Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [380,2,Mod(13,380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(380, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([0, 27, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("380.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 380.bh (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.03431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | 0 | −2.74765 | + | 1.28125i | 0 | −1.16017 | − | 1.91154i | 0 | −0.370262 | − | 1.38184i | 0 | 3.97961 | − | 4.74272i | 0 | ||||||||||
13.2 | 0 | −2.38123 | + | 1.11039i | 0 | 1.56340 | + | 1.59868i | 0 | 0.558906 | + | 2.08587i | 0 | 2.50894 | − | 2.99004i | 0 | ||||||||||
13.3 | 0 | −1.41596 | + | 0.660272i | 0 | −0.949889 | + | 2.02428i | 0 | −1.12143 | − | 4.18524i | 0 | −0.359387 | + | 0.428300i | 0 | ||||||||||
13.4 | 0 | −0.927188 | + | 0.432355i | 0 | 0.140904 | − | 2.23162i | 0 | −0.231730 | − | 0.864827i | 0 | −1.25562 | + | 1.49639i | 0 | ||||||||||
13.5 | 0 | −0.362674 | + | 0.169118i | 0 | 1.57660 | − | 1.58566i | 0 | 1.00773 | + | 3.76091i | 0 | −1.82543 | + | 2.17546i | 0 | ||||||||||
13.6 | 0 | 0.224420 | − | 0.104649i | 0 | −2.15088 | + | 0.611320i | 0 | 0.357605 | + | 1.33460i | 0 | −1.88895 | + | 2.25116i | 0 | ||||||||||
13.7 | 0 | 0.959290 | − | 0.447324i | 0 | 1.57989 | + | 1.58239i | 0 | 0.204631 | + | 0.763694i | 0 | −1.20823 | + | 1.43991i | 0 | ||||||||||
13.8 | 0 | 1.80092 | − | 0.839782i | 0 | −1.74340 | − | 1.40020i | 0 | −0.755503 | − | 2.81958i | 0 | 0.609708 | − | 0.726622i | 0 | ||||||||||
13.9 | 0 | 1.84872 | − | 0.862074i | 0 | 2.22179 | + | 0.252247i | 0 | −1.05366 | − | 3.93231i | 0 | 0.746246 | − | 0.889341i | 0 | ||||||||||
13.10 | 0 | 3.00135 | − | 1.39955i | 0 | −0.904597 | + | 2.04492i | 0 | 1.03769 | + | 3.87270i | 0 | 5.12098 | − | 6.10295i | 0 | ||||||||||
33.1 | 0 | −1.61138 | − | 2.30128i | 0 | 1.99179 | − | 1.01625i | 0 | 4.91485 | + | 1.31693i | 0 | −1.67331 | + | 4.59739i | 0 | ||||||||||
33.2 | 0 | −1.41957 | − | 2.02735i | 0 | 0.187939 | − | 2.22816i | 0 | −3.90736 | − | 1.04697i | 0 | −1.06893 | + | 2.93686i | 0 | ||||||||||
33.3 | 0 | −1.02333 | − | 1.46147i | 0 | 0.710865 | + | 2.12006i | 0 | −2.65380 | − | 0.711084i | 0 | −0.0626300 | + | 0.172074i | 0 | ||||||||||
33.4 | 0 | −0.886233 | − | 1.26567i | 0 | −2.22818 | − | 0.187668i | 0 | 0.477272 | + | 0.127885i | 0 | 0.209544 | − | 0.575718i | 0 | ||||||||||
33.5 | 0 | 0.0411373 | + | 0.0587502i | 0 | −2.20598 | + | 0.365568i | 0 | 0.553309 | + | 0.148259i | 0 | 1.02430 | − | 2.81424i | 0 | ||||||||||
33.6 | 0 | 0.230238 | + | 0.328814i | 0 | −0.244120 | − | 2.22270i | 0 | 1.71755 | + | 0.460216i | 0 | 0.970951 | − | 2.66767i | 0 | ||||||||||
33.7 | 0 | 0.377219 | + | 0.538725i | 0 | 2.02714 | + | 0.943776i | 0 | 1.97160 | + | 0.528288i | 0 | 0.878130 | − | 2.41264i | 0 | ||||||||||
33.8 | 0 | 0.935220 | + | 1.33563i | 0 | −0.351064 | + | 2.20834i | 0 | −4.10912 | − | 1.10104i | 0 | 0.116783 | − | 0.320859i | 0 | ||||||||||
33.9 | 0 | 1.60791 | + | 2.29633i | 0 | 1.74139 | − | 1.40270i | 0 | −0.546238 | − | 0.146364i | 0 | −1.66171 | + | 4.56550i | 0 | ||||||||||
33.10 | 0 | 1.74879 | + | 2.49753i | 0 | −0.863736 | + | 2.06251i | 0 | 2.94797 | + | 0.789905i | 0 | −2.15333 | + | 5.91624i | 0 | ||||||||||
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
19.f | odd | 18 | 1 | inner |
95.r | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 380.2.bh.a | ✓ | 120 |
5.c | odd | 4 | 1 | inner | 380.2.bh.a | ✓ | 120 |
19.f | odd | 18 | 1 | inner | 380.2.bh.a | ✓ | 120 |
95.r | even | 36 | 1 | inner | 380.2.bh.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
380.2.bh.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
380.2.bh.a | ✓ | 120 | 5.c | odd | 4 | 1 | inner |
380.2.bh.a | ✓ | 120 | 19.f | odd | 18 | 1 | inner |
380.2.bh.a | ✓ | 120 | 95.r | even | 36 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(380, [\chi])\).