0.452181i
\(776\) 0 0
\(777\) 0.857039 9.79600i 0.0307461 0.351430i
\(778\) 0 0
\(779\) 32.9245 16.6413i 1.17964 0.596235i
\(780\) 0 0
\(781\) −33.9959 40.5148i −1.21647 1.44973i
\(782\) 0 0
\(783\) −8.91569 + 6.24283i −0.318621 + 0.223101i
\(784\) 0 0
\(785\) −7.47842 6.61105i −0.266916 0.235959i
\(786\) 0 0
\(787\) −11.7654 + 43.9090i −0.419390 + 1.56519i 0.356486 + 0.934301i \(0.383975\pi\)
−0.775876 + 0.630885i \(0.782692\pi\)
\(788\) 0 0
\(789\) 35.4469 + 29.7435i 1.26194 + 1.05890i
\(790\) 0 0
\(791\) 61.0601 + 35.2531i 2.17105 + 1.25346i