Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [380,2,Mod(51,380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(380, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("380.51");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 380.be (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.03431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.41410 | + | 0.0175744i | −3.08618 | − | 1.12328i | 1.99938 | − | 0.0497042i | −0.173648 | − | 0.984808i | 4.38393 | + | 1.53420i | 1.26066 | + | 0.727844i | −2.82646 | + | 0.105425i | 5.96464 | + | 5.00493i | 0.262864 | + | 1.38957i |
51.2 | −1.38360 | + | 0.292675i | 0.385053 | + | 0.140148i | 1.82868 | − | 0.809888i | −0.173648 | − | 0.984808i | −0.573776 | − | 0.0812128i | −0.799236 | − | 0.461439i | −2.29313 | + | 1.65577i | −2.16951 | − | 1.82043i | 0.528488 | + | 1.31175i |
51.3 | −1.38069 | − | 0.306113i | 2.40378 | + | 0.874903i | 1.81259 | + | 0.845293i | −0.173648 | − | 0.984808i | −3.05104 | − | 1.94379i | 3.65740 | + | 2.11160i | −2.24386 | − | 1.72194i | 2.71455 | + | 2.27778i | −0.0617092 | + | 1.41287i |
51.4 | −1.06258 | + | 0.933229i | 1.09042 | + | 0.396882i | 0.258166 | − | 1.98327i | −0.173648 | − | 0.984808i | −1.52905 | + | 0.595896i | 1.28762 | + | 0.743405i | 1.57652 | + | 2.34831i | −1.26662 | − | 1.06282i | 1.10357 | + | 0.884387i |
51.5 | −1.00655 | − | 0.993404i | −1.11886 | − | 0.407232i | 0.0262989 | + | 1.99983i | −0.173648 | − | 0.984808i | 0.721647 | + | 1.52138i | 0.611057 | + | 0.352794i | 1.96016 | − | 2.03906i | −1.21212 | − | 1.01709i | −0.803525 | + | 1.16376i |
51.6 | −0.888043 | + | 1.10063i | −2.01002 | − | 0.731586i | −0.422760 | − | 1.95481i | −0.173648 | − | 0.984808i | 2.59019 | − | 1.56260i | 0.167166 | + | 0.0965133i | 2.52694 | + | 1.27065i | 1.20682 | + | 1.01264i | 1.23811 | + | 0.683429i |
51.7 | −0.803525 | − | 1.16376i | 1.11886 | + | 0.407232i | −0.708694 | + | 1.87023i | −0.173648 | − | 0.984808i | −0.425111 | − | 1.62931i | −0.611057 | − | 0.352794i | 2.74596 | − | 0.678023i | −1.21212 | − | 1.01709i | −1.00655 | + | 0.993404i |
51.8 | −0.339536 | + | 1.37285i | 1.08575 | + | 0.395182i | −1.76943 | − | 0.932264i | −0.173648 | − | 0.984808i | −0.911179 | + | 1.35640i | −4.46754 | − | 2.57933i | 1.88064 | − | 2.11262i | −1.27544 | − | 1.07022i | 1.41095 | + | 0.0959850i |
51.9 | −0.0617092 | − | 1.41287i | −2.40378 | − | 0.874903i | −1.99238 | + | 0.174374i | −0.173648 | − | 0.984808i | −1.08779 | + | 3.45020i | −3.65740 | − | 2.11160i | 0.369315 | + | 2.80421i | 2.71455 | + | 2.27778i | −1.38069 | + | 0.306113i |
51.10 | 0.0889099 | + | 1.41142i | −1.86185 | − | 0.677657i | −1.98419 | + | 0.250978i | −0.173648 | − | 0.984808i | 0.790919 | − | 2.68809i | 1.89621 | + | 1.09478i | −0.530648 | − | 2.77820i | 0.709122 | + | 0.595024i | 1.37453 | − | 0.332649i |
51.11 | 0.262864 | − | 1.38957i | 3.08618 | + | 1.12328i | −1.86180 | − | 0.730536i | −0.173648 | − | 0.984808i | 2.37212 | − | 3.99320i | −1.26066 | − | 0.727844i | −1.50453 | + | 2.39508i | 5.96464 | + | 5.00493i | −1.41410 | − | 0.0175744i |
51.12 | 0.528488 | − | 1.31175i | −0.385053 | − | 0.140148i | −1.44140 | − | 1.38649i | −0.173648 | − | 0.984808i | −0.387335 | + | 0.431029i | 0.799236 | + | 0.461439i | −2.58050 | + | 1.15802i | −2.16951 | − | 1.82043i | −1.38360 | − | 0.292675i |
51.13 | 0.727006 | + | 1.21304i | 2.81895 | + | 1.02602i | −0.942924 | + | 1.76377i | −0.173648 | − | 0.984808i | 0.804801 | + | 4.16542i | 0.824757 | + | 0.476173i | −2.82504 | + | 0.138470i | 4.59567 | + | 3.85622i | 1.06837 | − | 0.926603i |
51.14 | 0.765254 | + | 1.18928i | −0.700287 | − | 0.254884i | −0.828773 | + | 1.82020i | −0.173648 | − | 0.984808i | −0.232769 | − | 1.02789i | −3.13008 | − | 1.80715i | −2.79895 | + | 0.407274i | −1.87270 | − | 1.57138i | 1.03833 | − | 0.960144i |
51.15 | 1.03833 | + | 0.960144i | 0.700287 | + | 0.254884i | 0.156246 | + | 1.99389i | −0.173648 | − | 0.984808i | 0.482402 | + | 0.937029i | 3.13008 | + | 1.80715i | −1.75219 | + | 2.22033i | −1.87270 | − | 1.57138i | 0.765254 | − | 1.18928i |
51.16 | 1.06837 | + | 0.926603i | −2.81895 | − | 1.02602i | 0.282813 | + | 1.97990i | −0.173648 | − | 0.984808i | −2.06097 | − | 3.70821i | −0.824757 | − | 0.476173i | −1.53244 | + | 2.37732i | 4.59567 | + | 3.85622i | 0.727006 | − | 1.21304i |
51.17 | 1.10357 | − | 0.884387i | −1.09042 | − | 0.396882i | 0.435721 | − | 1.95196i | −0.173648 | − | 0.984808i | −1.55435 | + | 0.526371i | −1.28762 | − | 0.743405i | −1.24544 | − | 2.53946i | −1.26662 | − | 1.06282i | −1.06258 | − | 0.933229i |
51.18 | 1.23811 | − | 0.683429i | 2.01002 | + | 0.731586i | 1.06585 | − | 1.69233i | −0.173648 | − | 0.984808i | 2.98862 | − | 0.467918i | −0.167166 | − | 0.0965133i | 0.163056 | − | 2.82372i | 1.20682 | + | 1.01264i | −0.888043 | − | 1.10063i |
51.19 | 1.37453 | + | 0.332649i | 1.86185 | + | 0.677657i | 1.77869 | + | 0.914475i | −0.173648 | − | 0.984808i | 2.33375 | + | 1.55080i | −1.89621 | − | 1.09478i | 2.14067 | + | 1.84866i | 0.709122 | + | 0.595024i | 0.0889099 | − | 1.41142i |
51.20 | 1.41095 | − | 0.0959850i | −1.08575 | − | 0.395182i | 1.98157 | − | 0.270861i | −0.173648 | − | 0.984808i | −1.56988 | − | 0.453367i | 4.46754 | + | 2.57933i | 2.76991 | − | 0.572373i | −1.27544 | − | 1.07022i | −0.339536 | − | 1.37285i |
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
19.f | odd | 18 | 1 | inner |
76.k | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 380.2.be.b | ✓ | 120 |
4.b | odd | 2 | 1 | inner | 380.2.be.b | ✓ | 120 |
19.f | odd | 18 | 1 | inner | 380.2.be.b | ✓ | 120 |
76.k | even | 18 | 1 | inner | 380.2.be.b | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
380.2.be.b | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
380.2.be.b | ✓ | 120 | 4.b | odd | 2 | 1 | inner |
380.2.be.b | ✓ | 120 | 19.f | odd | 18 | 1 | inner |
380.2.be.b | ✓ | 120 | 76.k | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{120} - 3 T_{3}^{118} + 48 T_{3}^{116} + 2456 T_{3}^{114} - 9435 T_{3}^{112} + 100191 T_{3}^{110} + 4248290 T_{3}^{108} - 13998669 T_{3}^{106} + 130308615 T_{3}^{104} + 3762907413 T_{3}^{102} + \cdots + 21447124258816 \)
acting on \(S_{2}^{\mathrm{new}}(380, [\chi])\).