Properties

Label 380.2.bh.a.13.3
Level $380$
Weight $2$
Character 380.13
Analytic conductor $3.034$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(13,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 27, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bh (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 13.3
Character \(\chi\) \(=\) 380.13
Dual form 380.2.bh.a.117.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41596 + 0.660272i) q^{3} +(-0.949889 + 2.02428i) q^{5} +(-1.12143 - 4.18524i) q^{7} +(-0.359387 + 0.428300i) q^{9} +O(q^{10})\) \(q+(-1.41596 + 0.660272i) q^{3} +(-0.949889 + 2.02428i) q^{5} +(-1.12143 - 4.18524i) q^{7} +(-0.359387 + 0.428300i) q^{9} +(-0.627484 - 1.08683i) q^{11} +(1.92393 - 4.12588i) q^{13} +(0.00842766 - 3.49348i) q^{15} +(0.0727101 - 0.831080i) q^{17} +(3.83747 - 2.06733i) q^{19} +(4.35129 + 5.18567i) q^{21} +(0.587706 - 0.411516i) q^{23} +(-3.19542 - 3.84568i) q^{25} +(1.43917 - 5.37105i) q^{27} +(-3.22929 - 2.70969i) q^{29} +(-6.47928 - 3.74082i) q^{31} +(1.60610 + 1.12460i) q^{33} +(9.53733 + 1.70542i) q^{35} +(1.31792 + 1.31792i) q^{37} +7.11239i q^{39} +(-2.83535 + 7.79006i) q^{41} +(6.72347 - 9.60211i) q^{43} +(-0.525622 - 1.13434i) q^{45} +(-9.51062 + 0.832071i) q^{47} +(-10.1964 + 5.88691i) q^{49} +(0.445784 + 1.22478i) q^{51} +(-5.49098 - 7.84194i) q^{53} +(2.79610 - 0.237831i) q^{55} +(-4.06869 + 5.46102i) q^{57} +(-2.93676 + 2.46424i) q^{59} +(-1.31237 + 7.44285i) q^{61} +(2.19557 + 1.02381i) q^{63} +(6.52442 + 7.81370i) q^{65} +(0.616682 + 7.04871i) q^{67} +(-0.560454 + 0.970734i) q^{69} +(11.6384 - 2.05217i) q^{71} +(1.19747 + 2.56798i) q^{73} +(7.06378 + 3.33548i) q^{75} +(-3.84498 + 3.84498i) q^{77} +(-5.16648 - 1.88045i) q^{79} +(1.21729 + 6.90358i) q^{81} +(7.22139 - 1.93497i) q^{83} +(1.61327 + 0.936620i) q^{85} +(6.36167 + 1.70460i) q^{87} +(3.31376 - 1.20611i) q^{89} +(-19.4253 - 3.42521i) q^{91} +(11.6443 + 1.01875i) q^{93} +(0.539677 + 9.73184i) q^{95} +(-5.44825 - 0.476660i) q^{97} +(0.691001 + 0.121842i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 6 q^{7} + 18 q^{15} - 18 q^{17} + 48 q^{21} - 36 q^{23} - 24 q^{25} - 60 q^{33} - 18 q^{35} - 12 q^{41} - 36 q^{43} + 18 q^{45} - 24 q^{47} + 96 q^{51} - 18 q^{53} + 72 q^{55} - 6 q^{57} - 24 q^{61} + 36 q^{63} + 90 q^{65} - 24 q^{67} + 18 q^{73} - 36 q^{77} - 30 q^{83} - 24 q^{85} - 72 q^{87} - 144 q^{91} - 132 q^{93} - 12 q^{95} - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41596 + 0.660272i −0.817503 + 0.381208i −0.785947 0.618294i \(-0.787824\pi\)
−0.0315563 + 0.999502i \(0.510046\pi\)
\(4\) 0 0
\(5\) −0.949889 + 2.02428i −0.424803 + 0.905286i
\(6\) 0 0
\(7\) −1.12143 4.18524i −0.423861 1.58187i −0.766397 0.642367i \(-0.777953\pi\)
0.342536 0.939505i \(-0.388714\pi\)
\(8\) 0 0
\(9\) −0.359387 + 0.428300i −0.119796 + 0.142767i
\(10\) 0 0
\(11\) −0.627484 1.08683i −0.189194 0.327693i 0.755788 0.654816i \(-0.227254\pi\)
−0.944982 + 0.327123i \(0.893921\pi\)
\(12\) 0 0
\(13\) 1.92393 4.12588i 0.533602 1.14431i −0.436072 0.899912i \(-0.643631\pi\)
0.969674 0.244402i \(-0.0785915\pi\)
\(14\) 0 0
\(15\) 0.00842766 3.49348i 0.00217601 0.902012i
\(16\) 0 0
\(17\) 0.0727101 0.831080i 0.0176348 0.201567i −0.982266 0.187492i \(-0.939964\pi\)
0.999901 0.0140747i \(-0.00448027\pi\)
\(18\) 0 0
\(19\) 3.83747 2.06733i 0.880376 0.474277i
\(20\) 0 0
\(21\) 4.35129 + 5.18567i 0.949530 + 1.13161i
\(22\) 0 0
\(23\) 0.587706 0.411516i 0.122545 0.0858070i −0.510697 0.859761i \(-0.670613\pi\)
0.633242 + 0.773954i \(0.281724\pi\)
\(24\) 0 0
\(25\) −3.19542 3.84568i −0.639084 0.769137i
\(26\) 0 0
\(27\) 1.43917 5.37105i 0.276968 1.03366i
\(28\) 0 0
\(29\) −3.22929 2.70969i −0.599664 0.503177i 0.291674 0.956518i \(-0.405788\pi\)
−0.891337 + 0.453340i \(0.850232\pi\)
\(30\) 0 0
\(31\) −6.47928 3.74082i −1.16371 0.671870i −0.211522 0.977373i \(-0.567842\pi\)
−0.952191 + 0.305503i \(0.901175\pi\)
\(32\) 0 0
\(33\) 1.60610 + 1.12460i 0.279586 + 0.195768i
\(34\) 0 0
\(35\) 9.53733 + 1.70542i 1.61210 + 0.288269i
\(36\) 0 0
\(37\) 1.31792 + 1.31792i 0.216665 + 0.216665i 0.807091 0.590427i \(-0.201040\pi\)
−0.590427 + 0.807091i \(0.701040\pi\)
\(38\) 0 0
\(39\) 7.11239i 1.13889i
\(40\) 0 0
\(41\) −2.83535 + 7.79006i −0.442807 + 1.21660i 0.494831 + 0.868989i \(0.335230\pi\)
−0.937638 + 0.347613i \(0.886992\pi\)
\(42\) 0 0
\(43\) 6.72347 9.60211i 1.02532 1.46431i 0.145290 0.989389i \(-0.453589\pi\)
0.880030 0.474919i \(-0.157523\pi\)
\(44\) 0 0
\(45\) −0.525622 1.13434i −0.0783552 0.169097i
\(46\) 0 0
\(47\) −9.51062 + 0.832071i −1.38727 + 0.121370i −0.756191 0.654351i \(-0.772942\pi\)
−0.631076 + 0.775721i \(0.717386\pi\)
\(48\) 0 0
\(49\) −10.1964 + 5.88691i −1.45663 + 0.840988i
\(50\) 0 0
\(51\) 0.445784 + 1.22478i 0.0624223 + 0.171504i
\(52\) 0 0
\(53\) −5.49098 7.84194i −0.754245 1.07717i −0.994321 0.106419i \(-0.966062\pi\)
0.240077 0.970754i \(-0.422827\pi\)
\(54\) 0 0
\(55\) 2.79610 0.237831i 0.377026 0.0320692i
\(56\) 0 0
\(57\) −4.06869 + 5.46102i −0.538912 + 0.723329i
\(58\) 0 0
\(59\) −2.93676 + 2.46424i −0.382334 + 0.320816i −0.813618 0.581400i \(-0.802505\pi\)
0.431284 + 0.902216i \(0.358061\pi\)
\(60\) 0 0
\(61\) −1.31237 + 7.44285i −0.168032 + 0.952959i 0.777850 + 0.628450i \(0.216310\pi\)
−0.945883 + 0.324509i \(0.894801\pi\)
\(62\) 0 0
\(63\) 2.19557 + 1.02381i 0.276615 + 0.128988i
\(64\) 0 0
\(65\) 6.52442 + 7.81370i 0.809254 + 0.969170i
\(66\) 0 0
\(67\) 0.616682 + 7.04871i 0.0753398 + 0.861137i 0.936010 + 0.351974i \(0.114489\pi\)
−0.860670 + 0.509163i \(0.829955\pi\)
\(68\) 0 0
\(69\) −0.560454 + 0.970734i −0.0674707 + 0.116863i
\(70\) 0 0
\(71\) 11.6384 2.05217i 1.38123 0.243548i 0.566821 0.823841i \(-0.308173\pi\)
0.814408 + 0.580293i \(0.197062\pi\)
\(72\) 0 0
\(73\) 1.19747 + 2.56798i 0.140153 + 0.300560i 0.963838 0.266488i \(-0.0858632\pi\)
−0.823685 + 0.567048i \(0.808085\pi\)
\(74\) 0 0
\(75\) 7.06378 + 3.33548i 0.815655 + 0.385148i
\(76\) 0 0
\(77\) −3.84498 + 3.84498i −0.438176 + 0.438176i
\(78\) 0 0
\(79\) −5.16648 1.88045i −0.581275 0.211567i 0.0346128 0.999401i \(-0.488980\pi\)
−0.615888 + 0.787834i \(0.711202\pi\)
\(80\) 0 0
\(81\) 1.21729 + 6.90358i 0.135254 + 0.767065i
\(82\) 0 0
\(83\) 7.22139 1.93497i 0.792651 0.212390i 0.160296 0.987069i \(-0.448755\pi\)
0.632355 + 0.774679i \(0.282088\pi\)
\(84\) 0 0
\(85\) 1.61327 + 0.936620i 0.174984 + 0.101591i
\(86\) 0 0
\(87\) 6.36167 + 1.70460i 0.682042 + 0.182753i
\(88\) 0 0
\(89\) 3.31376 1.20611i 0.351258 0.127847i −0.160364 0.987058i \(-0.551267\pi\)
0.511622 + 0.859210i \(0.329045\pi\)
\(90\) 0 0
\(91\) −19.4253 3.42521i −2.03633 0.359060i
\(92\) 0 0
\(93\) 11.6443 + 1.01875i 1.20746 + 0.105639i
\(94\) 0 0
\(95\) 0.539677 + 9.73184i 0.0553697 + 0.998466i
\(96\) 0 0
\(97\) −5.44825 0.476660i −0.553186 0.0483975i −0.192864 0.981225i \(-0.561778\pi\)
−0.360322 + 0.932828i \(0.617333\pi\)
\(98\) 0 0
\(99\) 0.691001 + 0.121842i 0.0694482 + 0.0122456i
\(100\) 0 0
\(101\) 18.7117 6.81050i 1.86188 0.677670i 0.884372 0.466784i \(-0.154587\pi\)
0.977511 0.210886i \(-0.0676349\pi\)
\(102\) 0 0
\(103\) −11.3695 3.04646i −1.12027 0.300176i −0.349279 0.937019i \(-0.613574\pi\)
−0.770994 + 0.636842i \(0.780240\pi\)
\(104\) 0 0
\(105\) −14.6305 + 3.88243i −1.42779 + 0.378886i
\(106\) 0 0
\(107\) −9.44173 + 2.52990i −0.912767 + 0.244575i −0.684491 0.729021i \(-0.739975\pi\)
−0.228276 + 0.973597i \(0.573309\pi\)
\(108\) 0 0
\(109\) 0.626255 + 3.55167i 0.0599843 + 0.340188i 1.00000 0.000944474i \(-0.000300635\pi\)
−0.940015 + 0.341132i \(0.889190\pi\)
\(110\) 0 0
\(111\) −2.73631 0.995934i −0.259719 0.0945298i
\(112\) 0 0
\(113\) −2.42630 + 2.42630i −0.228248 + 0.228248i −0.811960 0.583713i \(-0.801599\pi\)
0.583713 + 0.811960i \(0.301599\pi\)
\(114\) 0 0
\(115\) 0.274768 + 1.58058i 0.0256223 + 0.147389i
\(116\) 0 0
\(117\) 1.07568 + 2.30681i 0.0994468 + 0.213264i
\(118\) 0 0
\(119\) −3.55981 + 0.627690i −0.326327 + 0.0575403i
\(120\) 0 0
\(121\) 4.71253 8.16234i 0.428412 0.742031i
\(122\) 0 0
\(123\) −1.12882 12.9025i −0.101782 1.16338i
\(124\) 0 0
\(125\) 10.8200 2.81545i 0.967774 0.251822i
\(126\) 0 0
\(127\) −14.6210 6.81787i −1.29740 0.604988i −0.353568 0.935409i \(-0.615032\pi\)
−0.943834 + 0.330421i \(0.892809\pi\)
\(128\) 0 0
\(129\) −3.18014 + 18.0355i −0.279996 + 1.58794i
\(130\) 0 0
\(131\) −6.12211 + 5.13706i −0.534891 + 0.448827i −0.869786 0.493428i \(-0.835743\pi\)
0.334895 + 0.942255i \(0.391299\pi\)
\(132\) 0 0
\(133\) −12.9557 13.7424i −1.12340 1.19161i
\(134\) 0 0
\(135\) 9.50546 + 8.01518i 0.818100 + 0.689837i
\(136\) 0 0
\(137\) −2.56871 3.66850i −0.219460 0.313421i 0.694292 0.719693i \(-0.255718\pi\)
−0.913752 + 0.406272i \(0.866829\pi\)
\(138\) 0 0
\(139\) 0.806465 + 2.21574i 0.0684034 + 0.187937i 0.969184 0.246337i \(-0.0792271\pi\)
−0.900781 + 0.434274i \(0.857005\pi\)
\(140\) 0 0
\(141\) 12.9172 7.45777i 1.08783 0.628057i
\(142\) 0 0
\(143\) −5.69138 + 0.497932i −0.475937 + 0.0416391i
\(144\) 0 0
\(145\) 8.55264 3.96307i 0.710258 0.329115i
\(146\) 0 0
\(147\) 10.5508 15.0680i 0.870211 1.24279i
\(148\) 0 0
\(149\) 5.59712 15.3780i 0.458534 1.25981i −0.468042 0.883706i \(-0.655041\pi\)
0.926577 0.376106i \(-0.122737\pi\)
\(150\) 0 0
\(151\) 0.517855i 0.0421424i 0.999778 + 0.0210712i \(0.00670767\pi\)
−0.999778 + 0.0210712i \(0.993292\pi\)
\(152\) 0 0
\(153\) 0.329821 + 0.329821i 0.0266644 + 0.0266644i
\(154\) 0 0
\(155\) 13.7271 9.56252i 1.10258 0.768080i
\(156\) 0 0
\(157\) 11.3740 + 7.96413i 0.907740 + 0.635607i 0.931354 0.364115i \(-0.118628\pi\)
−0.0236140 + 0.999721i \(0.507517\pi\)
\(158\) 0 0
\(159\) 12.9528 + 7.47831i 1.02722 + 0.593068i
\(160\) 0 0
\(161\) −2.38136 1.99820i −0.187678 0.157480i
\(162\) 0 0
\(163\) −1.30493 + 4.87008i −0.102210 + 0.381454i −0.998014 0.0629965i \(-0.979934\pi\)
0.895803 + 0.444450i \(0.146601\pi\)
\(164\) 0 0
\(165\) −3.80212 + 2.18294i −0.295995 + 0.169942i
\(166\) 0 0
\(167\) 5.42628 3.79952i 0.419898 0.294016i −0.344468 0.938798i \(-0.611941\pi\)
0.764366 + 0.644782i \(0.223052\pi\)
\(168\) 0 0
\(169\) −4.96514 5.91723i −0.381934 0.455171i
\(170\) 0 0
\(171\) −0.493699 + 2.38656i −0.0377541 + 0.182505i
\(172\) 0 0
\(173\) −1.61153 + 18.4199i −0.122523 + 1.40044i 0.647327 + 0.762213i \(0.275887\pi\)
−0.769849 + 0.638226i \(0.779669\pi\)
\(174\) 0 0
\(175\) −12.5117 + 17.6863i −0.945793 + 1.33696i
\(176\) 0 0
\(177\) 2.53126 5.42831i 0.190261 0.408017i
\(178\) 0 0
\(179\) −5.66803 9.81732i −0.423649 0.733781i 0.572644 0.819804i \(-0.305918\pi\)
−0.996293 + 0.0860227i \(0.972584\pi\)
\(180\) 0 0
\(181\) −0.118595 + 0.141336i −0.00881508 + 0.0105054i −0.770434 0.637520i \(-0.779960\pi\)
0.761619 + 0.648025i \(0.224405\pi\)
\(182\) 0 0
\(183\) −3.05604 11.4053i −0.225909 0.843102i
\(184\) 0 0
\(185\) −3.91972 + 1.41596i −0.288184 + 0.104104i
\(186\) 0 0
\(187\) −0.948871 + 0.442466i −0.0693883 + 0.0323563i
\(188\) 0 0
\(189\) −24.0931 −1.75251
\(190\) 0 0
\(191\) 25.1481 1.81965 0.909826 0.414990i \(-0.136215\pi\)
0.909826 + 0.414990i \(0.136215\pi\)
\(192\) 0 0
\(193\) 24.2689 11.3168i 1.74691 0.814599i 0.760704 0.649098i \(-0.224854\pi\)
0.986210 0.165501i \(-0.0529241\pi\)
\(194\) 0 0
\(195\) −14.3975 6.75598i −1.03102 0.483806i
\(196\) 0 0
\(197\) −6.29283 23.4852i −0.448346 1.67325i −0.706948 0.707266i \(-0.749929\pi\)
0.258602 0.965984i \(-0.416738\pi\)
\(198\) 0 0
\(199\) 7.12400 8.49005i 0.505007 0.601844i −0.451961 0.892038i \(-0.649275\pi\)
0.956968 + 0.290194i \(0.0937198\pi\)
\(200\) 0 0
\(201\) −5.52726 9.57350i −0.389863 0.675262i
\(202\) 0 0
\(203\) −7.71929 + 16.5541i −0.541788 + 1.16187i
\(204\) 0 0
\(205\) −13.0760 13.1392i −0.913267 0.917684i
\(206\) 0 0
\(207\) −0.0349612 + 0.399608i −0.00242997 + 0.0277747i
\(208\) 0 0
\(209\) −4.65479 2.87348i −0.321979 0.198763i
\(210\) 0 0
\(211\) −4.97867 5.93334i −0.342746 0.408468i 0.566945 0.823756i \(-0.308125\pi\)
−0.909690 + 0.415288i \(0.863681\pi\)
\(212\) 0 0
\(213\) −15.1245 + 10.5903i −1.03632 + 0.725636i
\(214\) 0 0
\(215\) 13.0508 + 22.7311i 0.890058 + 1.55025i
\(216\) 0 0
\(217\) −8.39013 + 31.3124i −0.569559 + 2.12562i
\(218\) 0 0
\(219\) −3.39114 2.84550i −0.229152 0.192281i
\(220\) 0 0
\(221\) −3.28905 1.89893i −0.221245 0.127736i
\(222\) 0 0
\(223\) −12.9568 9.07244i −0.867651 0.607536i 0.0527082 0.998610i \(-0.483215\pi\)
−0.920359 + 0.391074i \(0.872104\pi\)
\(224\) 0 0
\(225\) 2.79550 + 0.0134878i 0.186367 + 0.000899186i
\(226\) 0 0
\(227\) 2.21321 + 2.21321i 0.146896 + 0.146896i 0.776730 0.629834i \(-0.216877\pi\)
−0.629834 + 0.776730i \(0.716877\pi\)
\(228\) 0 0
\(229\) 23.5566i 1.55667i −0.627851 0.778334i \(-0.716065\pi\)
0.627851 0.778334i \(-0.283935\pi\)
\(230\) 0 0
\(231\) 2.90560 7.98306i 0.191174 0.525247i
\(232\) 0 0
\(233\) 0.916232 1.30851i 0.0600243 0.0857236i −0.788018 0.615653i \(-0.788893\pi\)
0.848042 + 0.529929i \(0.177781\pi\)
\(234\) 0 0
\(235\) 7.34969 20.0425i 0.479441 1.30743i
\(236\) 0 0
\(237\) 8.55712 0.748651i 0.555845 0.0486301i
\(238\) 0 0
\(239\) −3.75395 + 2.16735i −0.242823 + 0.140194i −0.616474 0.787376i \(-0.711439\pi\)
0.373651 + 0.927570i \(0.378106\pi\)
\(240\) 0 0
\(241\) 5.13813 + 14.1169i 0.330976 + 0.909349i 0.987859 + 0.155356i \(0.0496525\pi\)
−0.656883 + 0.753993i \(0.728125\pi\)
\(242\) 0 0
\(243\) 3.28628 + 4.69330i 0.210815 + 0.301075i
\(244\) 0 0
\(245\) −2.23128 26.2324i −0.142551 1.67592i
\(246\) 0 0
\(247\) −1.14652 19.8103i −0.0729513 1.26050i
\(248\) 0 0
\(249\) −8.94758 + 7.50791i −0.567030 + 0.475795i
\(250\) 0 0
\(251\) −4.89620 + 27.7677i −0.309045 + 1.75268i 0.294779 + 0.955565i \(0.404754\pi\)
−0.603824 + 0.797117i \(0.706357\pi\)
\(252\) 0 0
\(253\) −0.816026 0.380519i −0.0513031 0.0239230i
\(254\) 0 0
\(255\) −2.90275 0.261015i −0.181777 0.0163454i
\(256\) 0 0
\(257\) 0.855227 + 9.77528i 0.0533476 + 0.609765i 0.975067 + 0.221909i \(0.0712288\pi\)
−0.921720 + 0.387856i \(0.873216\pi\)
\(258\) 0 0
\(259\) 4.03786 6.99377i 0.250900 0.434572i
\(260\) 0 0
\(261\) 2.32113 0.409277i 0.143674 0.0253336i
\(262\) 0 0
\(263\) −3.78126 8.10893i −0.233162 0.500018i 0.754561 0.656229i \(-0.227850\pi\)
−0.987724 + 0.156211i \(0.950072\pi\)
\(264\) 0 0
\(265\) 21.0901 3.66632i 1.29555 0.225220i
\(266\) 0 0
\(267\) −3.89578 + 3.89578i −0.238418 + 0.238418i
\(268\) 0 0
\(269\) 8.17730 + 2.97629i 0.498579 + 0.181468i 0.579055 0.815289i \(-0.303422\pi\)
−0.0804758 + 0.996757i \(0.525644\pi\)
\(270\) 0 0
\(271\) 2.80096 + 15.8850i 0.170146 + 0.964948i 0.943598 + 0.331093i \(0.107417\pi\)
−0.773452 + 0.633855i \(0.781472\pi\)
\(272\) 0 0
\(273\) 29.7670 7.97605i 1.80158 0.482733i
\(274\) 0 0
\(275\) −2.17455 + 5.88600i −0.131130 + 0.354939i
\(276\) 0 0
\(277\) 16.0550 + 4.30192i 0.964650 + 0.258477i 0.706568 0.707646i \(-0.250243\pi\)
0.258083 + 0.966123i \(0.416909\pi\)
\(278\) 0 0
\(279\) 3.93076 1.43068i 0.235328 0.0856526i
\(280\) 0 0
\(281\) −26.2583 4.63004i −1.56644 0.276205i −0.677950 0.735108i \(-0.737131\pi\)
−0.888486 + 0.458903i \(0.848243\pi\)
\(282\) 0 0
\(283\) 24.7322 + 2.16379i 1.47018 + 0.128624i 0.793911 0.608034i \(-0.208041\pi\)
0.676266 + 0.736657i \(0.263597\pi\)
\(284\) 0 0
\(285\) −7.18982 13.4235i −0.425888 0.795142i
\(286\) 0 0
\(287\) 35.7829 + 3.13060i 2.11220 + 0.184793i
\(288\) 0 0
\(289\) 16.0563 + 2.83116i 0.944490 + 0.166539i
\(290\) 0 0
\(291\) 8.02922 2.92240i 0.470681 0.171314i
\(292\) 0 0
\(293\) 9.06575 + 2.42916i 0.529627 + 0.141913i 0.513716 0.857960i \(-0.328269\pi\)
0.0159107 + 0.999873i \(0.494935\pi\)
\(294\) 0 0
\(295\) −2.19870 8.28558i −0.128014 0.482405i
\(296\) 0 0
\(297\) −6.74050 + 1.80611i −0.391123 + 0.104801i
\(298\) 0 0
\(299\) −0.567161 3.21653i −0.0327998 0.186017i
\(300\) 0 0
\(301\) −47.7270 17.3712i −2.75094 1.00126i
\(302\) 0 0
\(303\) −21.9982 + 21.9982i −1.26376 + 1.26376i
\(304\) 0 0
\(305\) −13.8198 9.72650i −0.791319 0.556938i
\(306\) 0 0
\(307\) 0.819462 + 1.75734i 0.0467692 + 0.100297i 0.928304 0.371822i \(-0.121267\pi\)
−0.881535 + 0.472119i \(0.843489\pi\)
\(308\) 0 0
\(309\) 18.1103 3.19333i 1.03026 0.181662i
\(310\) 0 0
\(311\) −5.27241 + 9.13209i −0.298971 + 0.517833i −0.975901 0.218215i \(-0.929977\pi\)
0.676930 + 0.736048i \(0.263310\pi\)
\(312\) 0 0
\(313\) 0.322366 + 3.68466i 0.0182212 + 0.208269i 0.999848 + 0.0174565i \(0.00555685\pi\)
−0.981626 + 0.190813i \(0.938888\pi\)
\(314\) 0 0
\(315\) −4.15802 + 3.47194i −0.234278 + 0.195621i
\(316\) 0 0
\(317\) 5.08844 + 2.37278i 0.285795 + 0.133268i 0.560230 0.828337i \(-0.310713\pi\)
−0.274435 + 0.961606i \(0.588491\pi\)
\(318\) 0 0
\(319\) −0.918662 + 5.20999i −0.0514352 + 0.291703i
\(320\) 0 0
\(321\) 11.6987 9.81634i 0.652956 0.547895i
\(322\) 0 0
\(323\) −1.43909 3.33956i −0.0800732 0.185818i
\(324\) 0 0
\(325\) −22.0146 + 5.78510i −1.22115 + 0.320899i
\(326\) 0 0
\(327\) −3.23182 4.61551i −0.178720 0.255238i
\(328\) 0 0
\(329\) 14.1479 + 38.8711i 0.780000 + 2.14303i
\(330\) 0 0
\(331\) −2.07238 + 1.19649i −0.113908 + 0.0657650i −0.555872 0.831268i \(-0.687615\pi\)
0.441963 + 0.897033i \(0.354282\pi\)
\(332\) 0 0
\(333\) −1.03811 + 0.0908228i −0.0568880 + 0.00497706i
\(334\) 0 0
\(335\) −14.8543 5.44716i −0.811580 0.297610i
\(336\) 0 0
\(337\) −18.2235 + 26.0259i −0.992700 + 1.41772i −0.0858304 + 0.996310i \(0.527354\pi\)
−0.906869 + 0.421412i \(0.861535\pi\)
\(338\) 0 0
\(339\) 1.83352 5.03756i 0.0995833 0.273603i
\(340\) 0 0
\(341\) 9.38921i 0.508454i
\(342\) 0 0
\(343\) 14.6261 + 14.6261i 0.789735 + 0.789735i
\(344\) 0 0
\(345\) −1.43267 2.05661i −0.0771323 0.110724i
\(346\) 0 0
\(347\) −18.2967 12.8115i −0.982217 0.687756i −0.0320466 0.999486i \(-0.510203\pi\)
−0.950171 + 0.311730i \(0.899091\pi\)
\(348\) 0 0
\(349\) 7.19692 + 4.15514i 0.385242 + 0.222420i 0.680097 0.733122i \(-0.261938\pi\)
−0.294854 + 0.955542i \(0.595271\pi\)
\(350\) 0 0
\(351\) −19.3914 16.2714i −1.03504 0.868501i
\(352\) 0 0
\(353\) −5.28430 + 19.7213i −0.281255 + 1.04966i 0.670278 + 0.742110i \(0.266175\pi\)
−0.951533 + 0.307547i \(0.900492\pi\)
\(354\) 0 0
\(355\) −6.90106 + 25.5088i −0.366270 + 1.35387i
\(356\) 0 0
\(357\) 4.62609 3.23922i 0.244839 0.171438i
\(358\) 0 0
\(359\) 15.2531 + 18.1780i 0.805030 + 0.959397i 0.999770 0.0214576i \(-0.00683068\pi\)
−0.194740 + 0.980855i \(0.562386\pi\)
\(360\) 0 0
\(361\) 10.4523 15.8666i 0.550123 0.835084i
\(362\) 0 0
\(363\) −1.28338 + 14.6691i −0.0673598 + 0.769926i
\(364\) 0 0
\(365\) −6.33579 0.0152844i −0.331630 0.000800023i
\(366\) 0 0
\(367\) 7.24722 15.5417i 0.378302 0.811271i −0.621314 0.783561i \(-0.713401\pi\)
0.999616 0.0277092i \(-0.00882124\pi\)
\(368\) 0 0
\(369\) −2.31750 4.01402i −0.120644 0.208962i
\(370\) 0 0
\(371\) −26.6626 + 31.7753i −1.38425 + 1.64969i
\(372\) 0 0
\(373\) 7.47949 + 27.9138i 0.387273 + 1.44532i 0.834552 + 0.550929i \(0.185726\pi\)
−0.447279 + 0.894394i \(0.647607\pi\)
\(374\) 0 0
\(375\) −13.4617 + 11.1307i −0.695162 + 0.574788i
\(376\) 0 0
\(377\) −17.3928 + 8.11039i −0.895774 + 0.417706i
\(378\) 0 0
\(379\) 5.08838 0.261372 0.130686 0.991424i \(-0.458282\pi\)
0.130686 + 0.991424i \(0.458282\pi\)
\(380\) 0 0
\(381\) 25.2043 1.29126
\(382\) 0 0
\(383\) −5.29678 + 2.46993i −0.270653 + 0.126207i −0.553207 0.833044i \(-0.686596\pi\)
0.282554 + 0.959251i \(0.408818\pi\)
\(384\) 0 0
\(385\) −4.13101 11.4356i −0.210536 0.582813i
\(386\) 0 0
\(387\) 1.69626 + 6.33053i 0.0862258 + 0.321799i
\(388\) 0 0
\(389\) 7.46433 8.89565i 0.378457 0.451027i −0.542870 0.839817i \(-0.682662\pi\)
0.921327 + 0.388790i \(0.127107\pi\)
\(390\) 0 0
\(391\) −0.299271 0.518352i −0.0151348 0.0262142i
\(392\) 0 0
\(393\) 5.27679 11.3161i 0.266179 0.570822i
\(394\) 0 0
\(395\) 8.71414 8.67219i 0.438456 0.436345i
\(396\) 0 0
\(397\) −0.652608 + 7.45934i −0.0327534 + 0.374373i 0.962074 + 0.272790i \(0.0879464\pi\)
−0.994827 + 0.101583i \(0.967609\pi\)
\(398\) 0 0
\(399\) 27.4184 + 10.9043i 1.37264 + 0.545898i
\(400\) 0 0
\(401\) 16.8666 + 20.1008i 0.842276 + 1.00379i 0.999867 + 0.0162813i \(0.00518271\pi\)
−0.157591 + 0.987504i \(0.550373\pi\)
\(402\) 0 0
\(403\) −27.8998 + 19.5357i −1.38979 + 0.973141i
\(404\) 0 0
\(405\) −15.1311 4.09351i −0.751869 0.203408i
\(406\) 0 0
\(407\) 0.605387 2.25934i 0.0300079 0.111991i
\(408\) 0 0
\(409\) −20.4951 17.1975i −1.01342 0.850359i −0.0246326 0.999697i \(-0.507842\pi\)
−0.988786 + 0.149337i \(0.952286\pi\)
\(410\) 0 0
\(411\) 6.05940 + 3.49840i 0.298888 + 0.172563i
\(412\) 0 0
\(413\) 13.6068 + 9.52757i 0.669546 + 0.468821i
\(414\) 0 0
\(415\) −2.94261 + 16.4561i −0.144447 + 0.807800i
\(416\) 0 0
\(417\) −2.60491 2.60491i −0.127563 0.127563i
\(418\) 0 0
\(419\) 38.9944i 1.90500i 0.304538 + 0.952500i \(0.401498\pi\)
−0.304538 + 0.952500i \(0.598502\pi\)
\(420\) 0 0
\(421\) 11.1837 30.7270i 0.545061 1.49754i −0.295240 0.955423i \(-0.595399\pi\)
0.840301 0.542120i \(-0.182378\pi\)
\(422\) 0 0
\(423\) 3.06161 4.37244i 0.148861 0.212595i
\(424\) 0 0
\(425\) −3.42841 + 2.37603i −0.166302 + 0.115254i
\(426\) 0 0
\(427\) 32.6218 2.85404i 1.57868 0.138117i
\(428\) 0 0
\(429\) 7.72999 4.46291i 0.373207 0.215471i
\(430\) 0 0
\(431\) −6.59218 18.1119i −0.317534 0.872418i −0.991079 0.133272i \(-0.957452\pi\)
0.673545 0.739146i \(-0.264771\pi\)
\(432\) 0 0
\(433\) −9.46607 13.5190i −0.454910 0.649679i 0.524535 0.851389i \(-0.324239\pi\)
−0.979445 + 0.201709i \(0.935350\pi\)
\(434\) 0 0
\(435\) −9.49347 + 11.2586i −0.455177 + 0.539809i
\(436\) 0 0
\(437\) 1.40456 2.79416i 0.0671894 0.133663i
\(438\) 0 0
\(439\) −9.58352 + 8.04153i −0.457396 + 0.383801i −0.842172 0.539209i \(-0.818723\pi\)
0.384776 + 0.923010i \(0.374279\pi\)
\(440\) 0 0
\(441\) 1.14310 6.48282i 0.0544331 0.308706i
\(442\) 0 0
\(443\) −16.7204 7.79683i −0.794408 0.370439i −0.0173356 0.999850i \(-0.505518\pi\)
−0.777072 + 0.629411i \(0.783296\pi\)
\(444\) 0 0
\(445\) −0.706201 + 7.85365i −0.0334771 + 0.372299i
\(446\) 0 0
\(447\) 2.22835 + 25.4702i 0.105397 + 1.20470i
\(448\) 0 0
\(449\) 20.3319 35.2159i 0.959523 1.66194i 0.235862 0.971787i \(-0.424209\pi\)
0.723661 0.690156i \(-0.242458\pi\)
\(450\) 0 0
\(451\) 10.2456 1.80658i 0.482448 0.0850686i
\(452\) 0 0
\(453\) −0.341925 0.733260i −0.0160650 0.0344516i
\(454\) 0 0
\(455\) 25.3855 36.0688i 1.19009 1.69093i
\(456\) 0 0
\(457\) 7.81003 7.81003i 0.365338 0.365338i −0.500436 0.865774i \(-0.666827\pi\)
0.865774 + 0.500436i \(0.166827\pi\)
\(458\) 0 0
\(459\) −4.35913 1.58659i −0.203467 0.0740559i
\(460\) 0 0
\(461\) −3.06108 17.3603i −0.142569 0.808548i −0.969287 0.245932i \(-0.920906\pi\)
0.826718 0.562616i \(-0.190205\pi\)
\(462\) 0 0
\(463\) −9.39003 + 2.51605i −0.436392 + 0.116931i −0.470325 0.882493i \(-0.655863\pi\)
0.0339334 + 0.999424i \(0.489197\pi\)
\(464\) 0 0
\(465\) −13.1231 + 22.6037i −0.608568 + 1.04822i
\(466\) 0 0
\(467\) 16.8773 + 4.52226i 0.780989 + 0.209265i 0.627221 0.778842i \(-0.284192\pi\)
0.153768 + 0.988107i \(0.450859\pi\)
\(468\) 0 0
\(469\) 28.8090 10.4856i 1.33027 0.484180i
\(470\) 0 0
\(471\) −21.3635 3.76696i −0.984379 0.173573i
\(472\) 0 0
\(473\) −14.6548 1.28213i −0.673827 0.0589522i
\(474\) 0 0
\(475\) −20.2126 8.15172i −0.927418 0.374026i
\(476\) 0 0
\(477\) 5.33209 + 0.466497i 0.244140 + 0.0213595i
\(478\) 0 0
\(479\) 1.45945 + 0.257341i 0.0666840 + 0.0117582i 0.206891 0.978364i \(-0.433666\pi\)
−0.140207 + 0.990122i \(0.544777\pi\)
\(480\) 0 0
\(481\) 7.97317 2.90200i 0.363545 0.132320i
\(482\) 0 0
\(483\) 4.69126 + 1.25702i 0.213460 + 0.0571964i
\(484\) 0 0
\(485\) 6.14013 10.5760i 0.278809 0.480232i
\(486\) 0 0
\(487\) −7.05747 + 1.89104i −0.319804 + 0.0856913i −0.415150 0.909753i \(-0.636271\pi\)
0.0953458 + 0.995444i \(0.469604\pi\)
\(488\) 0 0
\(489\) −1.36784 7.75743i −0.0618561 0.350803i
\(490\) 0 0
\(491\) −17.1404 6.23861i −0.773538 0.281545i −0.0750624 0.997179i \(-0.523916\pi\)
−0.698475 + 0.715634i \(0.746138\pi\)
\(492\) 0 0
\(493\) −2.48677 + 2.48677i −0.111999 + 0.111999i
\(494\) 0 0
\(495\) −0.903017 + 1.28304i −0.0405876 + 0.0576685i
\(496\) 0 0
\(497\) −21.6405 46.4083i −0.970710 2.08170i
\(498\) 0 0
\(499\) −9.23009 + 1.62751i −0.413195 + 0.0728575i −0.376382 0.926465i \(-0.622832\pi\)
−0.0368136 + 0.999322i \(0.511721\pi\)
\(500\) 0 0
\(501\) −5.17466 + 8.96278i −0.231187 + 0.400427i
\(502\) 0 0
\(503\) −1.00360 11.4712i −0.0447483 0.511475i −0.985184 0.171503i \(-0.945138\pi\)
0.940435 0.339973i \(-0.110418\pi\)
\(504\) 0 0
\(505\) −3.98768 + 44.3469i −0.177449 + 1.97341i
\(506\) 0 0
\(507\) 10.9374 + 5.10020i 0.485747 + 0.226508i
\(508\) 0 0
\(509\) 7.60010 43.1023i 0.336869 1.91048i −0.0710777 0.997471i \(-0.522644\pi\)
0.407946 0.913006i \(-0.366245\pi\)
\(510\) 0 0
\(511\) 9.40475 7.89152i 0.416042 0.349100i
\(512\) 0 0
\(513\) −5.58095 23.5865i −0.246405 1.04137i
\(514\) 0 0
\(515\) 16.9667 20.1213i 0.747641 0.886651i
\(516\) 0 0
\(517\) 6.87209 + 9.81435i 0.302234 + 0.431635i
\(518\) 0 0
\(519\) −9.88028 27.1458i −0.433696 1.19157i
\(520\) 0 0
\(521\) 0.242872 0.140222i 0.0106404 0.00614324i −0.494670 0.869081i \(-0.664711\pi\)
0.505311 + 0.862937i \(0.331378\pi\)
\(522\) 0 0
\(523\) 1.99335 0.174395i 0.0871629 0.00762577i −0.0434908 0.999054i \(-0.513848\pi\)
0.130654 + 0.991428i \(0.458292\pi\)
\(524\) 0 0
\(525\) 6.03823 33.3041i 0.263530 1.45351i
\(526\) 0 0
\(527\) −3.58003 + 5.11281i −0.155948 + 0.222717i
\(528\) 0 0
\(529\) −7.69041 + 21.1292i −0.334366 + 0.918662i
\(530\) 0 0
\(531\) 2.14343i 0.0930169i
\(532\) 0 0
\(533\) 26.6858 + 26.6858i 1.15589 + 1.15589i
\(534\) 0 0
\(535\) 3.84736 21.5158i 0.166336 0.930211i
\(536\) 0 0
\(537\) 14.5078 + 10.1585i 0.626057 + 0.438370i
\(538\) 0 0
\(539\) 12.7962 + 7.38789i 0.551171 + 0.318219i
\(540\) 0 0
\(541\) 10.2788 + 8.62496i 0.441921 + 0.370816i 0.836428 0.548077i \(-0.184640\pi\)
−0.394507 + 0.918893i \(0.629084\pi\)
\(542\) 0 0
\(543\) 0.0746051 0.278430i 0.00320161 0.0119486i
\(544\) 0 0
\(545\) −7.78444 2.10598i −0.333449 0.0902101i
\(546\) 0 0
\(547\) 11.3886 7.97438i 0.486941 0.340960i −0.304185 0.952613i \(-0.598384\pi\)
0.791126 + 0.611653i \(0.209495\pi\)
\(548\) 0 0
\(549\) −2.71612 3.23695i −0.115921 0.138150i
\(550\) 0 0
\(551\) −17.9941 3.72237i −0.766575 0.158579i
\(552\) 0 0
\(553\) −2.07626 + 23.7318i −0.0882915 + 1.00918i
\(554\) 0 0
\(555\) 4.61524 4.59302i 0.195906 0.194963i
\(556\) 0 0
\(557\) 12.1311 26.0152i 0.514011 1.10230i −0.462458 0.886641i \(-0.653033\pi\)
0.976469 0.215658i \(-0.0691897\pi\)
\(558\) 0 0
\(559\) −26.6817 46.2140i −1.12851 1.95464i
\(560\) 0 0
\(561\) 1.05141 1.25303i 0.0443907 0.0529028i
\(562\) 0 0
\(563\) 9.21873 + 34.4048i 0.388523 + 1.44999i 0.832537 + 0.553969i \(0.186887\pi\)
−0.444014 + 0.896020i \(0.646446\pi\)
\(564\) 0 0
\(565\) −2.60680 7.21624i −0.109669 0.303590i
\(566\) 0 0
\(567\) 27.5280 12.8365i 1.15607 0.539084i
\(568\) 0 0
\(569\) −0.0950399 −0.00398428 −0.00199214 0.999998i \(-0.500634\pi\)
−0.00199214 + 0.999998i \(0.500634\pi\)
\(570\) 0 0
\(571\) 23.5973 0.987515 0.493757 0.869600i \(-0.335623\pi\)
0.493757 + 0.869600i \(0.335623\pi\)
\(572\) 0 0
\(573\) −35.6086 + 16.6046i −1.48757 + 0.693666i
\(574\) 0 0
\(575\) −3.46053 0.945164i −0.144314 0.0394161i
\(576\) 0 0
\(577\) 3.27264 + 12.2136i 0.136242 + 0.508461i 0.999990 + 0.00453685i \(0.00144413\pi\)
−0.863748 + 0.503924i \(0.831889\pi\)
\(578\) 0 0
\(579\) −26.8916 + 32.0481i −1.11758 + 1.33188i
\(580\) 0 0
\(581\) −16.1966 28.0533i −0.671948 1.16385i
\(582\) 0 0
\(583\) −5.07738 + 10.8885i −0.210284 + 0.450955i
\(584\) 0 0
\(585\) −5.69140 0.0137299i −0.235310 0.000567662i
\(586\) 0 0
\(587\) 1.55082 17.7260i 0.0640093 0.731629i −0.894593 0.446881i \(-0.852535\pi\)
0.958602 0.284748i \(-0.0919098\pi\)
\(588\) 0 0
\(589\) −32.5975 0.960473i −1.34316 0.0395756i
\(590\) 0 0
\(591\) 24.4170 + 29.0990i 1.00438 + 1.19697i
\(592\) 0 0
\(593\) 3.53786 2.47723i 0.145282 0.101728i −0.498676 0.866789i \(-0.666180\pi\)
0.643958 + 0.765061i \(0.277291\pi\)
\(594\) 0 0
\(595\) 2.11080 7.80229i 0.0865345 0.319863i
\(596\) 0 0
\(597\) −4.48154 + 16.7253i −0.183417 + 0.684522i
\(598\) 0 0
\(599\) −34.4065 28.8705i −1.40581 1.17962i −0.958449 0.285265i \(-0.907918\pi\)
−0.447364 0.894352i \(-0.647637\pi\)
\(600\) 0 0
\(601\) 14.6787 + 8.47474i 0.598756 + 0.345692i 0.768552 0.639787i \(-0.220978\pi\)
−0.169796 + 0.985479i \(0.554311\pi\)
\(602\) 0 0
\(603\) −3.24059 2.26909i −0.131967 0.0924044i
\(604\) 0 0
\(605\) 12.0465 + 17.2928i 0.489759 + 0.703052i
\(606\) 0 0
\(607\) −2.96963 2.96963i −0.120533 0.120533i 0.644267 0.764801i \(-0.277163\pi\)
−0.764801 + 0.644267i \(0.777163\pi\)
\(608\) 0 0
\(609\) 28.5367i 1.15636i
\(610\) 0 0
\(611\) −14.8647 + 40.8405i −0.601363 + 1.65223i
\(612\) 0 0
\(613\) 20.9803 29.9630i 0.847386 1.21019i −0.128456 0.991715i \(-0.541002\pi\)
0.975842 0.218478i \(-0.0701091\pi\)
\(614\) 0 0
\(615\) 27.1905 + 9.97088i 1.09643 + 0.402065i
\(616\) 0 0
\(617\) −33.5844 + 2.93825i −1.35206 + 0.118290i −0.740044 0.672559i \(-0.765195\pi\)
−0.612012 + 0.790848i \(0.709640\pi\)
\(618\) 0 0
\(619\) −11.6155 + 6.70623i −0.466868 + 0.269546i −0.714928 0.699199i \(-0.753540\pi\)
0.248060 + 0.968745i \(0.420207\pi\)
\(620\) 0 0
\(621\) −1.36447 3.74884i −0.0547541 0.150436i
\(622\) 0 0
\(623\) −8.76401 12.5163i −0.351123 0.501455i
\(624\) 0 0
\(625\) −4.57857 + 24.5772i −0.183143 + 0.983086i
\(626\) 0 0
\(627\) 8.48826 + 0.995296i 0.338989 + 0.0397483i
\(628\) 0 0
\(629\) 1.19112 0.999472i 0.0474932 0.0398516i
\(630\) 0 0
\(631\) 4.13445 23.4477i 0.164590 0.933436i −0.784896 0.619627i \(-0.787284\pi\)
0.949486 0.313809i \(-0.101605\pi\)
\(632\) 0 0
\(633\) 10.9672 + 5.11409i 0.435907 + 0.203267i
\(634\) 0 0
\(635\) 27.6896 23.1207i 1.09883 0.917518i
\(636\) 0 0
\(637\) 4.67148 + 53.3953i 0.185091 + 2.11560i
\(638\) 0 0
\(639\) −3.30375 + 5.72227i −0.130694 + 0.226369i
\(640\) 0 0
\(641\) −6.56316 + 1.15726i −0.259229 + 0.0457091i −0.301752 0.953386i \(-0.597572\pi\)
0.0425231 + 0.999095i \(0.486460\pi\)
\(642\) 0 0
\(643\) −10.8110 23.1843i −0.426344 0.914298i −0.995737 0.0922329i \(-0.970600\pi\)
0.569393 0.822065i \(-0.307178\pi\)
\(644\) 0 0
\(645\) −33.4881 23.5692i −1.31859 0.928037i
\(646\) 0 0
\(647\) −3.24357 + 3.24357i −0.127518 + 0.127518i −0.767985 0.640467i \(-0.778741\pi\)
0.640467 + 0.767985i \(0.278741\pi\)
\(648\) 0 0
\(649\) 4.52099 + 1.64550i 0.177464 + 0.0645917i
\(650\) 0 0
\(651\) −8.79462 49.8768i −0.344689 1.95483i
\(652\) 0 0
\(653\) −45.0049 + 12.0590i −1.76118 + 0.471906i −0.986954 0.161005i \(-0.948526\pi\)
−0.774224 + 0.632911i \(0.781860\pi\)
\(654\) 0 0
\(655\) −4.58352 17.2725i −0.179093 0.674892i
\(656\) 0 0
\(657\) −1.53022 0.410022i −0.0596997 0.0159965i
\(658\) 0 0
\(659\) 33.6242 12.2382i 1.30981 0.476734i 0.409634 0.912250i \(-0.365656\pi\)
0.900181 + 0.435516i \(0.143434\pi\)
\(660\) 0 0
\(661\) 37.6347 + 6.63602i 1.46382 + 0.258111i 0.848093 0.529847i \(-0.177751\pi\)
0.615728 + 0.787958i \(0.288862\pi\)
\(662\) 0 0
\(663\) 5.91096 + 0.517142i 0.229563 + 0.0200841i
\(664\) 0 0
\(665\) 40.1249 13.1723i 1.55598 0.510799i
\(666\) 0 0
\(667\) −3.01295 0.263599i −0.116662 0.0102066i
\(668\) 0 0
\(669\) 24.3365 + 4.29119i 0.940905 + 0.165907i
\(670\) 0 0
\(671\) 8.91264 3.24393i 0.344069 0.125231i
\(672\) 0 0
\(673\) 11.7288 + 3.14274i 0.452114 + 0.121144i 0.477688 0.878529i \(-0.341475\pi\)
−0.0255745 + 0.999673i \(0.508141\pi\)
\(674\) 0 0
\(675\) −25.2541 + 11.6282i −0.972031 + 0.447569i
\(676\) 0 0
\(677\) −37.7262 + 10.1087i −1.44993 + 0.388509i −0.896001 0.444053i \(-0.853540\pi\)
−0.553933 + 0.832561i \(0.686874\pi\)
\(678\) 0 0
\(679\) 4.11490 + 23.3368i 0.157915 + 0.895583i
\(680\) 0 0
\(681\) −4.59513 1.67249i −0.176086 0.0640900i
\(682\) 0 0
\(683\) 15.8482 15.8482i 0.606413 0.606413i −0.335594 0.942007i \(-0.608937\pi\)
0.942007 + 0.335594i \(0.108937\pi\)
\(684\) 0 0
\(685\) 9.86607 1.71512i 0.376963 0.0655315i
\(686\) 0 0
\(687\) 15.5538 + 33.3552i 0.593414 + 1.27258i
\(688\) 0 0
\(689\) −42.9192 + 7.56780i −1.63509 + 0.288310i
\(690\) 0 0
\(691\) 6.94745 12.0333i 0.264294 0.457770i −0.703085 0.711106i \(-0.748195\pi\)
0.967378 + 0.253336i \(0.0815279\pi\)
\(692\) 0 0
\(693\) −0.264972 3.02864i −0.0100654 0.115049i
\(694\) 0 0
\(695\) −5.25134 0.472200i −0.199195 0.0179116i
\(696\) 0 0
\(697\) 6.26800 + 2.92282i 0.237418 + 0.110710i
\(698\) 0 0
\(699\) −0.433370 + 2.45776i −0.0163915 + 0.0929611i
\(700\) 0 0
\(701\) −1.98247 + 1.66349i −0.0748767 + 0.0628290i −0.679458 0.733715i \(-0.737785\pi\)
0.604581 + 0.796544i \(0.293341\pi\)
\(702\) 0 0
\(703\) 7.78205 + 2.33291i 0.293506 + 0.0879873i
\(704\) 0 0
\(705\) 2.82667 + 33.2322i 0.106459 + 1.25160i
\(706\) 0 0
\(707\) −49.4874 70.6754i −1.86117 2.65802i
\(708\) 0 0
\(709\) 10.1015 + 27.7536i 0.379369 + 1.04231i 0.971619 + 0.236553i \(0.0760177\pi\)
−0.592250 + 0.805755i \(0.701760\pi\)
\(710\) 0 0
\(711\) 2.66216 1.53700i 0.0998388 0.0576420i
\(712\) 0 0
\(713\) −5.34732 + 0.467829i −0.200259 + 0.0175204i
\(714\) 0 0
\(715\) 4.39823 11.9939i 0.164485 0.448548i
\(716\) 0 0
\(717\) 3.88440 5.54750i 0.145066 0.207175i
\(718\) 0 0
\(719\) 4.71649 12.9585i 0.175895 0.483269i −0.820146 0.572154i \(-0.806108\pi\)
0.996042 + 0.0888849i \(0.0283303\pi\)
\(720\) 0 0
\(721\) 51.0006i 1.89936i
\(722\) 0 0
\(723\) −16.5964 16.5964i −0.617225 0.617225i
\(724\) 0 0
\(725\) −0.101695 + 21.0774i −0.00377685 + 0.782796i
\(726\) 0 0
\(727\) 17.9695 + 12.5824i 0.666450 + 0.466654i 0.857199 0.514985i \(-0.172203\pi\)
−0.190749 + 0.981639i \(0.561092\pi\)
\(728\) 0 0
\(729\) −25.9648 14.9908i −0.961660 0.555214i
\(730\) 0 0
\(731\) −7.49126 6.28591i −0.277074 0.232493i
\(732\) 0 0
\(733\) 0.320929 1.19772i 0.0118538 0.0442389i −0.959746 0.280871i \(-0.909377\pi\)
0.971599 + 0.236632i \(0.0760435\pi\)
\(734\) 0 0
\(735\) 20.4799 + 35.6706i 0.755412 + 1.31573i
\(736\) 0 0
\(737\) 7.27382 5.09319i 0.267935 0.187610i
\(738\) 0 0
\(739\) 7.20842 + 8.59067i 0.265166 + 0.316013i 0.882155 0.470959i \(-0.156092\pi\)
−0.616989 + 0.786972i \(0.711648\pi\)
\(740\) 0 0
\(741\) 14.7036 + 27.2936i 0.540151 + 1.00265i
\(742\) 0 0
\(743\) 3.04364 34.7890i 0.111660 1.27628i −0.709139 0.705068i \(-0.750916\pi\)
0.820800 0.571216i \(-0.193528\pi\)
\(744\) 0 0
\(745\) 25.8127 + 25.9375i 0.945703 + 0.950277i
\(746\) 0 0
\(747\) −1.76653 + 3.78833i −0.0646338 + 0.138608i
\(748\) 0 0
\(749\) 21.1765 + 36.6788i 0.773773 + 1.34021i
\(750\) 0 0
\(751\) 17.3523 20.6797i 0.633196 0.754614i −0.350083 0.936719i \(-0.613847\pi\)
0.983279 + 0.182105i \(0.0582911\pi\)
\(752\) 0 0
\(753\) −11.4014 42.5507i −0.415491 1.55063i
\(754\) 0 0
\(755\) −1.04828 0.491905i −0.0381509 0.0179022i
\(756\) 0 0
\(757\) 9.20704 4.29331i 0.334635 0.156043i −0.248036 0.968751i \(-0.579785\pi\)
0.582672 + 0.812708i \(0.302007\pi\)
\(758\) 0 0
\(759\) 1.40670 0.0510601
\(760\) 0 0
\(761\) −16.4509 −0.596344 −0.298172 0.954512i \(-0.596377\pi\)
−0.298172 + 0.954512i \(0.596377\pi\)
\(762\) 0 0
\(763\) 14.1623 6.60398i 0.512709 0.239080i
\(764\) 0 0
\(765\) −0.980944 + 0.354357i −0.0354661 + 0.0128118i
\(766\) 0 0
\(767\) 4.51702 + 16.8577i 0.163100 + 0.608698i
\(768\) 0 0
\(769\) 22.4354 26.7375i 0.809041 0.964177i −0.190807 0.981628i \(-0.561110\pi\)
0.999848 + 0.0174502i \(0.00555484\pi\)
\(770\) 0 0
\(771\) −7.66531 13.2767i −0.276059 0.478149i
\(772\) 0 0
\(773\) −12.2468 + 26.2634i −0.440488 + 0.944630i 0.553262 + 0.833007i \(0.313383\pi\)
−0.993751 + 0.111623i \(0.964395\pi\)
\(774\) 0 0
\(775\) 6.31804 + 36.8707i 0.226951 + 1.32444i
\(776\) 0 0
\(777\) −1.09964 + 12.5690i −0.0394494 + 0.450909i
\(778\) 0 0
\(779\) 5.22402 + 35.7557i 0.187170 + 1.28108i
\(780\) 0 0
\(781\) −9.53330 11.3613i −0.341128 0.406541i
\(782\) 0 0
\(783\) −19.2014 + 13.4450i −0.686202 + 0.480484i
\(784\) 0 0
\(785\) −26.9256 + 15.4590i −0.961017 + 0.551756i
\(786\) 0 0
\(787\) 7.59968 28.3624i 0.270899 1.01101i −0.687640 0.726051i \(-0.741353\pi\)
0.958540 0.284959i \(-0.0919799\pi\)
\(788\) 0 0
\(789\) 10.7082 + 8.98524i 0.381222 + 0.319883i
\(790\) 0 0
\(791\) 12.8756 + 7.43373i 0.457804 + 0.264313i