Properties

Label 380.2.bh.a.117.2
Level $380$
Weight $2$
Character 380.117
Analytic conductor $3.034$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(13,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 27, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bh (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 117.2
Character \(\chi\) \(=\) 380.117
Dual form 380.2.bh.a.13.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.38123 - 1.11039i) q^{3} +(1.56340 - 1.59868i) q^{5} +(0.558906 - 2.08587i) q^{7} +(2.50894 + 2.99004i) q^{9} +O(q^{10})\) \(q+(-2.38123 - 1.11039i) q^{3} +(1.56340 - 1.59868i) q^{5} +(0.558906 - 2.08587i) q^{7} +(2.50894 + 2.99004i) q^{9} +(-0.730936 + 1.26602i) q^{11} +(-0.349226 - 0.748918i) q^{13} +(-5.49797 + 2.07086i) q^{15} +(-0.237149 - 2.71062i) q^{17} +(-4.25189 - 0.959893i) q^{19} +(-3.64700 + 4.34633i) q^{21} +(-5.66631 - 3.96759i) q^{23} +(-0.111572 - 4.99876i) q^{25} +(-0.614204 - 2.29224i) q^{27} +(-1.39280 + 1.16870i) q^{29} +(-1.26371 + 0.729601i) q^{31} +(3.14629 - 2.20306i) q^{33} +(-2.46084 - 4.15455i) q^{35} +(0.309697 - 0.309697i) q^{37} +2.17112i q^{39} +(0.339156 + 0.931825i) q^{41} +(-5.64709 - 8.06488i) q^{43} +(8.70259 + 0.663621i) q^{45} +(10.9192 + 0.955306i) q^{47} +(2.02372 + 1.16839i) q^{49} +(-2.44513 + 6.71794i) q^{51} +(-5.47646 + 7.82119i) q^{53} +(0.881217 + 3.14782i) q^{55} +(9.05889 + 7.00697i) q^{57} +(-4.73412 - 3.97240i) q^{59} +(0.0111039 + 0.0629732i) q^{61} +(7.63907 - 3.56216i) q^{63} +(-1.74326 - 0.612555i) q^{65} +(-0.176397 + 2.01623i) q^{67} +(9.08722 + 15.7395i) q^{69} +(13.0287 + 2.29730i) q^{71} +(6.33800 - 13.5919i) q^{73} +(-5.28487 + 12.0271i) q^{75} +(2.23222 + 2.23222i) q^{77} +(2.02226 - 0.736043i) q^{79} +(0.950647 - 5.39139i) q^{81} +(12.1400 + 3.25291i) q^{83} +(-4.70418 - 3.85865i) q^{85} +(4.61428 - 1.23639i) q^{87} +(11.7510 + 4.27701i) q^{89} +(-1.75733 + 0.309864i) q^{91} +(3.81931 - 0.334147i) q^{93} +(-8.18197 + 5.29673i) q^{95} +(-9.92678 + 0.868480i) q^{97} +(-5.61931 + 0.990836i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 6 q^{7} + 18 q^{15} - 18 q^{17} + 48 q^{21} - 36 q^{23} - 24 q^{25} - 60 q^{33} - 18 q^{35} - 12 q^{41} - 36 q^{43} + 18 q^{45} - 24 q^{47} + 96 q^{51} - 18 q^{53} + 72 q^{55} - 6 q^{57} - 24 q^{61} + 36 q^{63} + 90 q^{65} - 24 q^{67} + 18 q^{73} - 36 q^{77} - 30 q^{83} - 24 q^{85} - 72 q^{87} - 144 q^{91} - 132 q^{93} - 12 q^{95} - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.38123 1.11039i −1.37480 0.641082i −0.411975 0.911195i \(-0.635161\pi\)
−0.962829 + 0.270113i \(0.912939\pi\)
\(4\) 0 0
\(5\) 1.56340 1.59868i 0.699173 0.714953i
\(6\) 0 0
\(7\) 0.558906 2.08587i 0.211247 0.788383i −0.776208 0.630477i \(-0.782859\pi\)
0.987454 0.157906i \(-0.0504742\pi\)
\(8\) 0 0
\(9\) 2.50894 + 2.99004i 0.836313 + 0.996679i
\(10\) 0 0
\(11\) −0.730936 + 1.26602i −0.220385 + 0.381719i −0.954925 0.296847i \(-0.904065\pi\)
0.734540 + 0.678566i \(0.237398\pi\)
\(12\) 0 0
\(13\) −0.349226 0.748918i −0.0968579 0.207712i 0.851909 0.523691i \(-0.175445\pi\)
−0.948766 + 0.315978i \(0.897667\pi\)
\(14\) 0 0
\(15\) −5.49797 + 2.07086i −1.41957 + 0.534693i
\(16\) 0 0
\(17\) −0.237149 2.71062i −0.0575170 0.657422i −0.969159 0.246437i \(-0.920740\pi\)
0.911642 0.410985i \(-0.134815\pi\)
\(18\) 0 0
\(19\) −4.25189 0.959893i −0.975451 0.220214i
\(20\) 0 0
\(21\) −3.64700 + 4.34633i −0.795841 + 0.948446i
\(22\) 0 0
\(23\) −5.66631 3.96759i −1.18151 0.827300i −0.193407 0.981119i \(-0.561954\pi\)
−0.988099 + 0.153819i \(0.950843\pi\)
\(24\) 0 0
\(25\) −0.111572 4.99876i −0.0223144 0.999751i
\(26\) 0 0
\(27\) −0.614204 2.29224i −0.118204 0.441142i
\(28\) 0 0
\(29\) −1.39280 + 1.16870i −0.258636 + 0.217022i −0.762881 0.646539i \(-0.776216\pi\)
0.504244 + 0.863561i \(0.331771\pi\)
\(30\) 0 0
\(31\) −1.26371 + 0.729601i −0.226968 + 0.131040i −0.609173 0.793038i \(-0.708498\pi\)
0.382204 + 0.924078i \(0.375165\pi\)
\(32\) 0 0
\(33\) 3.14629 2.20306i 0.547700 0.383503i
\(34\) 0 0
\(35\) −2.46084 4.15455i −0.415959 0.702248i
\(36\) 0 0
\(37\) 0.309697 0.309697i 0.0509138 0.0509138i −0.681191 0.732105i \(-0.738538\pi\)
0.732105 + 0.681191i \(0.238538\pi\)
\(38\) 0 0
\(39\) 2.17112i 0.347658i
\(40\) 0 0
\(41\) 0.339156 + 0.931825i 0.0529673 + 0.145527i 0.963355 0.268230i \(-0.0864387\pi\)
−0.910388 + 0.413757i \(0.864216\pi\)
\(42\) 0 0
\(43\) −5.64709 8.06488i −0.861173 1.22988i −0.971749 0.236015i \(-0.924159\pi\)
0.110576 0.993868i \(-0.464730\pi\)
\(44\) 0 0
\(45\) 8.70259 + 0.663621i 1.29731 + 0.0989268i
\(46\) 0 0
\(47\) 10.9192 + 0.955306i 1.59273 + 0.139346i 0.848727 0.528831i \(-0.177370\pi\)
0.744002 + 0.668177i \(0.232925\pi\)
\(48\) 0 0
\(49\) 2.02372 + 1.16839i 0.289102 + 0.166913i
\(50\) 0 0
\(51\) −2.44513 + 6.71794i −0.342387 + 0.940699i
\(52\) 0 0
\(53\) −5.47646 + 7.82119i −0.752249 + 1.07432i 0.242315 + 0.970198i \(0.422093\pi\)
−0.994564 + 0.104126i \(0.966796\pi\)
\(54\) 0 0
\(55\) 0.881217 + 3.14782i 0.118823 + 0.424453i
\(56\) 0 0
\(57\) 9.05889 + 7.00697i 1.19988 + 0.928096i
\(58\) 0 0
\(59\) −4.73412 3.97240i −0.616330 0.517162i 0.280318 0.959907i \(-0.409560\pi\)
−0.896647 + 0.442745i \(0.854005\pi\)
\(60\) 0 0
\(61\) 0.0111039 + 0.0629732i 0.00142171 + 0.00806290i 0.985510 0.169615i \(-0.0542525\pi\)
−0.984089 + 0.177678i \(0.943141\pi\)
\(62\) 0 0
\(63\) 7.63907 3.56216i 0.962433 0.448790i
\(64\) 0 0
\(65\) −1.74326 0.612555i −0.216225 0.0759781i
\(66\) 0 0
\(67\) −0.176397 + 2.01623i −0.0215504 + 0.246322i 0.977777 + 0.209648i \(0.0672318\pi\)
−0.999327 + 0.0366737i \(0.988324\pi\)
\(68\) 0 0
\(69\) 9.08722 + 15.7395i 1.09397 + 1.89482i
\(70\) 0 0
\(71\) 13.0287 + 2.29730i 1.54622 + 0.272640i 0.880675 0.473720i \(-0.157089\pi\)
0.665542 + 0.746360i \(0.268200\pi\)
\(72\) 0 0
\(73\) 6.33800 13.5919i 0.741807 1.59081i −0.0635204 0.997981i \(-0.520233\pi\)
0.805328 0.592830i \(-0.201989\pi\)
\(74\) 0 0
\(75\) −5.28487 + 12.0271i −0.610244 + 1.38877i
\(76\) 0 0
\(77\) 2.23222 + 2.23222i 0.254385 + 0.254385i
\(78\) 0 0
\(79\) 2.02226 0.736043i 0.227522 0.0828113i −0.225743 0.974187i \(-0.572481\pi\)
0.453266 + 0.891375i \(0.350259\pi\)
\(80\) 0 0
\(81\) 0.950647 5.39139i 0.105627 0.599043i
\(82\) 0 0
\(83\) 12.1400 + 3.25291i 1.33254 + 0.357053i 0.853661 0.520829i \(-0.174377\pi\)
0.478878 + 0.877882i \(0.341044\pi\)
\(84\) 0 0
\(85\) −4.70418 3.85865i −0.510240 0.418530i
\(86\) 0 0
\(87\) 4.61428 1.23639i 0.494703 0.132555i
\(88\) 0 0
\(89\) 11.7510 + 4.27701i 1.24560 + 0.453362i 0.878913 0.476982i \(-0.158269\pi\)
0.366688 + 0.930344i \(0.380492\pi\)
\(90\) 0 0
\(91\) −1.75733 + 0.309864i −0.184218 + 0.0324826i
\(92\) 0 0
\(93\) 3.81931 0.334147i 0.396044 0.0346494i
\(94\) 0 0
\(95\) −8.18197 + 5.29673i −0.839452 + 0.543434i
\(96\) 0 0
\(97\) −9.92678 + 0.868480i −1.00791 + 0.0881808i −0.579137 0.815231i \(-0.696610\pi\)
−0.428775 + 0.903411i \(0.641055\pi\)
\(98\) 0 0
\(99\) −5.61931 + 0.990836i −0.564762 + 0.0995828i
\(100\) 0 0
\(101\) −6.98936 2.54392i −0.695468 0.253130i −0.0299932 0.999550i \(-0.509549\pi\)
−0.665475 + 0.746421i \(0.731771\pi\)
\(102\) 0 0
\(103\) 13.0684 3.50166i 1.28767 0.345029i 0.450893 0.892578i \(-0.351106\pi\)
0.836774 + 0.547549i \(0.184439\pi\)
\(104\) 0 0
\(105\) 1.24668 + 12.6254i 0.121664 + 1.23212i
\(106\) 0 0
\(107\) −2.00090 0.536140i −0.193435 0.0518306i 0.160801 0.986987i \(-0.448592\pi\)
−0.354236 + 0.935156i \(0.615259\pi\)
\(108\) 0 0
\(109\) 3.56668 20.2276i 0.341626 1.93746i −0.00642372 0.999979i \(-0.502045\pi\)
0.348049 0.937476i \(-0.386844\pi\)
\(110\) 0 0
\(111\) −1.08134 + 0.393576i −0.102636 + 0.0373566i
\(112\) 0 0
\(113\) −13.3811 13.3811i −1.25879 1.25879i −0.951670 0.307122i \(-0.900634\pi\)
−0.307122 0.951670i \(-0.599366\pi\)
\(114\) 0 0
\(115\) −15.2016 + 2.85570i −1.41756 + 0.266296i
\(116\) 0 0
\(117\) 1.36310 2.92319i 0.126019 0.270249i
\(118\) 0 0
\(119\) −5.78654 1.02032i −0.530451 0.0935328i
\(120\) 0 0
\(121\) 4.43147 + 7.67552i 0.402861 + 0.697775i
\(122\) 0 0
\(123\) 0.227075 2.59548i 0.0204747 0.234027i
\(124\) 0 0
\(125\) −8.16585 7.63668i −0.730376 0.683045i
\(126\) 0 0
\(127\) −11.4484 + 5.33846i −1.01588 + 0.473712i −0.857947 0.513738i \(-0.828260\pi\)
−0.157931 + 0.987450i \(0.550483\pi\)
\(128\) 0 0
\(129\) 4.49189 + 25.4748i 0.395489 + 2.24293i
\(130\) 0 0
\(131\) 10.5177 + 8.82537i 0.918933 + 0.771076i 0.973797 0.227418i \(-0.0730283\pi\)
−0.0548646 + 0.998494i \(0.517473\pi\)
\(132\) 0 0
\(133\) −4.37862 + 8.33239i −0.379674 + 0.722510i
\(134\) 0 0
\(135\) −4.62481 2.60177i −0.398040 0.223925i
\(136\) 0 0
\(137\) −3.96702 + 5.66550i −0.338926 + 0.484036i −0.952047 0.305953i \(-0.901025\pi\)
0.613121 + 0.789989i \(0.289914\pi\)
\(138\) 0 0
\(139\) 6.75859 18.5691i 0.573256 1.57501i −0.226069 0.974111i \(-0.572588\pi\)
0.799326 0.600898i \(-0.205190\pi\)
\(140\) 0 0
\(141\) −24.9404 14.3993i −2.10036 1.21264i
\(142\) 0 0
\(143\) 1.20341 + 0.105284i 0.100634 + 0.00880432i
\(144\) 0 0
\(145\) −0.309124 + 4.05379i −0.0256714 + 0.336649i
\(146\) 0 0
\(147\) −3.52157 5.02932i −0.290454 0.414811i
\(148\) 0 0
\(149\) 4.11924 + 11.3175i 0.337461 + 0.927167i 0.986112 + 0.166081i \(0.0531113\pi\)
−0.648651 + 0.761086i \(0.724666\pi\)
\(150\) 0 0
\(151\) 21.7280i 1.76820i −0.467296 0.884101i \(-0.654772\pi\)
0.467296 0.884101i \(-0.345228\pi\)
\(152\) 0 0
\(153\) 7.50986 7.50986i 0.607136 0.607136i
\(154\) 0 0
\(155\) −0.809275 + 3.16092i −0.0650026 + 0.253891i
\(156\) 0 0
\(157\) 6.53099 4.57305i 0.521230 0.364969i −0.283158 0.959073i \(-0.591382\pi\)
0.804388 + 0.594104i \(0.202493\pi\)
\(158\) 0 0
\(159\) 21.7253 12.5431i 1.72292 0.994731i
\(160\) 0 0
\(161\) −11.4428 + 9.60165i −0.901819 + 0.756716i
\(162\) 0 0
\(163\) 1.40873 + 5.25745i 0.110340 + 0.411795i 0.998896 0.0469731i \(-0.0149575\pi\)
−0.888556 + 0.458768i \(0.848291\pi\)
\(164\) 0 0
\(165\) 1.39692 8.47419i 0.108750 0.659714i
\(166\) 0 0
\(167\) 15.2439 + 10.6739i 1.17961 + 0.825973i 0.987841 0.155467i \(-0.0496882\pi\)
0.191770 + 0.981440i \(0.438577\pi\)
\(168\) 0 0
\(169\) 7.91732 9.43549i 0.609025 0.725807i
\(170\) 0 0
\(171\) −7.79763 15.1216i −0.596299 1.15638i
\(172\) 0 0
\(173\) 1.11462 + 12.7401i 0.0847429 + 0.968616i 0.912917 + 0.408145i \(0.133824\pi\)
−0.828174 + 0.560471i \(0.810620\pi\)
\(174\) 0 0
\(175\) −10.4891 2.56111i −0.792901 0.193602i
\(176\) 0 0
\(177\) 6.86213 + 14.7159i 0.515789 + 1.10611i
\(178\) 0 0
\(179\) −6.86857 + 11.8967i −0.513381 + 0.889202i 0.486499 + 0.873681i \(0.338274\pi\)
−0.999880 + 0.0155204i \(0.995060\pi\)
\(180\) 0 0
\(181\) −1.26467 1.50718i −0.0940024 0.112028i 0.716993 0.697081i \(-0.245518\pi\)
−0.810995 + 0.585053i \(0.801074\pi\)
\(182\) 0 0
\(183\) 0.0434837 0.162283i 0.00321441 0.0119963i
\(184\) 0 0
\(185\) −0.0109274 0.979286i −0.000803401 0.0719985i
\(186\) 0 0
\(187\) 3.60503 + 1.68106i 0.263626 + 0.122931i
\(188\) 0 0
\(189\) −5.12459 −0.372759
\(190\) 0 0
\(191\) −7.72276 −0.558799 −0.279400 0.960175i \(-0.590135\pi\)
−0.279400 + 0.960175i \(0.590135\pi\)
\(192\) 0 0
\(193\) −1.56066 0.727748i −0.112339 0.0523845i 0.365636 0.930758i \(-0.380851\pi\)
−0.477975 + 0.878373i \(0.658629\pi\)
\(194\) 0 0
\(195\) 3.47093 + 3.39433i 0.248559 + 0.243073i
\(196\) 0 0
\(197\) −0.701434 + 2.61779i −0.0499751 + 0.186510i −0.986401 0.164355i \(-0.947446\pi\)
0.936426 + 0.350865i \(0.114112\pi\)
\(198\) 0 0
\(199\) 10.4768 + 12.4858i 0.742680 + 0.885091i 0.996622 0.0821280i \(-0.0261716\pi\)
−0.253942 + 0.967219i \(0.581727\pi\)
\(200\) 0 0
\(201\) 2.65884 4.60524i 0.187540 0.324828i
\(202\) 0 0
\(203\) 1.65930 + 3.55839i 0.116460 + 0.249750i
\(204\) 0 0
\(205\) 2.01993 + 0.914609i 0.141078 + 0.0638791i
\(206\) 0 0
\(207\) −2.35317 26.8969i −0.163557 1.86946i
\(208\) 0 0
\(209\) 4.32310 4.68135i 0.299035 0.323816i
\(210\) 0 0
\(211\) 8.61100 10.2622i 0.592806 0.706479i −0.383337 0.923609i \(-0.625225\pi\)
0.976143 + 0.217130i \(0.0696696\pi\)
\(212\) 0 0
\(213\) −28.4733 19.9372i −1.95096 1.36608i
\(214\) 0 0
\(215\) −21.7218 3.58072i −1.48142 0.244203i
\(216\) 0 0
\(217\) 0.815557 + 3.04370i 0.0553636 + 0.206620i
\(218\) 0 0
\(219\) −30.1845 + 25.3278i −2.03968 + 1.71149i
\(220\) 0 0
\(221\) −1.94721 + 1.12422i −0.130984 + 0.0756235i
\(222\) 0 0
\(223\) −5.94978 + 4.16608i −0.398427 + 0.278982i −0.755570 0.655068i \(-0.772640\pi\)
0.357143 + 0.934050i \(0.383751\pi\)
\(224\) 0 0
\(225\) 14.6665 12.8752i 0.977769 0.858345i
\(226\) 0 0
\(227\) 11.2519 11.2519i 0.746813 0.746813i −0.227067 0.973879i \(-0.572913\pi\)
0.973879 + 0.227067i \(0.0729135\pi\)
\(228\) 0 0
\(229\) 17.1090i 1.13059i −0.824888 0.565296i \(-0.808762\pi\)
0.824888 0.565296i \(-0.191238\pi\)
\(230\) 0 0
\(231\) −2.83680 7.79405i −0.186648 0.512811i
\(232\) 0 0
\(233\) 7.89205 + 11.2710i 0.517025 + 0.738389i 0.989748 0.142822i \(-0.0456178\pi\)
−0.472723 + 0.881211i \(0.656729\pi\)
\(234\) 0 0
\(235\) 18.5983 15.9628i 1.21322 1.04130i
\(236\) 0 0
\(237\) −5.63276 0.492803i −0.365887 0.0320110i
\(238\) 0 0
\(239\) −10.0336 5.79288i −0.649017 0.374710i 0.139062 0.990284i \(-0.455591\pi\)
−0.788080 + 0.615573i \(0.788924\pi\)
\(240\) 0 0
\(241\) −1.49523 + 4.10811i −0.0963161 + 0.264626i −0.978489 0.206300i \(-0.933858\pi\)
0.882173 + 0.470926i \(0.156080\pi\)
\(242\) 0 0
\(243\) −12.3337 + 17.6144i −0.791207 + 1.12996i
\(244\) 0 0
\(245\) 5.03177 1.40862i 0.321468 0.0899932i
\(246\) 0 0
\(247\) 0.765992 + 3.51954i 0.0487389 + 0.223943i
\(248\) 0 0
\(249\) −25.2962 21.2260i −1.60308 1.34514i
\(250\) 0 0
\(251\) 4.34823 + 24.6600i 0.274458 + 1.55653i 0.740679 + 0.671859i \(0.234504\pi\)
−0.466221 + 0.884668i \(0.654385\pi\)
\(252\) 0 0
\(253\) 9.16475 4.27359i 0.576183 0.268678i
\(254\) 0 0
\(255\) 6.91714 + 14.4118i 0.433168 + 0.902502i
\(256\) 0 0
\(257\) 1.22664 14.0206i 0.0765157 0.874579i −0.856830 0.515599i \(-0.827569\pi\)
0.933346 0.358979i \(-0.116875\pi\)
\(258\) 0 0
\(259\) −0.472894 0.819077i −0.0293842 0.0508950i
\(260\) 0 0
\(261\) −6.98890 1.23233i −0.432602 0.0762794i
\(262\) 0 0
\(263\) −0.0563004 + 0.120737i −0.00347163 + 0.00744493i −0.908036 0.418892i \(-0.862419\pi\)
0.904564 + 0.426337i \(0.140196\pi\)
\(264\) 0 0
\(265\) 3.94172 + 20.9828i 0.242138 + 1.28896i
\(266\) 0 0
\(267\) −23.2327 23.2327i −1.42182 1.42182i
\(268\) 0 0
\(269\) 4.35873 1.58645i 0.265756 0.0967274i −0.205705 0.978614i \(-0.565949\pi\)
0.471462 + 0.881887i \(0.343727\pi\)
\(270\) 0 0
\(271\) −1.42075 + 8.05748i −0.0863045 + 0.489457i 0.910763 + 0.412930i \(0.135494\pi\)
−0.997067 + 0.0765276i \(0.975617\pi\)
\(272\) 0 0
\(273\) 4.52867 + 1.21345i 0.274088 + 0.0734415i
\(274\) 0 0
\(275\) 6.41007 + 3.51252i 0.386541 + 0.211813i
\(276\) 0 0
\(277\) −26.5790 + 7.12181i −1.59697 + 0.427908i −0.944127 0.329581i \(-0.893092\pi\)
−0.652848 + 0.757489i \(0.726426\pi\)
\(278\) 0 0
\(279\) −5.35209 1.94800i −0.320421 0.116624i
\(280\) 0 0
\(281\) 23.1580 4.08337i 1.38149 0.243594i 0.566973 0.823736i \(-0.308114\pi\)
0.814515 + 0.580143i \(0.197003\pi\)
\(282\) 0 0
\(283\) −15.7284 + 1.37605i −0.934955 + 0.0817980i −0.544441 0.838799i \(-0.683258\pi\)
−0.390514 + 0.920597i \(0.627703\pi\)
\(284\) 0 0
\(285\) 25.3646 3.52760i 1.50247 0.208957i
\(286\) 0 0
\(287\) 2.13322 0.186632i 0.125920 0.0110166i
\(288\) 0 0
\(289\) 9.45051 1.66638i 0.555912 0.0980223i
\(290\) 0 0
\(291\) 24.6023 + 8.95450i 1.44221 + 0.524922i
\(292\) 0 0
\(293\) −7.04746 + 1.88836i −0.411717 + 0.110319i −0.458732 0.888575i \(-0.651696\pi\)
0.0470143 + 0.998894i \(0.485029\pi\)
\(294\) 0 0
\(295\) −13.7519 + 1.35791i −0.800667 + 0.0790608i
\(296\) 0 0
\(297\) 3.35096 + 0.897888i 0.194443 + 0.0521007i
\(298\) 0 0
\(299\) −0.992577 + 5.62918i −0.0574022 + 0.325544i
\(300\) 0 0
\(301\) −19.9785 + 7.27156i −1.15154 + 0.419126i
\(302\) 0 0
\(303\) 13.8186 + 13.8186i 0.793855 + 0.793855i
\(304\) 0 0
\(305\) 0.118034 + 0.0807007i 0.00675861 + 0.00462091i
\(306\) 0 0
\(307\) 5.40813 11.5978i 0.308658 0.661920i −0.689388 0.724392i \(-0.742121\pi\)
0.998047 + 0.0624721i \(0.0198984\pi\)
\(308\) 0 0
\(309\) −35.0070 6.17269i −1.99148 0.351152i
\(310\) 0 0
\(311\) −0.789525 1.36750i −0.0447699 0.0775437i 0.842772 0.538271i \(-0.180922\pi\)
−0.887542 + 0.460727i \(0.847589\pi\)
\(312\) 0 0
\(313\) −0.0435813 + 0.498136i −0.00246336 + 0.0281563i −0.997327 0.0730689i \(-0.976721\pi\)
0.994864 + 0.101225i \(0.0322763\pi\)
\(314\) 0 0
\(315\) 6.24815 17.7815i 0.352044 1.00188i
\(316\) 0 0
\(317\) −7.77864 + 3.62724i −0.436892 + 0.203726i −0.628605 0.777725i \(-0.716374\pi\)
0.191713 + 0.981451i \(0.438596\pi\)
\(318\) 0 0
\(319\) −0.461545 2.61755i −0.0258416 0.146555i
\(320\) 0 0
\(321\) 4.16929 + 3.49845i 0.232707 + 0.195264i
\(322\) 0 0
\(323\) −1.59357 + 11.7529i −0.0886688 + 0.653949i
\(324\) 0 0
\(325\) −3.70469 + 1.82925i −0.205499 + 0.101469i
\(326\) 0 0
\(327\) −30.9536 + 44.2063i −1.71174 + 2.44461i
\(328\) 0 0
\(329\) 8.09545 22.2421i 0.446317 1.22624i
\(330\) 0 0
\(331\) 28.8818 + 16.6749i 1.58749 + 0.916535i 0.993720 + 0.111897i \(0.0356927\pi\)
0.593766 + 0.804638i \(0.297641\pi\)
\(332\) 0 0
\(333\) 1.70301 + 0.148994i 0.0933246 + 0.00816484i
\(334\) 0 0
\(335\) 2.94753 + 3.43417i 0.161041 + 0.187629i
\(336\) 0 0
\(337\) 3.29091 + 4.69991i 0.179267 + 0.256020i 0.898722 0.438519i \(-0.144497\pi\)
−0.719454 + 0.694540i \(0.755608\pi\)
\(338\) 0 0
\(339\) 17.0053 + 46.7218i 0.923604 + 2.53758i
\(340\) 0 0
\(341\) 2.13317i 0.115517i
\(342\) 0 0
\(343\) 14.2569 14.2569i 0.769800 0.769800i
\(344\) 0 0
\(345\) 39.3695 + 10.0796i 2.11958 + 0.542666i
\(346\) 0 0
\(347\) 21.1673 14.8215i 1.13632 0.795659i 0.154975 0.987918i \(-0.450470\pi\)
0.981344 + 0.192259i \(0.0615814\pi\)
\(348\) 0 0
\(349\) −13.6620 + 7.88776i −0.731310 + 0.422222i −0.818901 0.573935i \(-0.805416\pi\)
0.0875913 + 0.996156i \(0.472083\pi\)
\(350\) 0 0
\(351\) −1.50220 + 1.26050i −0.0801817 + 0.0672805i
\(352\) 0 0
\(353\) 1.48906 + 5.55725i 0.0792547 + 0.295783i 0.994164 0.107876i \(-0.0344050\pi\)
−0.914910 + 0.403659i \(0.867738\pi\)
\(354\) 0 0
\(355\) 24.0416 17.2371i 1.27600 0.914850i
\(356\) 0 0
\(357\) 12.6461 + 8.85491i 0.669304 + 0.468651i
\(358\) 0 0
\(359\) 2.00499 2.38946i 0.105820 0.126111i −0.710535 0.703662i \(-0.751547\pi\)
0.816355 + 0.577551i \(0.195992\pi\)
\(360\) 0 0
\(361\) 17.1572 + 8.16273i 0.903011 + 0.429617i
\(362\) 0 0
\(363\) −2.02955 23.1978i −0.106524 1.21757i
\(364\) 0 0
\(365\) −11.8203 31.3820i −0.618703 1.64261i
\(366\) 0 0
\(367\) 1.66951 + 3.58028i 0.0871478 + 0.186889i 0.945052 0.326921i \(-0.106011\pi\)
−0.857904 + 0.513810i \(0.828233\pi\)
\(368\) 0 0
\(369\) −1.93527 + 3.35198i −0.100746 + 0.174497i
\(370\) 0 0
\(371\) 13.2531 + 15.7945i 0.688068 + 0.820008i
\(372\) 0 0
\(373\) −2.74928 + 10.2605i −0.142352 + 0.531266i 0.857507 + 0.514473i \(0.172012\pi\)
−0.999859 + 0.0167934i \(0.994654\pi\)
\(374\) 0 0
\(375\) 10.9651 + 27.2519i 0.566236 + 1.40728i
\(376\) 0 0
\(377\) 1.36166 + 0.634953i 0.0701291 + 0.0327017i
\(378\) 0 0
\(379\) −1.77489 −0.0911701 −0.0455850 0.998960i \(-0.514515\pi\)
−0.0455850 + 0.998960i \(0.514515\pi\)
\(380\) 0 0
\(381\) 33.1890 1.70032
\(382\) 0 0
\(383\) 24.3069 + 11.3345i 1.24202 + 0.579165i 0.928824 0.370522i \(-0.120821\pi\)
0.313200 + 0.949687i \(0.398599\pi\)
\(384\) 0 0
\(385\) 7.05846 0.0787623i 0.359732 0.00401410i
\(386\) 0 0
\(387\) 9.94608 37.1193i 0.505588 1.88688i
\(388\) 0 0
\(389\) −11.1104 13.2408i −0.563318 0.671336i 0.406928 0.913460i \(-0.366600\pi\)
−0.970245 + 0.242125i \(0.922156\pi\)
\(390\) 0 0
\(391\) −9.41088 + 16.3001i −0.475928 + 0.824332i
\(392\) 0 0
\(393\) −15.2454 32.6939i −0.769030 1.64919i
\(394\) 0 0
\(395\) 1.98490 4.38368i 0.0998712 0.220567i
\(396\) 0 0
\(397\) 0.398077 + 4.55004i 0.0199789 + 0.228360i 0.999619 + 0.0275986i \(0.00878604\pi\)
−0.979640 + 0.200761i \(0.935658\pi\)
\(398\) 0 0
\(399\) 19.6787 14.9794i 0.985166 0.749907i
\(400\) 0 0
\(401\) 9.78469 11.6609i 0.488624 0.582320i −0.464243 0.885708i \(-0.653673\pi\)
0.952867 + 0.303388i \(0.0981179\pi\)
\(402\) 0 0
\(403\) 0.987730 + 0.691616i 0.0492023 + 0.0344519i
\(404\) 0 0
\(405\) −7.13288 9.94867i −0.354436 0.494354i
\(406\) 0 0
\(407\) 0.165713 + 0.618450i 0.00821409 + 0.0306554i
\(408\) 0 0
\(409\) −19.0672 + 15.9993i −0.942812 + 0.791113i −0.978072 0.208265i \(-0.933218\pi\)
0.0352604 + 0.999378i \(0.488774\pi\)
\(410\) 0 0
\(411\) 15.7373 9.08593i 0.776263 0.448176i
\(412\) 0 0
\(413\) −10.9318 + 7.65454i −0.537919 + 0.376655i
\(414\) 0 0
\(415\) 24.1800 14.3224i 1.18695 0.703061i
\(416\) 0 0
\(417\) −36.7126 + 36.7126i −1.79782 + 1.79782i
\(418\) 0 0
\(419\) 17.8878i 0.873877i −0.899491 0.436939i \(-0.856063\pi\)
0.899491 0.436939i \(-0.143937\pi\)
\(420\) 0 0
\(421\) −8.99524 24.7142i −0.438401 1.20450i −0.940532 0.339706i \(-0.889673\pi\)
0.502130 0.864792i \(-0.332550\pi\)
\(422\) 0 0
\(423\) 24.5392 + 35.0456i 1.19314 + 1.70398i
\(424\) 0 0
\(425\) −13.5233 + 1.48788i −0.655975 + 0.0721726i
\(426\) 0 0
\(427\) 0.137560 + 0.0120349i 0.00665698 + 0.000582411i
\(428\) 0 0
\(429\) −2.74868 1.58695i −0.132707 0.0766187i
\(430\) 0 0
\(431\) −3.69543 + 10.1531i −0.178002 + 0.489058i −0.996320 0.0857084i \(-0.972685\pi\)
0.818318 + 0.574766i \(0.194907\pi\)
\(432\) 0 0
\(433\) −16.3089 + 23.2915i −0.783756 + 1.11932i 0.206278 + 0.978493i \(0.433865\pi\)
−0.990034 + 0.140826i \(0.955024\pi\)
\(434\) 0 0
\(435\) 5.23736 9.30975i 0.251112 0.446368i
\(436\) 0 0
\(437\) 20.2841 + 22.3088i 0.970319 + 1.06718i
\(438\) 0 0
\(439\) −18.3174 15.3701i −0.874241 0.733575i 0.0907456 0.995874i \(-0.471075\pi\)
−0.964987 + 0.262299i \(0.915519\pi\)
\(440\) 0 0
\(441\) 1.58384 + 8.98241i 0.0754210 + 0.427734i
\(442\) 0 0
\(443\) −16.4312 + 7.66199i −0.780670 + 0.364032i −0.771748 0.635928i \(-0.780618\pi\)
−0.00892130 + 0.999960i \(0.502840\pi\)
\(444\) 0 0
\(445\) 25.2090 12.0994i 1.19502 0.573568i
\(446\) 0 0
\(447\) 2.75795 31.5236i 0.130447 1.49101i
\(448\) 0 0
\(449\) −5.71905 9.90569i −0.269899 0.467478i 0.698937 0.715183i \(-0.253657\pi\)
−0.968835 + 0.247705i \(0.920324\pi\)
\(450\) 0 0
\(451\) −1.42761 0.251726i −0.0672234 0.0118533i
\(452\) 0 0
\(453\) −24.1265 + 51.7394i −1.13356 + 2.43093i
\(454\) 0 0
\(455\) −2.25203 + 3.29385i −0.105577 + 0.154418i
\(456\) 0 0
\(457\) 13.9205 + 13.9205i 0.651173 + 0.651173i 0.953276 0.302102i \(-0.0976884\pi\)
−0.302102 + 0.953276i \(0.597688\pi\)
\(458\) 0 0
\(459\) −6.06774 + 2.20848i −0.283218 + 0.103083i
\(460\) 0 0
\(461\) −2.37062 + 13.4444i −0.110411 + 0.626170i 0.878510 + 0.477724i \(0.158538\pi\)
−0.988921 + 0.148446i \(0.952573\pi\)
\(462\) 0 0
\(463\) −35.3266 9.46574i −1.64177 0.439910i −0.684476 0.729036i \(-0.739969\pi\)
−0.957291 + 0.289126i \(0.906635\pi\)
\(464\) 0 0
\(465\) 5.43691 6.62827i 0.252131 0.307379i
\(466\) 0 0
\(467\) −4.32009 + 1.15756i −0.199910 + 0.0535657i −0.357384 0.933957i \(-0.616331\pi\)
0.157475 + 0.987523i \(0.449665\pi\)
\(468\) 0 0
\(469\) 4.10700 + 1.49482i 0.189643 + 0.0690246i
\(470\) 0 0
\(471\) −20.6296 + 3.63756i −0.950564 + 0.167610i
\(472\) 0 0
\(473\) 14.3379 1.25441i 0.659259 0.0576777i
\(474\) 0 0
\(475\) −4.32388 + 21.3613i −0.198393 + 0.980123i
\(476\) 0 0
\(477\) −37.1257 + 3.24808i −1.69987 + 0.148719i
\(478\) 0 0
\(479\) 15.7074 2.76964i 0.717691 0.126548i 0.197136 0.980376i \(-0.436836\pi\)
0.520555 + 0.853828i \(0.325725\pi\)
\(480\) 0 0
\(481\) −0.340091 0.123783i −0.0155068 0.00564403i
\(482\) 0 0
\(483\) 37.9095 10.1578i 1.72494 0.462196i
\(484\) 0 0
\(485\) −14.1311 + 17.2275i −0.641659 + 0.782262i
\(486\) 0 0
\(487\) −37.3087 9.99684i −1.69062 0.453000i −0.720069 0.693902i \(-0.755890\pi\)
−0.970549 + 0.240902i \(0.922557\pi\)
\(488\) 0 0
\(489\) 2.48329 14.0834i 0.112298 0.636874i
\(490\) 0 0
\(491\) −27.1611 + 9.88583i −1.22576 + 0.446141i −0.872145 0.489248i \(-0.837271\pi\)
−0.353619 + 0.935390i \(0.615049\pi\)
\(492\) 0 0
\(493\) 3.49820 + 3.49820i 0.157551 + 0.157551i
\(494\) 0 0
\(495\) −7.20119 + 10.5326i −0.323669 + 0.473404i
\(496\) 0 0
\(497\) 12.0737 25.8921i 0.541578 1.16142i
\(498\) 0 0
\(499\) 16.1470 + 2.84716i 0.722841 + 0.127456i 0.522952 0.852362i \(-0.324831\pi\)
0.199889 + 0.979819i \(0.435942\pi\)
\(500\) 0 0
\(501\) −24.4472 42.3437i −1.09222 1.89178i
\(502\) 0 0
\(503\) −1.11982 + 12.7996i −0.0499305 + 0.570708i 0.929486 + 0.368858i \(0.120251\pi\)
−0.979416 + 0.201850i \(0.935305\pi\)
\(504\) 0 0
\(505\) −14.9941 + 7.19661i −0.667228 + 0.320245i
\(506\) 0 0
\(507\) −29.3300 + 13.6768i −1.30259 + 0.607408i
\(508\) 0 0
\(509\) −5.32090 30.1763i −0.235845 1.33754i −0.840828 0.541303i \(-0.817931\pi\)
0.604983 0.796238i \(-0.293180\pi\)
\(510\) 0 0
\(511\) −24.8085 20.8168i −1.09746 0.920882i
\(512\) 0 0
\(513\) 0.411226 + 10.3359i 0.0181561 + 0.456343i
\(514\) 0 0
\(515\) 14.8330 26.3667i 0.653622 1.16186i
\(516\) 0 0
\(517\) −9.19067 + 13.1256i −0.404205 + 0.577265i
\(518\) 0 0
\(519\) 11.4923 31.5749i 0.504457 1.38598i
\(520\) 0 0
\(521\) −32.1106 18.5391i −1.40679 0.812211i −0.411714 0.911313i \(-0.635070\pi\)
−0.995077 + 0.0991015i \(0.968403\pi\)
\(522\) 0 0
\(523\) −5.59078 0.489130i −0.244468 0.0213882i −0.0357367 0.999361i \(-0.511378\pi\)
−0.208731 + 0.977973i \(0.566933\pi\)
\(524\) 0 0
\(525\) 22.1331 + 17.7455i 0.965969 + 0.774479i
\(526\) 0 0
\(527\) 2.27736 + 3.25240i 0.0992032 + 0.141677i
\(528\) 0 0
\(529\) 8.49879 + 23.3502i 0.369513 + 1.01523i
\(530\) 0 0
\(531\) 24.1217i 1.04679i
\(532\) 0 0
\(533\) 0.579418 0.579418i 0.0250974 0.0250974i
\(534\) 0 0
\(535\) −3.98533 + 2.36061i −0.172301 + 0.102058i
\(536\) 0 0
\(537\) 29.5656 20.7020i 1.27585 0.893359i
\(538\) 0 0
\(539\) −2.95841 + 1.70804i −0.127428 + 0.0735705i
\(540\) 0 0
\(541\) 12.9275 10.8475i 0.555796 0.466369i −0.321102 0.947045i \(-0.604053\pi\)
0.876898 + 0.480676i \(0.159609\pi\)
\(542\) 0 0
\(543\) 1.33793 + 4.99321i 0.0574160 + 0.214279i
\(544\) 0 0
\(545\) −26.7614 37.3258i −1.14633 1.59886i
\(546\) 0 0
\(547\) 19.1093 + 13.3805i 0.817056 + 0.572109i 0.905683 0.423956i \(-0.139359\pi\)
−0.0886268 + 0.996065i \(0.528248\pi\)
\(548\) 0 0
\(549\) −0.160433 + 0.191197i −0.00684713 + 0.00816009i
\(550\) 0 0
\(551\) 7.04386 3.63224i 0.300079 0.154739i
\(552\) 0 0
\(553\) −0.405033 4.62955i −0.0172237 0.196868i
\(554\) 0 0
\(555\) −1.06136 + 2.34404i −0.0450524 + 0.0994989i
\(556\) 0 0
\(557\) −7.28427 15.6212i −0.308645 0.661890i 0.689401 0.724380i \(-0.257874\pi\)
−0.998046 + 0.0624895i \(0.980096\pi\)
\(558\) 0 0
\(559\) −4.06782 + 7.04567i −0.172051 + 0.298000i
\(560\) 0 0
\(561\) −6.71780 8.00596i −0.283626 0.338012i
\(562\) 0 0
\(563\) 5.46271 20.3871i 0.230226 0.859214i −0.750017 0.661418i \(-0.769955\pi\)
0.980243 0.197796i \(-0.0633784\pi\)
\(564\) 0 0
\(565\) −42.3123 + 0.472144i −1.78009 + 0.0198633i
\(566\) 0 0
\(567\) −10.7144 4.99620i −0.449962 0.209821i
\(568\) 0 0
\(569\) −19.7637 −0.828537 −0.414269 0.910155i \(-0.635963\pi\)
−0.414269 + 0.910155i \(0.635963\pi\)
\(570\) 0 0
\(571\) 11.4004 0.477090 0.238545 0.971131i \(-0.423330\pi\)
0.238545 + 0.971131i \(0.423330\pi\)
\(572\) 0 0
\(573\) 18.3897 + 8.57524i 0.768239 + 0.358236i
\(574\) 0 0
\(575\) −19.2008 + 28.7671i −0.800729 + 1.19967i
\(576\) 0 0
\(577\) −9.84673 + 36.7485i −0.409925 + 1.52986i 0.384864 + 0.922973i \(0.374248\pi\)
−0.794789 + 0.606886i \(0.792418\pi\)
\(578\) 0 0
\(579\) 2.90821 + 3.46587i 0.120861 + 0.144037i
\(580\) 0 0
\(581\) 13.5702 23.5044i 0.562989 0.975125i
\(582\) 0 0
\(583\) −5.89883 12.6501i −0.244305 0.523913i
\(584\) 0 0
\(585\) −2.54217 6.74928i −0.105106 0.279048i
\(586\) 0 0
\(587\) 0.00532294 + 0.0608415i 0.000219701 + 0.00251120i 0.996304 0.0859001i \(-0.0273766\pi\)
−0.996084 + 0.0884113i \(0.971821\pi\)
\(588\) 0 0
\(589\) 6.07348 1.88916i 0.250253 0.0778416i
\(590\) 0 0
\(591\) 4.57703 5.45469i 0.188274 0.224376i
\(592\) 0 0
\(593\) −0.467281 0.327194i −0.0191889 0.0134362i 0.563943 0.825814i \(-0.309284\pi\)
−0.583132 + 0.812378i \(0.698173\pi\)
\(594\) 0 0
\(595\) −10.6778 + 7.65566i −0.437748 + 0.313852i
\(596\) 0 0
\(597\) −11.0836 41.3647i −0.453623 1.69295i
\(598\) 0 0
\(599\) −32.9504 + 27.6487i −1.34632 + 1.12970i −0.366364 + 0.930472i \(0.619398\pi\)
−0.979954 + 0.199224i \(0.936158\pi\)
\(600\) 0 0
\(601\) 25.2979 14.6058i 1.03192 0.595782i 0.114389 0.993436i \(-0.463509\pi\)
0.917535 + 0.397655i \(0.130176\pi\)
\(602\) 0 0
\(603\) −6.47117 + 4.53116i −0.263526 + 0.184523i
\(604\) 0 0
\(605\) 19.1989 + 4.91539i 0.780545 + 0.199839i
\(606\) 0 0
\(607\) 21.0882 21.0882i 0.855943 0.855943i −0.134914 0.990857i \(-0.543076\pi\)
0.990857 + 0.134914i \(0.0430758\pi\)
\(608\) 0 0
\(609\) 10.3158i 0.418018i
\(610\) 0 0
\(611\) −3.09782 8.51120i −0.125325 0.344326i
\(612\) 0 0
\(613\) 12.6475 + 18.0625i 0.510828 + 0.729538i 0.988867 0.148801i \(-0.0475412\pi\)
−0.478039 + 0.878338i \(0.658652\pi\)
\(614\) 0 0
\(615\) −3.79434 4.42080i −0.153003 0.178264i
\(616\) 0 0
\(617\) 21.2792 + 1.86169i 0.856670 + 0.0749489i 0.507023 0.861932i \(-0.330746\pi\)
0.349647 + 0.936881i \(0.386301\pi\)
\(618\) 0 0
\(619\) 12.8655 + 7.42787i 0.517106 + 0.298551i 0.735750 0.677253i \(-0.236830\pi\)
−0.218644 + 0.975805i \(0.570163\pi\)
\(620\) 0 0
\(621\) −5.61441 + 15.4255i −0.225298 + 0.619002i
\(622\) 0 0
\(623\) 15.4890 22.1205i 0.620552 0.886240i
\(624\) 0 0
\(625\) −24.9751 + 1.11544i −0.999004 + 0.0446176i
\(626\) 0 0
\(627\) −15.4924 + 6.34707i −0.618707 + 0.253478i
\(628\) 0 0
\(629\) −0.912914 0.766026i −0.0364003 0.0305435i
\(630\) 0 0
\(631\) −4.05803 23.0142i −0.161548 0.916182i −0.952553 0.304373i \(-0.901553\pi\)
0.791005 0.611809i \(-0.209558\pi\)
\(632\) 0 0
\(633\) −31.8998 + 14.8751i −1.26790 + 0.591233i
\(634\) 0 0
\(635\) −9.36385 + 26.6485i −0.371593 + 1.05751i
\(636\) 0 0
\(637\) 0.168296 1.92363i 0.00666813 0.0762170i
\(638\) 0 0
\(639\) 25.8191 + 44.7199i 1.02139 + 1.76909i
\(640\) 0 0
\(641\) −28.6687 5.05507i −1.13235 0.199663i −0.424091 0.905620i \(-0.639406\pi\)
−0.708255 + 0.705957i \(0.750517\pi\)
\(642\) 0 0
\(643\) 4.16938 8.94126i 0.164424 0.352609i −0.806782 0.590849i \(-0.798793\pi\)
0.971206 + 0.238240i \(0.0765706\pi\)
\(644\) 0 0
\(645\) 47.7487 + 32.6461i 1.88010 + 1.28544i
\(646\) 0 0
\(647\) −29.2498 29.2498i −1.14993 1.14993i −0.986566 0.163361i \(-0.947767\pi\)
−0.163361 0.986566i \(-0.552233\pi\)
\(648\) 0 0
\(649\) 8.48946 3.08991i 0.333241 0.121290i
\(650\) 0 0
\(651\) 1.43765 8.15333i 0.0563460 0.319554i
\(652\) 0 0
\(653\) 35.5780 + 9.53310i 1.39227 + 0.373059i 0.875564 0.483101i \(-0.160490\pi\)
0.516710 + 0.856160i \(0.327156\pi\)
\(654\) 0 0
\(655\) 30.5523 3.01684i 1.19378 0.117878i
\(656\) 0 0
\(657\) 56.5419 15.1504i 2.20591 0.591072i
\(658\) 0 0
\(659\) 8.42325 + 3.06581i 0.328123 + 0.119427i 0.500829 0.865546i \(-0.333029\pi\)
−0.172705 + 0.984974i \(0.555251\pi\)
\(660\) 0 0
\(661\) 28.3996 5.00761i 1.10462 0.194774i 0.408539 0.912741i \(-0.366038\pi\)
0.696077 + 0.717967i \(0.254927\pi\)
\(662\) 0 0
\(663\) 5.88509 0.514878i 0.228558 0.0199962i
\(664\) 0 0
\(665\) 6.47533 + 20.0269i 0.251102 + 0.776609i
\(666\) 0 0
\(667\) 12.5289 1.09614i 0.485123 0.0424427i
\(668\) 0 0
\(669\) 18.7938 3.31385i 0.726609 0.128121i
\(670\) 0 0
\(671\) −0.0878415 0.0319717i −0.00339108 0.00123425i
\(672\) 0 0
\(673\) −16.2163 + 4.34513i −0.625091 + 0.167493i −0.557441 0.830217i \(-0.688217\pi\)
−0.0676498 + 0.997709i \(0.521550\pi\)
\(674\) 0 0
\(675\) −11.3898 + 3.32601i −0.438395 + 0.128018i
\(676\) 0 0
\(677\) −19.9380 5.34238i −0.766280 0.205324i −0.145553 0.989351i \(-0.546496\pi\)
−0.620728 + 0.784026i \(0.713163\pi\)
\(678\) 0 0
\(679\) −3.73660 + 21.1913i −0.143398 + 0.813248i
\(680\) 0 0
\(681\) −39.2872 + 14.2994i −1.50549 + 0.547953i
\(682\) 0 0
\(683\) 18.1397 + 18.1397i 0.694095 + 0.694095i 0.963130 0.269036i \(-0.0867049\pi\)
−0.269036 + 0.963130i \(0.586705\pi\)
\(684\) 0 0
\(685\) 2.85529 + 15.1994i 0.109095 + 0.580741i
\(686\) 0 0
\(687\) −18.9976 + 40.7404i −0.724802 + 1.55434i
\(688\) 0 0
\(689\) 7.76995 + 1.37005i 0.296012 + 0.0521948i
\(690\) 0 0
\(691\) 2.68880 + 4.65714i 0.102287 + 0.177166i 0.912626 0.408795i \(-0.134051\pi\)
−0.810340 + 0.585960i \(0.800717\pi\)
\(692\) 0 0
\(693\) −1.07392 + 12.2749i −0.0407947 + 0.466285i
\(694\) 0 0
\(695\) −19.1197 39.8357i −0.725251 1.51105i
\(696\) 0 0
\(697\) 2.44539 1.14031i 0.0926258 0.0431921i
\(698\) 0 0
\(699\) −6.27761 35.6021i −0.237441 1.34660i
\(700\) 0 0
\(701\) 23.7726 + 19.9476i 0.897878 + 0.753409i 0.969774 0.244003i \(-0.0784607\pi\)
−0.0718966 + 0.997412i \(0.522905\pi\)
\(702\) 0 0
\(703\) −1.61407 + 1.01952i −0.0608759 + 0.0384520i
\(704\) 0 0
\(705\) −62.0117 + 17.3599i −2.33550 + 0.653810i
\(706\) 0 0
\(707\) −9.21268 + 13.1571i −0.346478 + 0.494822i
\(708\) 0 0
\(709\) 10.9635 30.1220i 0.411744 1.13126i −0.544519 0.838748i \(-0.683288\pi\)
0.956263 0.292508i \(-0.0944900\pi\)
\(710\) 0 0
\(711\) 7.27452 + 4.19995i 0.272816 + 0.157510i
\(712\) 0 0
\(713\) 10.0553 + 0.879725i 0.376574 + 0.0329460i
\(714\) 0 0
\(715\) 2.04972 1.75926i 0.0766551 0.0657927i
\(716\) 0 0
\(717\) 17.4599 + 24.9353i 0.652052 + 0.931226i
\(718\) 0 0
\(719\) −4.98770 13.7036i −0.186010 0.511058i 0.811278 0.584661i \(-0.198772\pi\)
−0.997288 + 0.0736030i \(0.976550\pi\)
\(720\) 0 0
\(721\) 29.2160i 1.08806i
\(722\) 0 0
\(723\) 8.12207 8.12207i 0.302063 0.302063i
\(724\) 0 0
\(725\) 5.99743 + 6.83187i 0.222739 + 0.253729i
\(726\) 0 0
\(727\) −16.1621 + 11.3169i −0.599420 + 0.419719i −0.833516 0.552495i \(-0.813676\pi\)
0.234096 + 0.972214i \(0.424787\pi\)
\(728\) 0 0
\(729\) 34.7048 20.0368i 1.28536 0.742104i
\(730\) 0 0
\(731\) −20.5216 + 17.2197i −0.759020 + 0.636893i
\(732\) 0 0
\(733\) −0.240409 0.897220i −0.00887972 0.0331396i 0.961344 0.275351i \(-0.0887940\pi\)
−0.970224 + 0.242211i \(0.922127\pi\)
\(734\) 0 0
\(735\) −13.5459 2.23296i −0.499648 0.0823640i
\(736\) 0 0
\(737\) −2.42365 1.69706i −0.0892762 0.0625119i
\(738\) 0 0
\(739\) −27.7319 + 33.0495i −1.02013 + 1.21575i −0.0438973 + 0.999036i \(0.513977\pi\)
−0.976236 + 0.216711i \(0.930467\pi\)
\(740\) 0 0
\(741\) 2.08404 9.23138i 0.0765593 0.339123i
\(742\) 0 0
\(743\) −3.26320 37.2986i −0.119715 1.36835i −0.783948 0.620827i \(-0.786797\pi\)
0.664232 0.747526i \(-0.268759\pi\)
\(744\) 0 0
\(745\) 24.5331 + 11.1084i 0.898824 + 0.406981i
\(746\) 0 0
\(747\) 20.7322 + 44.4604i 0.758552 + 1.62672i
\(748\) 0 0
\(749\) −2.23663 + 3.87396i −0.0817248 + 0.141552i
\(750\) 0 0
\(751\) −8.92461 10.6359i −0.325664 0.388111i 0.578226 0.815877i \(-0.303745\pi\)
−0.903890 + 0.427766i \(0.859301\pi\)
\(752\) 0 0
\(753\) 17.0280 63.5494i 0.620536 2.31587i
\(754\) 0 0
\(755\) −34.7362 33.9696i −1.26418 1.23628i
\(756\) 0 0
\(757\) −2.39265 1.11571i −0.0869625 0.0405513i 0.378650 0.925540i \(-0.376388\pi\)
−0.465613 + 0.884989i \(0.654166\pi\)
\(758\) 0 0
\(759\) −26.5687 −0.964383
\(760\) 0 0
\(761\) 26.9984 0.978690 0.489345 0.872090i \(-0.337236\pi\)
0.489345 + 0.872090i \(0.337236\pi\)
\(762\) 0 0
\(763\) −40.1987 18.7450i −1.45529 0.678613i
\(764\) 0 0
\(765\) −0.264980 23.7468i −0.00958038 0.858567i
\(766\) 0 0
\(767\) −1.32172 + 4.93273i −0.0477246 + 0.178111i
\(768\) 0 0
\(769\) 13.2323 + 15.7696i 0.477167 + 0.568666i 0.949906 0.312537i \(-0.101179\pi\)
−0.472738 + 0.881203i \(0.656734\pi\)
\(770\) 0 0
\(771\) −18.4891 + 32.0241i −0.665870 + 1.15332i
\(772\) 0 0
\(773\) 4.57366 + 9.80824i 0.164503 + 0.352778i 0.971229 0.238148i \(-0.0765403\pi\)
−0.806726 + 0.590926i \(0.798763\pi\)
\(774\) 0 0
\(775\) 3.78809 + 6.23555i 0.136072 + 0.223988i
\(776\) 0 0
\(777\) 0.216579 + 2.47551i 0.00776972 + 0.0888083i
\(778\) 0 0
\(779\) −0.547606 4.28757i −0.0196200 0.153618i
\(780\) 0 0
\(781\) −12.4315 + 14.8153i −0.444836 + 0.530134i
\(782\) 0 0
\(783\) 3.53440 + 2.47481i 0.126309 + 0.0884426i
\(784\) 0 0
\(785\) 2.89969 17.5905i 0.103494 0.627831i
\(786\) 0 0
\(787\) −7.11287 26.5456i −0.253546 0.946248i −0.968893 0.247479i \(-0.920398\pi\)
0.715347 0.698769i \(-0.246269\pi\)
\(788\) 0 0
\(789\) 0.268128 0.224986i 0.00954562 0.00800973i
\(790\) 0 0
\(791\) −35.3901 + 20.4325i −1.25833 + 0.726495i