Properties

Label 380.2.bh.a.13.7
Level $380$
Weight $2$
Character 380.13
Analytic conductor $3.034$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(13,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 27, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bh (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 13.7
Character \(\chi\) \(=\) 380.13
Dual form 380.2.bh.a.117.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.959290 - 0.447324i) q^{3} +(1.57989 + 1.58239i) q^{5} +(0.204631 + 0.763694i) q^{7} +(-1.20823 + 1.43991i) q^{9} +O(q^{10})\) \(q+(0.959290 - 0.447324i) q^{3} +(1.57989 + 1.58239i) q^{5} +(0.204631 + 0.763694i) q^{7} +(-1.20823 + 1.43991i) q^{9} +(2.14248 + 3.71088i) q^{11} +(-1.21768 + 2.61133i) q^{13} +(2.22341 + 0.811249i) q^{15} +(0.544538 - 6.22409i) q^{17} +(0.761826 - 4.29181i) q^{19} +(0.537919 + 0.641067i) q^{21} +(2.67802 - 1.87517i) q^{23} +(-0.00791432 + 4.99999i) q^{25} +(-1.33678 + 4.98893i) q^{27} +(-6.38036 - 5.35376i) q^{29} +(4.23651 + 2.44595i) q^{31} +(3.71522 + 2.60143i) q^{33} +(-0.885167 + 1.53036i) q^{35} +(-1.75916 - 1.75916i) q^{37} +3.04972i q^{39} +(0.896173 - 2.46221i) q^{41} +(5.40483 - 7.71890i) q^{43} +(-4.18735 + 0.363007i) q^{45} +(4.32309 - 0.378221i) q^{47} +(5.52082 - 3.18745i) q^{49} +(-2.26182 - 6.21429i) q^{51} +(-0.286216 - 0.408759i) q^{53} +(-2.48719 + 9.25301i) q^{55} +(-1.18902 - 4.45787i) q^{57} +(-9.10551 + 7.64043i) q^{59} +(-1.00870 + 5.72060i) q^{61} +(-1.34689 - 0.628064i) q^{63} +(-6.05594 + 2.19875i) q^{65} +(-0.376469 - 4.30306i) q^{67} +(1.73019 - 2.99678i) q^{69} +(-15.2125 + 2.68238i) q^{71} +(-5.98076 - 12.8258i) q^{73} +(2.22903 + 4.79998i) q^{75} +(-2.39556 + 2.39556i) q^{77} +(1.72702 + 0.628586i) q^{79} +(-0.0298904 - 0.169517i) q^{81} +(9.12912 - 2.44614i) q^{83} +(10.7092 - 8.97169i) q^{85} +(-8.51548 - 2.28172i) q^{87} +(-12.0968 + 4.40288i) q^{89} +(-2.24343 - 0.395577i) q^{91} +(5.15817 + 0.451282i) q^{93} +(7.99491 - 5.57507i) q^{95} +(-15.3386 - 1.34195i) q^{97} +(-7.93192 - 1.39861i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 6 q^{7} + 18 q^{15} - 18 q^{17} + 48 q^{21} - 36 q^{23} - 24 q^{25} - 60 q^{33} - 18 q^{35} - 12 q^{41} - 36 q^{43} + 18 q^{45} - 24 q^{47} + 96 q^{51} - 18 q^{53} + 72 q^{55} - 6 q^{57} - 24 q^{61} + 36 q^{63} + 90 q^{65} - 24 q^{67} + 18 q^{73} - 36 q^{77} - 30 q^{83} - 24 q^{85} - 72 q^{87} - 144 q^{91} - 132 q^{93} - 12 q^{95} - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.959290 0.447324i 0.553846 0.258263i −0.125484 0.992096i \(-0.540048\pi\)
0.679330 + 0.733833i \(0.262271\pi\)
\(4\) 0 0
\(5\) 1.57989 + 1.58239i 0.706547 + 0.707666i
\(6\) 0 0
\(7\) 0.204631 + 0.763694i 0.0773433 + 0.288649i 0.993754 0.111589i \(-0.0355940\pi\)
−0.916411 + 0.400238i \(0.868927\pi\)
\(8\) 0 0
\(9\) −1.20823 + 1.43991i −0.402742 + 0.479969i
\(10\) 0 0
\(11\) 2.14248 + 3.71088i 0.645982 + 1.11887i 0.984074 + 0.177760i \(0.0568851\pi\)
−0.338092 + 0.941113i \(0.609782\pi\)
\(12\) 0 0
\(13\) −1.21768 + 2.61133i −0.337724 + 0.724252i −0.999680 0.0252910i \(-0.991949\pi\)
0.661956 + 0.749543i \(0.269727\pi\)
\(14\) 0 0
\(15\) 2.22341 + 0.811249i 0.574082 + 0.209463i
\(16\) 0 0
\(17\) 0.544538 6.22409i 0.132070 1.50956i −0.584125 0.811664i \(-0.698562\pi\)
0.716195 0.697900i \(-0.245882\pi\)
\(18\) 0 0
\(19\) 0.761826 4.29181i 0.174775 0.984608i
\(20\) 0 0
\(21\) 0.537919 + 0.641067i 0.117384 + 0.139892i
\(22\) 0 0
\(23\) 2.67802 1.87517i 0.558406 0.391000i −0.260028 0.965601i \(-0.583732\pi\)
0.818434 + 0.574601i \(0.194843\pi\)
\(24\) 0 0
\(25\) −0.00791432 + 4.99999i −0.00158286 + 0.999999i
\(26\) 0 0
\(27\) −1.33678 + 4.98893i −0.257264 + 0.960121i
\(28\) 0 0
\(29\) −6.38036 5.35376i −1.18480 0.994168i −0.999935 0.0114049i \(-0.996370\pi\)
−0.184869 0.982763i \(-0.559186\pi\)
\(30\) 0 0
\(31\) 4.23651 + 2.44595i 0.760900 + 0.439306i 0.829619 0.558330i \(-0.188558\pi\)
−0.0687188 + 0.997636i \(0.521891\pi\)
\(32\) 0 0
\(33\) 3.71522 + 2.60143i 0.646738 + 0.452851i
\(34\) 0 0
\(35\) −0.885167 + 1.53036i −0.149621 + 0.258677i
\(36\) 0 0
\(37\) −1.75916 1.75916i −0.289204 0.289204i 0.547561 0.836766i \(-0.315556\pi\)
−0.836766 + 0.547561i \(0.815556\pi\)
\(38\) 0 0
\(39\) 3.04972i 0.488346i
\(40\) 0 0
\(41\) 0.896173 2.46221i 0.139959 0.384533i −0.849834 0.527051i \(-0.823298\pi\)
0.989792 + 0.142518i \(0.0455199\pi\)
\(42\) 0 0
\(43\) 5.40483 7.71890i 0.824230 1.17712i −0.157627 0.987499i \(-0.550385\pi\)
0.981857 0.189623i \(-0.0607266\pi\)
\(44\) 0 0
\(45\) −4.18735 + 0.363007i −0.624214 + 0.0541138i
\(46\) 0 0
\(47\) 4.32309 0.378221i 0.630588 0.0551693i 0.232618 0.972568i \(-0.425271\pi\)
0.397969 + 0.917399i \(0.369715\pi\)
\(48\) 0 0
\(49\) 5.52082 3.18745i 0.788689 0.455350i
\(50\) 0 0
\(51\) −2.26182 6.21429i −0.316718 0.870175i
\(52\) 0 0
\(53\) −0.286216 0.408759i −0.0393148 0.0561474i 0.799013 0.601313i \(-0.205356\pi\)
−0.838328 + 0.545166i \(0.816467\pi\)
\(54\) 0 0
\(55\) −2.48719 + 9.25301i −0.335372 + 1.24768i
\(56\) 0 0
\(57\) −1.18902 4.45787i −0.157489 0.590459i
\(58\) 0 0
\(59\) −9.10551 + 7.64043i −1.18544 + 0.994699i −0.185509 + 0.982643i \(0.559393\pi\)
−0.999927 + 0.0120561i \(0.996162\pi\)
\(60\) 0 0
\(61\) −1.00870 + 5.72060i −0.129150 + 0.732448i 0.849606 + 0.527418i \(0.176840\pi\)
−0.978756 + 0.205029i \(0.934271\pi\)
\(62\) 0 0
\(63\) −1.34689 0.628064i −0.169692 0.0791287i
\(64\) 0 0
\(65\) −6.05594 + 2.19875i −0.751146 + 0.272722i
\(66\) 0 0
\(67\) −0.376469 4.30306i −0.0459930 0.525702i −0.983888 0.178784i \(-0.942784\pi\)
0.937895 0.346918i \(-0.112772\pi\)
\(68\) 0 0
\(69\) 1.73019 2.99678i 0.208290 0.360769i
\(70\) 0 0
\(71\) −15.2125 + 2.68238i −1.80540 + 0.318340i −0.972114 0.234509i \(-0.924652\pi\)
−0.833282 + 0.552849i \(0.813541\pi\)
\(72\) 0 0
\(73\) −5.98076 12.8258i −0.699995 1.50114i −0.857969 0.513701i \(-0.828274\pi\)
0.157974 0.987443i \(-0.449504\pi\)
\(74\) 0 0
\(75\) 2.22903 + 4.79998i 0.257386 + 0.554254i
\(76\) 0 0
\(77\) −2.39556 + 2.39556i −0.272999 + 0.272999i
\(78\) 0 0
\(79\) 1.72702 + 0.628586i 0.194305 + 0.0707214i 0.437340 0.899296i \(-0.355921\pi\)
−0.243035 + 0.970018i \(0.578143\pi\)
\(80\) 0 0
\(81\) −0.0298904 0.169517i −0.00332115 0.0188352i
\(82\) 0 0
\(83\) 9.12912 2.44614i 1.00205 0.268499i 0.279746 0.960074i \(-0.409750\pi\)
0.722304 + 0.691575i \(0.243083\pi\)
\(84\) 0 0
\(85\) 10.7092 8.97169i 1.16158 0.973117i
\(86\) 0 0
\(87\) −8.51548 2.28172i −0.912955 0.244626i
\(88\) 0 0
\(89\) −12.0968 + 4.40288i −1.28226 + 0.466705i −0.891179 0.453652i \(-0.850121\pi\)
−0.391081 + 0.920356i \(0.627899\pi\)
\(90\) 0 0
\(91\) −2.24343 0.395577i −0.235175 0.0414677i
\(92\) 0 0
\(93\) 5.15817 + 0.451282i 0.534878 + 0.0467957i
\(94\) 0 0
\(95\) 7.99491 5.57507i 0.820261 0.571990i
\(96\) 0 0
\(97\) −15.3386 1.34195i −1.55740 0.136254i −0.724340 0.689443i \(-0.757855\pi\)
−0.833056 + 0.553189i \(0.813411\pi\)
\(98\) 0 0
\(99\) −7.93192 1.39861i −0.797188 0.140566i
\(100\) 0 0
\(101\) −2.23165 + 0.812253i −0.222057 + 0.0808222i −0.450653 0.892699i \(-0.648809\pi\)
0.228596 + 0.973521i \(0.426587\pi\)
\(102\) 0 0
\(103\) 12.0305 + 3.22356i 1.18540 + 0.317627i 0.797066 0.603892i \(-0.206384\pi\)
0.388334 + 0.921519i \(0.373051\pi\)
\(104\) 0 0
\(105\) −0.164567 + 1.86401i −0.0160600 + 0.181909i
\(106\) 0 0
\(107\) −0.562854 + 0.150816i −0.0544131 + 0.0145799i −0.285923 0.958253i \(-0.592300\pi\)
0.231510 + 0.972833i \(0.425633\pi\)
\(108\) 0 0
\(109\) −1.72790 9.79939i −0.165502 0.938611i −0.948545 0.316643i \(-0.897444\pi\)
0.783042 0.621968i \(-0.213667\pi\)
\(110\) 0 0
\(111\) −2.47446 0.900629i −0.234865 0.0854840i
\(112\) 0 0
\(113\) 4.74971 4.74971i 0.446816 0.446816i −0.447479 0.894294i \(-0.647678\pi\)
0.894294 + 0.447479i \(0.147678\pi\)
\(114\) 0 0
\(115\) 7.19822 + 1.27512i 0.671238 + 0.118905i
\(116\) 0 0
\(117\) −2.28883 4.90842i −0.211603 0.453783i
\(118\) 0 0
\(119\) 4.86473 0.857783i 0.445949 0.0786329i
\(120\) 0 0
\(121\) −3.68043 + 6.37469i −0.334585 + 0.579517i
\(122\) 0 0
\(123\) −0.241719 2.76286i −0.0217950 0.249118i
\(124\) 0 0
\(125\) −7.92444 + 7.88690i −0.708784 + 0.705426i
\(126\) 0 0
\(127\) 13.0840 + 6.10115i 1.16101 + 0.541389i 0.905053 0.425298i \(-0.139831\pi\)
0.255960 + 0.966687i \(0.417609\pi\)
\(128\) 0 0
\(129\) 1.73195 9.82238i 0.152490 0.864812i
\(130\) 0 0
\(131\) −0.690640 + 0.579516i −0.0603415 + 0.0506325i −0.672460 0.740134i \(-0.734762\pi\)
0.612118 + 0.790766i \(0.290318\pi\)
\(132\) 0 0
\(133\) 3.43352 0.296436i 0.297724 0.0257042i
\(134\) 0 0
\(135\) −10.0064 + 5.76664i −0.861214 + 0.496314i
\(136\) 0 0
\(137\) −9.71402 13.8731i −0.829925 1.18526i −0.980473 0.196653i \(-0.936993\pi\)
0.150548 0.988603i \(-0.451896\pi\)
\(138\) 0 0
\(139\) 2.65396 + 7.29169i 0.225106 + 0.618473i 0.999906 0.0137335i \(-0.00437166\pi\)
−0.774800 + 0.632206i \(0.782149\pi\)
\(140\) 0 0
\(141\) 3.97791 2.29665i 0.335000 0.193413i
\(142\) 0 0
\(143\) −12.2992 + 1.07604i −1.02851 + 0.0899829i
\(144\) 0 0
\(145\) −1.60852 18.5546i −0.133580 1.54087i
\(146\) 0 0
\(147\) 3.87025 5.52728i 0.319213 0.455883i
\(148\) 0 0
\(149\) −3.32479 + 9.13479i −0.272378 + 0.748351i 0.725794 + 0.687912i \(0.241472\pi\)
−0.998172 + 0.0604394i \(0.980750\pi\)
\(150\) 0 0
\(151\) 2.54056i 0.206748i 0.994643 + 0.103374i \(0.0329638\pi\)
−0.994643 + 0.103374i \(0.967036\pi\)
\(152\) 0 0
\(153\) 8.30419 + 8.30419i 0.671354 + 0.671354i
\(154\) 0 0
\(155\) 2.82276 + 10.5681i 0.226730 + 0.848853i
\(156\) 0 0
\(157\) 8.63056 + 6.04318i 0.688794 + 0.482299i 0.864817 0.502088i \(-0.167434\pi\)
−0.176023 + 0.984386i \(0.556323\pi\)
\(158\) 0 0
\(159\) −0.457412 0.264087i −0.0362751 0.0209435i
\(160\) 0 0
\(161\) 1.98006 + 1.66147i 0.156051 + 0.130942i
\(162\) 0 0
\(163\) 0.529807 1.97727i 0.0414977 0.154871i −0.942068 0.335422i \(-0.891121\pi\)
0.983566 + 0.180550i \(0.0577879\pi\)
\(164\) 0 0
\(165\) 1.75316 + 9.98890i 0.136483 + 0.777635i
\(166\) 0 0
\(167\) 12.0210 8.41717i 0.930210 0.651340i −0.00704874 0.999975i \(-0.502244\pi\)
0.937258 + 0.348635i \(0.113355\pi\)
\(168\) 0 0
\(169\) 3.01996 + 3.59905i 0.232305 + 0.276850i
\(170\) 0 0
\(171\) 5.25935 + 6.28243i 0.402192 + 0.480429i
\(172\) 0 0
\(173\) −2.06684 + 23.6241i −0.157139 + 1.79611i 0.352596 + 0.935776i \(0.385299\pi\)
−0.509735 + 0.860332i \(0.670256\pi\)
\(174\) 0 0
\(175\) −3.82008 + 1.01711i −0.288771 + 0.0768863i
\(176\) 0 0
\(177\) −5.31707 + 11.4025i −0.399655 + 0.857064i
\(178\) 0 0
\(179\) 0.252534 + 0.437403i 0.0188753 + 0.0326930i 0.875309 0.483564i \(-0.160658\pi\)
−0.856433 + 0.516257i \(0.827325\pi\)
\(180\) 0 0
\(181\) 5.94759 7.08806i 0.442081 0.526851i −0.498286 0.867012i \(-0.666037\pi\)
0.940367 + 0.340161i \(0.110482\pi\)
\(182\) 0 0
\(183\) 1.59133 + 5.93892i 0.117634 + 0.439018i
\(184\) 0 0
\(185\) 0.00440270 5.56295i 0.000323693 0.408996i
\(186\) 0 0
\(187\) 24.2635 11.3143i 1.77433 0.827381i
\(188\) 0 0
\(189\) −4.08357 −0.297036
\(190\) 0 0
\(191\) −10.1212 −0.732344 −0.366172 0.930547i \(-0.619332\pi\)
−0.366172 + 0.930547i \(0.619332\pi\)
\(192\) 0 0
\(193\) 12.6672 5.90682i 0.911806 0.425182i 0.0906480 0.995883i \(-0.471106\pi\)
0.821158 + 0.570701i \(0.193328\pi\)
\(194\) 0 0
\(195\) −4.82584 + 4.81821i −0.345586 + 0.345039i
\(196\) 0 0
\(197\) 4.65700 + 17.3802i 0.331798 + 1.23829i 0.907299 + 0.420485i \(0.138140\pi\)
−0.575502 + 0.817801i \(0.695193\pi\)
\(198\) 0 0
\(199\) −0.246173 + 0.293378i −0.0174508 + 0.0207970i −0.774699 0.632330i \(-0.782099\pi\)
0.757248 + 0.653127i \(0.226543\pi\)
\(200\) 0 0
\(201\) −2.28600 3.95947i −0.161242 0.279280i
\(202\) 0 0
\(203\) 2.78301 5.96819i 0.195329 0.418885i
\(204\) 0 0
\(205\) 5.31203 2.47193i 0.371008 0.172647i
\(206\) 0 0
\(207\) −0.535582 + 6.12173i −0.0372255 + 0.425490i
\(208\) 0 0
\(209\) 17.5586 6.36806i 1.21455 0.440488i
\(210\) 0 0
\(211\) 6.35759 + 7.57668i 0.437675 + 0.521600i 0.939120 0.343589i \(-0.111643\pi\)
−0.501446 + 0.865189i \(0.667198\pi\)
\(212\) 0 0
\(213\) −13.3933 + 9.37811i −0.917696 + 0.642578i
\(214\) 0 0
\(215\) 20.7533 3.64244i 1.41537 0.248412i
\(216\) 0 0
\(217\) −1.00104 + 3.73592i −0.0679547 + 0.253610i
\(218\) 0 0
\(219\) −11.4746 9.62830i −0.775379 0.650620i
\(220\) 0 0
\(221\) 15.5901 + 9.00093i 1.04870 + 0.605468i
\(222\) 0 0
\(223\) 6.43140 + 4.50331i 0.430678 + 0.301564i 0.768742 0.639559i \(-0.220883\pi\)
−0.338064 + 0.941123i \(0.609772\pi\)
\(224\) 0 0
\(225\) −7.18996 6.05251i −0.479331 0.403501i
\(226\) 0 0
\(227\) −19.1073 19.1073i −1.26820 1.26820i −0.947018 0.321181i \(-0.895920\pi\)
−0.321181 0.947018i \(-0.604080\pi\)
\(228\) 0 0
\(229\) 14.4257i 0.953279i 0.879099 + 0.476640i \(0.158145\pi\)
−0.879099 + 0.476640i \(0.841855\pi\)
\(230\) 0 0
\(231\) −1.22644 + 3.36963i −0.0806941 + 0.221705i
\(232\) 0 0
\(233\) −4.07581 + 5.82086i −0.267015 + 0.381337i −0.930160 0.367154i \(-0.880332\pi\)
0.663145 + 0.748491i \(0.269221\pi\)
\(234\) 0 0
\(235\) 7.42849 + 6.24327i 0.484581 + 0.407266i
\(236\) 0 0
\(237\) 1.93790 0.169544i 0.125880 0.0110131i
\(238\) 0 0
\(239\) −14.3994 + 8.31351i −0.931422 + 0.537756i −0.887261 0.461268i \(-0.847395\pi\)
−0.0441606 + 0.999024i \(0.514061\pi\)
\(240\) 0 0
\(241\) 0.560232 + 1.53922i 0.0360877 + 0.0991501i 0.956428 0.291969i \(-0.0943103\pi\)
−0.920340 + 0.391119i \(0.872088\pi\)
\(242\) 0 0
\(243\) −8.99194 12.8418i −0.576833 0.823803i
\(244\) 0 0
\(245\) 13.7661 + 3.70029i 0.879482 + 0.236403i
\(246\) 0 0
\(247\) 10.2797 + 7.21543i 0.654079 + 0.459107i
\(248\) 0 0
\(249\) 7.66325 6.43023i 0.485639 0.407499i
\(250\) 0 0
\(251\) 0.267163 1.51516i 0.0168632 0.0956358i −0.975215 0.221261i \(-0.928983\pi\)
0.992078 + 0.125625i \(0.0400938\pi\)
\(252\) 0 0
\(253\) 12.6961 + 5.92031i 0.798200 + 0.372207i
\(254\) 0 0
\(255\) 6.26002 13.3970i 0.392017 0.838950i
\(256\) 0 0
\(257\) −0.886586 10.1337i −0.0553037 0.632124i −0.972379 0.233409i \(-0.925012\pi\)
0.917075 0.398715i \(-0.130544\pi\)
\(258\) 0 0
\(259\) 0.983481 1.70344i 0.0611105 0.105847i
\(260\) 0 0
\(261\) 15.4178 2.71858i 0.954339 0.168276i
\(262\) 0 0
\(263\) −7.47170 16.0231i −0.460725 0.988028i −0.990194 0.139699i \(-0.955387\pi\)
0.529469 0.848329i \(-0.322391\pi\)
\(264\) 0 0
\(265\) 0.194627 1.09870i 0.0119558 0.0674926i
\(266\) 0 0
\(267\) −9.63484 + 9.63484i −0.589643 + 0.589643i
\(268\) 0 0
\(269\) 23.2323 + 8.45587i 1.41650 + 0.515564i 0.933030 0.359798i \(-0.117154\pi\)
0.483469 + 0.875362i \(0.339377\pi\)
\(270\) 0 0
\(271\) −4.51647 25.6142i −0.274356 1.55595i −0.741001 0.671504i \(-0.765648\pi\)
0.466645 0.884445i \(-0.345463\pi\)
\(272\) 0 0
\(273\) −2.32905 + 0.624067i −0.140961 + 0.0377703i
\(274\) 0 0
\(275\) −18.5713 + 10.6830i −1.11989 + 0.644210i
\(276\) 0 0
\(277\) 7.12392 + 1.90885i 0.428035 + 0.114692i 0.466404 0.884572i \(-0.345549\pi\)
−0.0383686 + 0.999264i \(0.512216\pi\)
\(278\) 0 0
\(279\) −8.64060 + 3.14492i −0.517299 + 0.188282i
\(280\) 0 0
\(281\) 0.322784 + 0.0569155i 0.0192557 + 0.00339529i 0.183268 0.983063i \(-0.441332\pi\)
−0.164012 + 0.986458i \(0.552444\pi\)
\(282\) 0 0
\(283\) −14.6742 1.28383i −0.872292 0.0763157i −0.357787 0.933803i \(-0.616469\pi\)
−0.514505 + 0.857487i \(0.672024\pi\)
\(284\) 0 0
\(285\) 5.17558 8.92442i 0.306575 0.528637i
\(286\) 0 0
\(287\) 2.06376 + 0.180556i 0.121820 + 0.0106579i
\(288\) 0 0
\(289\) −21.7011 3.82648i −1.27653 0.225087i
\(290\) 0 0
\(291\) −15.3144 + 5.57399i −0.897747 + 0.326753i
\(292\) 0 0
\(293\) −22.4984 6.02843i −1.31437 0.352185i −0.467505 0.883990i \(-0.654847\pi\)
−0.846866 + 0.531806i \(0.821514\pi\)
\(294\) 0 0
\(295\) −26.4758 2.33745i −1.54148 0.136091i
\(296\) 0 0
\(297\) −21.3774 + 5.72805i −1.24044 + 0.332375i
\(298\) 0 0
\(299\) 1.63571 + 9.27655i 0.0945953 + 0.536477i
\(300\) 0 0
\(301\) 7.00088 + 2.54811i 0.403524 + 0.146871i
\(302\) 0 0
\(303\) −1.77745 + 1.77745i −0.102112 + 0.102112i
\(304\) 0 0
\(305\) −10.6458 + 7.44175i −0.609579 + 0.426113i
\(306\) 0 0
\(307\) 5.73116 + 12.2905i 0.327095 + 0.701457i 0.999241 0.0389619i \(-0.0124051\pi\)
−0.672146 + 0.740419i \(0.734627\pi\)
\(308\) 0 0
\(309\) 12.9827 2.28920i 0.738561 0.130228i
\(310\) 0 0
\(311\) 7.69889 13.3349i 0.436564 0.756151i −0.560858 0.827912i \(-0.689529\pi\)
0.997422 + 0.0717609i \(0.0228619\pi\)
\(312\) 0 0
\(313\) −0.815098 9.31661i −0.0460721 0.526606i −0.983804 0.179247i \(-0.942634\pi\)
0.937732 0.347359i \(-0.112922\pi\)
\(314\) 0 0
\(315\) −1.13409 3.12357i −0.0638987 0.175993i
\(316\) 0 0
\(317\) −7.07467 3.29897i −0.397353 0.185289i 0.213662 0.976908i \(-0.431461\pi\)
−0.611015 + 0.791619i \(0.709239\pi\)
\(318\) 0 0
\(319\) 6.19738 35.1471i 0.346987 1.96786i
\(320\) 0 0
\(321\) −0.472476 + 0.396454i −0.0263710 + 0.0221279i
\(322\) 0 0
\(323\) −26.2978 7.07873i −1.46325 0.393871i
\(324\) 0 0
\(325\) −13.0470 6.10907i −0.723716 0.338870i
\(326\) 0 0
\(327\) −6.04105 8.62752i −0.334071 0.477103i
\(328\) 0 0
\(329\) 1.17348 + 3.22412i 0.0646963 + 0.177752i
\(330\) 0 0
\(331\) 16.9436 9.78241i 0.931306 0.537690i 0.0440818 0.999028i \(-0.485964\pi\)
0.887224 + 0.461338i \(0.152630\pi\)
\(332\) 0 0
\(333\) 4.65849 0.407565i 0.255284 0.0223344i
\(334\) 0 0
\(335\) 6.21433 7.39406i 0.339525 0.403981i
\(336\) 0 0
\(337\) −19.3607 + 27.6500i −1.05465 + 1.50619i −0.205054 + 0.978751i \(0.565737\pi\)
−0.849592 + 0.527440i \(0.823152\pi\)
\(338\) 0 0
\(339\) 2.43169 6.68101i 0.132071 0.362863i
\(340\) 0 0
\(341\) 20.9616i 1.13513i
\(342\) 0 0
\(343\) 7.47741 + 7.47741i 0.403742 + 0.403742i
\(344\) 0 0
\(345\) 7.47557 1.99673i 0.402471 0.107501i
\(346\) 0 0
\(347\) 5.41721 + 3.79317i 0.290811 + 0.203628i 0.709873 0.704329i \(-0.248752\pi\)
−0.419062 + 0.907958i \(0.637641\pi\)
\(348\) 0 0
\(349\) 30.1248 + 17.3926i 1.61255 + 0.931004i 0.988778 + 0.149395i \(0.0477325\pi\)
0.623768 + 0.781609i \(0.285601\pi\)
\(350\) 0 0
\(351\) −11.4000 9.56570i −0.608485 0.510580i
\(352\) 0 0
\(353\) −3.09322 + 11.5440i −0.164635 + 0.614427i 0.833451 + 0.552593i \(0.186362\pi\)
−0.998086 + 0.0618342i \(0.980305\pi\)
\(354\) 0 0
\(355\) −28.2787 19.8343i −1.50088 1.05270i
\(356\) 0 0
\(357\) 4.28298 2.99897i 0.226679 0.158723i
\(358\) 0 0
\(359\) 11.0702 + 13.1929i 0.584261 + 0.696295i 0.974492 0.224422i \(-0.0720494\pi\)
−0.390231 + 0.920717i \(0.627605\pi\)
\(360\) 0 0
\(361\) −17.8392 6.53922i −0.938907 0.344170i
\(362\) 0 0
\(363\) −0.679045 + 7.76152i −0.0356406 + 0.407374i
\(364\) 0 0
\(365\) 10.8465 29.7272i 0.567730 1.55599i
\(366\) 0 0
\(367\) 0.100871 0.216319i 0.00526543 0.0112917i −0.903657 0.428256i \(-0.859128\pi\)
0.908923 + 0.416964i \(0.136906\pi\)
\(368\) 0 0
\(369\) 2.46258 + 4.26531i 0.128197 + 0.222043i
\(370\) 0 0
\(371\) 0.253598 0.302226i 0.0131662 0.0156908i
\(372\) 0 0
\(373\) −1.72019 6.41983i −0.0890679 0.332406i 0.906985 0.421162i \(-0.138378\pi\)
−0.996053 + 0.0887559i \(0.971711\pi\)
\(374\) 0 0
\(375\) −4.07383 + 11.1106i −0.210372 + 0.573750i
\(376\) 0 0
\(377\) 21.7497 10.1420i 1.12016 0.522341i
\(378\) 0 0
\(379\) 20.9801 1.07767 0.538837 0.842410i \(-0.318864\pi\)
0.538837 + 0.842410i \(0.318864\pi\)
\(380\) 0 0
\(381\) 15.2805 0.782843
\(382\) 0 0
\(383\) −20.2321 + 9.43439i −1.03381 + 0.482075i −0.864048 0.503410i \(-0.832079\pi\)
−0.169765 + 0.985485i \(0.554301\pi\)
\(384\) 0 0
\(385\) −7.57542 0.00599543i −0.386079 0.000305556i
\(386\) 0 0
\(387\) 4.58424 + 17.1086i 0.233030 + 0.869680i
\(388\) 0 0
\(389\) 5.52075 6.57937i 0.279913 0.333587i −0.607709 0.794160i \(-0.707911\pi\)
0.887622 + 0.460572i \(0.152356\pi\)
\(390\) 0 0
\(391\) −10.2130 17.6894i −0.516491 0.894589i
\(392\) 0 0
\(393\) −0.403292 + 0.864863i −0.0203434 + 0.0436266i
\(394\) 0 0
\(395\) 1.73384 + 3.72592i 0.0872388 + 0.187471i
\(396\) 0 0
\(397\) −2.16676 + 24.7662i −0.108747 + 1.24298i 0.724185 + 0.689606i \(0.242216\pi\)
−0.832932 + 0.553376i \(0.813339\pi\)
\(398\) 0 0
\(399\) 3.16114 1.82026i 0.158255 0.0911272i
\(400\) 0 0
\(401\) −20.7376 24.7141i −1.03558 1.23416i −0.971704 0.236204i \(-0.924097\pi\)
−0.0638807 0.997958i \(-0.520348\pi\)
\(402\) 0 0
\(403\) −11.5459 + 8.08453i −0.575142 + 0.402719i
\(404\) 0 0
\(405\) 0.221018 0.315115i 0.0109825 0.0156582i
\(406\) 0 0
\(407\) 2.75907 10.2970i 0.136762 0.510403i
\(408\) 0 0
\(409\) −10.6992 8.97770i −0.529042 0.443919i 0.338729 0.940884i \(-0.390003\pi\)
−0.867770 + 0.496965i \(0.834448\pi\)
\(410\) 0 0
\(411\) −15.5243 8.96297i −0.765758 0.442111i
\(412\) 0 0
\(413\) −7.69822 5.39035i −0.378804 0.265242i
\(414\) 0 0
\(415\) 18.2937 + 10.5812i 0.898003 + 0.519410i
\(416\) 0 0
\(417\) 5.80766 + 5.80766i 0.284402 + 0.284402i
\(418\) 0 0
\(419\) 14.0602i 0.686885i −0.939174 0.343442i \(-0.888407\pi\)
0.939174 0.343442i \(-0.111593\pi\)
\(420\) 0 0
\(421\) −0.956778 + 2.62873i −0.0466305 + 0.128116i −0.960822 0.277166i \(-0.910605\pi\)
0.914191 + 0.405283i \(0.132827\pi\)
\(422\) 0 0
\(423\) −4.67866 + 6.68182i −0.227484 + 0.324881i
\(424\) 0 0
\(425\) 31.1161 + 2.77194i 1.50935 + 0.134459i
\(426\) 0 0
\(427\) −4.57520 + 0.400278i −0.221409 + 0.0193708i
\(428\) 0 0
\(429\) −11.3171 + 6.53395i −0.546397 + 0.315462i
\(430\) 0 0
\(431\) 4.10004 + 11.2648i 0.197492 + 0.542605i 0.998422 0.0561529i \(-0.0178834\pi\)
−0.800930 + 0.598758i \(0.795661\pi\)
\(432\) 0 0
\(433\) −12.6971 18.1333i −0.610184 0.871433i 0.388566 0.921421i \(-0.372970\pi\)
−0.998750 + 0.0499883i \(0.984082\pi\)
\(434\) 0 0
\(435\) −9.84293 17.0797i −0.471933 0.818907i
\(436\) 0 0
\(437\) −6.00769 12.9221i −0.287387 0.618148i
\(438\) 0 0
\(439\) −22.1872 + 18.6173i −1.05894 + 0.888554i −0.994005 0.109336i \(-0.965128\pi\)
−0.0649322 + 0.997890i \(0.520683\pi\)
\(440\) 0 0
\(441\) −2.08077 + 11.8006i −0.0990842 + 0.561935i
\(442\) 0 0
\(443\) −5.11419 2.38479i −0.242983 0.113305i 0.297313 0.954780i \(-0.403910\pi\)
−0.540295 + 0.841476i \(0.681687\pi\)
\(444\) 0 0
\(445\) −26.0787 12.1858i −1.23625 0.577664i
\(446\) 0 0
\(447\) 0.896774 + 10.2502i 0.0424159 + 0.484816i
\(448\) 0 0
\(449\) 11.1013 19.2281i 0.523904 0.907429i −0.475709 0.879603i \(-0.657808\pi\)
0.999613 0.0278258i \(-0.00885837\pi\)
\(450\) 0 0
\(451\) 11.0570 1.94965i 0.520654 0.0918054i
\(452\) 0 0
\(453\) 1.13645 + 2.43713i 0.0533952 + 0.114506i
\(454\) 0 0
\(455\) −2.91841 4.17495i −0.136817 0.195725i
\(456\) 0 0
\(457\) −24.1927 + 24.1927i −1.13169 + 1.13169i −0.141791 + 0.989897i \(0.545286\pi\)
−0.989897 + 0.141791i \(0.954714\pi\)
\(458\) 0 0
\(459\) 30.3237 + 11.0369i 1.41539 + 0.515159i
\(460\) 0 0
\(461\) −0.595868 3.37934i −0.0277524 0.157391i 0.967782 0.251789i \(-0.0810188\pi\)
−0.995535 + 0.0943971i \(0.969908\pi\)
\(462\) 0 0
\(463\) −4.85716 + 1.30147i −0.225731 + 0.0604845i −0.369912 0.929067i \(-0.620612\pi\)
0.144180 + 0.989551i \(0.453945\pi\)
\(464\) 0 0
\(465\) 7.43523 + 8.87522i 0.344801 + 0.411578i
\(466\) 0 0
\(467\) 22.1463 + 5.93409i 1.02481 + 0.274597i 0.731805 0.681514i \(-0.238678\pi\)
0.293004 + 0.956111i \(0.405345\pi\)
\(468\) 0 0
\(469\) 3.20918 1.16805i 0.148186 0.0539353i
\(470\) 0 0
\(471\) 10.9825 + 1.93651i 0.506045 + 0.0892295i
\(472\) 0 0
\(473\) 40.2237 + 3.51912i 1.84949 + 0.161809i
\(474\) 0 0
\(475\) 21.4530 + 3.84309i 0.984331 + 0.176333i
\(476\) 0 0
\(477\) 0.934389 + 0.0817484i 0.0427827 + 0.00374300i
\(478\) 0 0
\(479\) −38.4413 6.77824i −1.75643 0.309706i −0.799638 0.600482i \(-0.794975\pi\)
−0.956791 + 0.290777i \(0.906086\pi\)
\(480\) 0 0
\(481\) 6.73584 2.45164i 0.307128 0.111785i
\(482\) 0 0
\(483\) 2.64267 + 0.708101i 0.120246 + 0.0322197i
\(484\) 0 0
\(485\) −22.1097 26.3917i −1.00395 1.19839i
\(486\) 0 0
\(487\) 10.8774 2.91459i 0.492901 0.132073i −0.00380224 0.999993i \(-0.501210\pi\)
0.496704 + 0.867920i \(0.334544\pi\)
\(488\) 0 0
\(489\) −0.376241 2.13377i −0.0170142 0.0964923i
\(490\) 0 0
\(491\) 1.88535 + 0.686210i 0.0850845 + 0.0309682i 0.384212 0.923245i \(-0.374473\pi\)
−0.299127 + 0.954213i \(0.596695\pi\)
\(492\) 0 0
\(493\) −36.7966 + 36.7966i −1.65724 + 1.65724i
\(494\) 0 0
\(495\) −10.3184 14.7610i −0.463777 0.663459i
\(496\) 0 0
\(497\) −5.16147 11.0688i −0.231524 0.496504i
\(498\) 0 0
\(499\) −15.7656 + 2.77990i −0.705765 + 0.124445i −0.515000 0.857190i \(-0.672208\pi\)
−0.190765 + 0.981636i \(0.561097\pi\)
\(500\) 0 0
\(501\) 7.76638 13.4518i 0.346976 0.600981i
\(502\) 0 0
\(503\) −1.62410 18.5635i −0.0724149 0.827706i −0.942369 0.334574i \(-0.891408\pi\)
0.869954 0.493132i \(-0.164148\pi\)
\(504\) 0 0
\(505\) −4.81105 2.24807i −0.214089 0.100038i
\(506\) 0 0
\(507\) 4.50696 + 2.10163i 0.200161 + 0.0933367i
\(508\) 0 0
\(509\) −1.88210 + 10.6739i −0.0834226 + 0.473113i 0.914263 + 0.405121i \(0.132770\pi\)
−0.997686 + 0.0679925i \(0.978341\pi\)
\(510\) 0 0
\(511\) 8.57112 7.19202i 0.379164 0.318156i
\(512\) 0 0
\(513\) 20.3932 + 9.53791i 0.900380 + 0.421109i
\(514\) 0 0
\(515\) 13.9059 + 24.1298i 0.612767 + 1.06329i
\(516\) 0 0
\(517\) 10.6657 + 15.2321i 0.469075 + 0.669909i
\(518\) 0 0
\(519\) 8.58493 + 23.5869i 0.376837 + 1.03535i
\(520\) 0 0
\(521\) −21.5216 + 12.4255i −0.942879 + 0.544372i −0.890862 0.454274i \(-0.849899\pi\)
−0.0520176 + 0.998646i \(0.516565\pi\)
\(522\) 0 0
\(523\) 0.649209 0.0567984i 0.0283879 0.00248362i −0.0729529 0.997335i \(-0.523242\pi\)
0.101341 + 0.994852i \(0.467687\pi\)
\(524\) 0 0
\(525\) −3.20959 + 2.68452i −0.140078 + 0.117162i
\(526\) 0 0
\(527\) 17.5308 25.0365i 0.763652 1.09061i
\(528\) 0 0
\(529\) −4.21093 + 11.5694i −0.183084 + 0.503019i
\(530\) 0 0
\(531\) 22.3424i 0.969579i
\(532\) 0 0
\(533\) 5.33839 + 5.33839i 0.231231 + 0.231231i
\(534\) 0 0
\(535\) −1.12790 0.652381i −0.0487632 0.0282049i
\(536\) 0 0
\(537\) 0.437914 + 0.306631i 0.0188974 + 0.0132321i
\(538\) 0 0
\(539\) 23.6565 + 13.6581i 1.01896 + 0.588295i
\(540\) 0 0
\(541\) 27.6333 + 23.1871i 1.18805 + 0.996892i 0.999891 + 0.0147531i \(0.00469623\pi\)
0.188158 + 0.982139i \(0.439748\pi\)
\(542\) 0 0
\(543\) 2.53480 9.46000i 0.108779 0.405968i
\(544\) 0 0
\(545\) 12.7766 18.2161i 0.547288 0.780293i
\(546\) 0 0
\(547\) 18.0766 12.6574i 0.772900 0.541190i −0.119285 0.992860i \(-0.538060\pi\)
0.892185 + 0.451670i \(0.149171\pi\)
\(548\) 0 0
\(549\) −7.01839 8.36420i −0.299538 0.356975i
\(550\) 0 0
\(551\) −27.8380 + 23.3047i −1.18594 + 0.992812i
\(552\) 0 0
\(553\) −0.126644 + 1.44755i −0.00538545 + 0.0615559i
\(554\) 0 0
\(555\) −2.48422 5.33845i −0.105449 0.226605i
\(556\) 0 0
\(557\) −6.59144 + 14.1354i −0.279288 + 0.598936i −0.995046 0.0994127i \(-0.968304\pi\)
0.715758 + 0.698348i \(0.246081\pi\)
\(558\) 0 0
\(559\) 13.5752 + 23.5130i 0.574170 + 0.994492i
\(560\) 0 0
\(561\) 18.2146 21.7073i 0.769021 0.916484i
\(562\) 0 0
\(563\) 1.66914 + 6.22932i 0.0703459 + 0.262535i 0.992138 0.125151i \(-0.0399414\pi\)
−0.921792 + 0.387685i \(0.873275\pi\)
\(564\) 0 0
\(565\) 15.0199 + 0.0118872i 0.631892 + 0.000500100i
\(566\) 0 0
\(567\) 0.123342 0.0575155i 0.00517989 0.00241542i
\(568\) 0 0
\(569\) 12.7396 0.534072 0.267036 0.963687i \(-0.413956\pi\)
0.267036 + 0.963687i \(0.413956\pi\)
\(570\) 0 0
\(571\) 23.7038 0.991971 0.495986 0.868331i \(-0.334807\pi\)
0.495986 + 0.868331i \(0.334807\pi\)
\(572\) 0 0
\(573\) −9.70916 + 4.52746i −0.405606 + 0.189137i
\(574\) 0 0
\(575\) 9.35465 + 13.4049i 0.390116 + 0.559024i
\(576\) 0 0
\(577\) −8.39386 31.3263i −0.349441 1.30413i −0.887337 0.461121i \(-0.847447\pi\)
0.537896 0.843011i \(-0.319219\pi\)
\(578\) 0 0
\(579\) 9.50926 11.3327i 0.395192 0.470971i
\(580\) 0 0
\(581\) 3.73620 + 6.47129i 0.155004 + 0.268474i
\(582\) 0 0
\(583\) 0.903645 1.93787i 0.0374252 0.0802585i
\(584\) 0 0
\(585\) 4.15093 11.3766i 0.171620 0.470363i
\(586\) 0 0
\(587\) −0.938603 + 10.7283i −0.0387403 + 0.442804i 0.951910 + 0.306378i \(0.0991171\pi\)
−0.990650 + 0.136426i \(0.956438\pi\)
\(588\) 0 0
\(589\) 13.7250 16.3189i 0.565530 0.672409i
\(590\) 0 0
\(591\) 12.2420 + 14.5894i 0.503568 + 0.600129i
\(592\) 0 0
\(593\) −23.4640 + 16.4297i −0.963551 + 0.674686i −0.945661 0.325154i \(-0.894584\pi\)
−0.0178902 + 0.999840i \(0.505695\pi\)
\(594\) 0 0
\(595\) 9.04307 + 6.34270i 0.370730 + 0.260025i
\(596\) 0 0
\(597\) −0.104916 + 0.391554i −0.00429395 + 0.0160252i
\(598\) 0 0
\(599\) 31.3416 + 26.2988i 1.28058 + 1.07454i 0.993163 + 0.116734i \(0.0372424\pi\)
0.287421 + 0.957804i \(0.407202\pi\)
\(600\) 0 0
\(601\) 21.4695 + 12.3954i 0.875759 + 0.505619i 0.869258 0.494359i \(-0.164597\pi\)
0.00650093 + 0.999979i \(0.497931\pi\)
\(602\) 0 0
\(603\) 6.65086 + 4.65698i 0.270844 + 0.189647i
\(604\) 0 0
\(605\) −15.9019 + 4.24742i −0.646505 + 0.172682i
\(606\) 0 0
\(607\) −29.2432 29.2432i −1.18694 1.18694i −0.977908 0.209037i \(-0.932967\pi\)
−0.209037 0.977908i \(-0.567033\pi\)
\(608\) 0 0
\(609\) 6.97013i 0.282444i
\(610\) 0 0
\(611\) −4.27649 + 11.7496i −0.173008 + 0.475336i
\(612\) 0 0
\(613\) −8.11686 + 11.5921i −0.327837 + 0.468200i −0.948907 0.315555i \(-0.897809\pi\)
0.621070 + 0.783755i \(0.286698\pi\)
\(614\) 0 0
\(615\) 3.99003 4.74749i 0.160893 0.191437i
\(616\) 0 0
\(617\) 47.3489 4.14249i 1.90619 0.166770i 0.927739 0.373230i \(-0.121750\pi\)
0.978455 + 0.206460i \(0.0661943\pi\)
\(618\) 0 0
\(619\) −21.2437 + 12.2651i −0.853858 + 0.492975i −0.861951 0.506992i \(-0.830757\pi\)
0.00809267 + 0.999967i \(0.497424\pi\)
\(620\) 0 0
\(621\) 5.77518 + 15.8672i 0.231750 + 0.636728i
\(622\) 0 0
\(623\) −5.83784 8.33730i −0.233888 0.334027i
\(624\) 0 0
\(625\) −24.9999 0.0791431i −0.999995 0.00316572i
\(626\) 0 0
\(627\) 13.9952 13.9632i 0.558914 0.557636i
\(628\) 0 0
\(629\) −11.9071 + 9.99125i −0.474767 + 0.398377i
\(630\) 0 0
\(631\) 1.85305 10.5092i 0.0737687 0.418363i −0.925451 0.378867i \(-0.876314\pi\)
0.999220 0.0394957i \(-0.0125752\pi\)
\(632\) 0 0
\(633\) 9.48800 + 4.42433i 0.377114 + 0.175851i
\(634\) 0 0
\(635\) 11.0168 + 30.3430i 0.437187 + 1.20413i
\(636\) 0 0
\(637\) 1.60086 + 18.2980i 0.0634286 + 0.724992i
\(638\) 0 0
\(639\) 14.5178 25.1455i 0.574315 0.994742i
\(640\) 0 0
\(641\) 8.90367 1.56996i 0.351674 0.0620096i 0.00497910 0.999988i \(-0.498415\pi\)
0.346695 + 0.937978i \(0.387304\pi\)
\(642\) 0 0
\(643\) 8.15348 + 17.4852i 0.321542 + 0.689549i 0.998938 0.0460694i \(-0.0146695\pi\)
−0.677396 + 0.735618i \(0.736892\pi\)
\(644\) 0 0
\(645\) 18.2791 12.7776i 0.719739 0.503119i
\(646\) 0 0
\(647\) −20.9746 + 20.9746i −0.824598 + 0.824598i −0.986764 0.162166i \(-0.948152\pi\)
0.162166 + 0.986764i \(0.448152\pi\)
\(648\) 0 0
\(649\) −47.8611 17.4200i −1.87871 0.683795i
\(650\) 0 0
\(651\) 0.710882 + 4.03161i 0.0278617 + 0.158011i
\(652\) 0 0
\(653\) −1.88464 + 0.504988i −0.0737517 + 0.0197617i −0.295506 0.955341i \(-0.595488\pi\)
0.221755 + 0.975103i \(0.428822\pi\)
\(654\) 0 0
\(655\) −2.00815 0.177292i −0.0784650 0.00692738i
\(656\) 0 0
\(657\) 25.6940 + 6.88469i 1.00242 + 0.268598i
\(658\) 0 0
\(659\) 15.5054 5.64352i 0.604006 0.219840i −0.0218722 0.999761i \(-0.506963\pi\)
0.625879 + 0.779920i \(0.284740\pi\)
\(660\) 0 0
\(661\) −43.0557 7.59189i −1.67467 0.295290i −0.745934 0.666020i \(-0.767996\pi\)
−0.928741 + 0.370730i \(0.879108\pi\)
\(662\) 0 0
\(663\) 18.9817 + 1.66069i 0.737189 + 0.0644957i
\(664\) 0 0
\(665\) 5.89365 + 4.96483i 0.228546 + 0.192528i
\(666\) 0 0
\(667\) −27.1260 2.37321i −1.05032 0.0918912i
\(668\) 0 0
\(669\) 8.18402 + 1.44306i 0.316412 + 0.0557920i
\(670\) 0 0
\(671\) −23.3896 + 8.51311i −0.902944 + 0.328645i
\(672\) 0 0
\(673\) 35.3917 + 9.48319i 1.36425 + 0.365550i 0.865376 0.501124i \(-0.167080\pi\)
0.498875 + 0.866674i \(0.333747\pi\)
\(674\) 0 0
\(675\) −24.9341 6.72338i −0.959712 0.258783i
\(676\) 0 0
\(677\) 6.19366 1.65959i 0.238042 0.0637831i −0.137826 0.990456i \(-0.544011\pi\)
0.375868 + 0.926673i \(0.377345\pi\)
\(678\) 0 0
\(679\) −2.11391 11.9886i −0.0811244 0.460079i
\(680\) 0 0
\(681\) −26.8766 9.78230i −1.02992 0.374859i
\(682\) 0 0
\(683\) −24.7978 + 24.7978i −0.948863 + 0.948863i −0.998755 0.0498918i \(-0.984112\pi\)
0.0498918 + 0.998755i \(0.484112\pi\)
\(684\) 0 0
\(685\) 6.60553 37.2892i 0.252384 1.42475i
\(686\) 0 0
\(687\) 6.45298 + 13.8385i 0.246196 + 0.527970i
\(688\) 0 0
\(689\) 1.41592 0.249666i 0.0539424 0.00951150i
\(690\) 0 0
\(691\) −17.9204 + 31.0391i −0.681726 + 1.18078i 0.292728 + 0.956196i \(0.405437\pi\)
−0.974454 + 0.224588i \(0.927896\pi\)
\(692\) 0 0
\(693\) −0.555007 6.34376i −0.0210830 0.240979i
\(694\) 0 0
\(695\) −7.34534 + 15.7196i −0.278625 + 0.596280i
\(696\) 0 0
\(697\) −14.8370 6.91863i −0.561993 0.262062i
\(698\) 0 0
\(699\) −1.30607 + 7.40710i −0.0494002 + 0.280162i
\(700\) 0 0
\(701\) 8.46957 7.10681i 0.319891 0.268421i −0.468675 0.883371i \(-0.655268\pi\)
0.788566 + 0.614950i \(0.210824\pi\)
\(702\) 0 0
\(703\) −8.89015 + 6.20980i −0.335298 + 0.234207i
\(704\) 0 0
\(705\) 9.91884 + 2.66616i 0.373565 + 0.100413i
\(706\) 0 0
\(707\) −1.07698 1.53808i −0.0405039 0.0578455i
\(708\) 0 0
\(709\) −10.3096 28.3255i −0.387186 1.06378i −0.968262 0.249936i \(-0.919590\pi\)
0.581076 0.813849i \(-0.302632\pi\)
\(710\) 0 0
\(711\) −2.99174 + 1.72728i −0.112199 + 0.0647781i
\(712\) 0 0
\(713\) 15.9320 1.39387i 0.596660 0.0522010i
\(714\) 0 0
\(715\) −21.1340 17.7621i −0.790368 0.664264i
\(716\) 0 0
\(717\) −10.0944 + 14.4163i −0.376982 + 0.538386i
\(718\) 0 0
\(719\) −9.23700 + 25.3784i −0.344482 + 0.946456i 0.639595 + 0.768712i \(0.279102\pi\)
−0.984077 + 0.177744i \(0.943120\pi\)
\(720\) 0 0
\(721\) 9.84726i 0.366731i
\(722\) 0 0
\(723\) 1.22596 + 1.22596i 0.0455938 + 0.0455938i
\(724\) 0 0
\(725\) 26.8193 31.8594i 0.996042 1.18323i
\(726\) 0 0
\(727\) 14.1072 + 9.87797i 0.523207 + 0.366354i 0.805144 0.593079i \(-0.202088\pi\)
−0.281937 + 0.959433i \(0.590977\pi\)
\(728\) 0 0
\(729\) −13.9231 8.03852i −0.515671 0.297723i
\(730\) 0 0
\(731\) −45.1000 37.8434i −1.66809 1.39969i
\(732\) 0 0
\(733\) 4.40731 16.4483i 0.162788 0.607532i −0.835524 0.549453i \(-0.814836\pi\)
0.998312 0.0580783i \(-0.0184973\pi\)
\(734\) 0 0
\(735\) 14.8609 2.60825i 0.548151 0.0962066i
\(736\) 0 0
\(737\) 15.1616 10.6162i 0.558483 0.391054i
\(738\) 0 0
\(739\) −3.11289 3.70980i −0.114510 0.136467i 0.705745 0.708466i \(-0.250613\pi\)
−0.820254 + 0.571999i \(0.806168\pi\)
\(740\) 0 0
\(741\) 13.0888 + 2.32335i 0.480829 + 0.0853505i
\(742\) 0 0
\(743\) 2.09705 23.9694i 0.0769335 0.879353i −0.855451 0.517884i \(-0.826720\pi\)
0.932384 0.361469i \(-0.117725\pi\)
\(744\) 0 0
\(745\) −19.7076 + 9.17082i −0.722030 + 0.335993i
\(746\) 0 0
\(747\) −7.50781 + 16.1006i −0.274697 + 0.589089i
\(748\) 0 0
\(749\) −0.230355 0.398986i −0.00841698 0.0145786i
\(750\) 0 0
\(751\) 17.3348 20.6588i 0.632556 0.753851i −0.350619 0.936518i \(-0.614029\pi\)
0.983175 + 0.182667i \(0.0584731\pi\)
\(752\) 0 0
\(753\) −0.421479 1.57298i −0.0153596 0.0573226i
\(754\) 0 0
\(755\) −4.02015 + 4.01379i −0.146308 + 0.146077i
\(756\) 0 0
\(757\) −18.5906 + 8.66892i −0.675685 + 0.315077i −0.730000 0.683447i \(-0.760480\pi\)
0.0543153 + 0.998524i \(0.482702\pi\)
\(758\) 0 0
\(759\) 14.8276 0.538207
\(760\) 0 0
\(761\) 22.9024 0.830210 0.415105 0.909774i \(-0.363745\pi\)
0.415105 + 0.909774i \(0.363745\pi\)
\(762\) 0 0
\(763\) 7.13015 3.32484i 0.258129 0.120367i
\(764\) 0 0
\(765\) −0.0207831 + 26.2601i −0.000751415 + 0.949437i
\(766\) 0 0
\(767\) −8.86404 33.0811i −0.320062 1.19449i
\(768\) 0 0
\(769\) −23.5626 + 28.0808i −0.849688 + 1.01262i 0.150025 + 0.988682i \(0.452064\pi\)
−0.999713 + 0.0239367i \(0.992380\pi\)
\(770\) 0 0
\(771\) −5.38355 9.32458i −0.193884 0.335817i
\(772\) 0 0
\(773\) −0.550137 + 1.17977i −0.0197870 + 0.0424334i −0.915953 0.401286i \(-0.868563\pi\)
0.896166 + 0.443719i \(0.146341\pi\)
\(774\) 0 0
\(775\) −12.2633 + 21.1632i −0.440510 + 0.760204i
\(776\) 0 0
\(777\) 0.181454 2.07403i 0.00650962 0.0744053i
\(778\) 0 0
\(779\) −9.88462 5.72198i −0.354153 0.205011i
\(780\) 0 0
\(781\) −42.5465 50.7050i −1.52243 1.81437i
\(782\) 0 0
\(783\) 35.2387 24.6744i 1.25933 0.881791i
\(784\) 0 0
\(785\) 4.07264 + 23.2045i 0.145359 + 0.828202i
\(786\) 0 0
\(787\) 5.44028 20.3034i 0.193925 0.723738i −0.798617 0.601839i \(-0.794435\pi\)
0.992542 0.121899i \(-0.0388984\pi\)
\(788\) 0 0
\(789\) −14.3351 12.0285i −0.510341 0.428227i
\(790\) 0 0
\(791\) 4.59927 + 2.65539i 0.163531 + 0.0944147i