Properties

Label 380.2.bb.a.59.7
Level $380$
Weight $2$
Character 380.59
Analytic conductor $3.034$
Analytic rank $0$
Dimension $336$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(59,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.59");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(336\)
Relative dimension: \(56\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 59.7
Character \(\chi\) \(=\) 380.59
Dual form 380.2.bb.a.219.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31199 + 0.527904i) q^{2} +(-0.108582 + 0.129403i) q^{3} +(1.44263 - 1.38521i) q^{4} +(1.67124 - 1.48558i) q^{5} +(0.0741462 - 0.227097i) q^{6} +(0.176277 + 0.305321i) q^{7} +(-1.16146 + 2.57895i) q^{8} +(0.515989 + 2.92632i) q^{9} +O(q^{10})\) \(q+(-1.31199 + 0.527904i) q^{2} +(-0.108582 + 0.129403i) q^{3} +(1.44263 - 1.38521i) q^{4} +(1.67124 - 1.48558i) q^{5} +(0.0741462 - 0.227097i) q^{6} +(0.176277 + 0.305321i) q^{7} +(-1.16146 + 2.57895i) q^{8} +(0.515989 + 2.92632i) q^{9} +(-1.40841 + 2.83132i) q^{10} +(-0.465827 - 0.268946i) q^{11} +(0.0226063 + 0.337091i) q^{12} +(2.90974 - 2.44156i) q^{13} +(-0.392454 - 0.307521i) q^{14} +(0.0107717 + 0.377572i) q^{15} +(0.162385 - 3.99670i) q^{16} +(1.16250 + 0.204980i) q^{17} +(-2.22179 - 3.56691i) q^{18} +(-1.57208 - 4.06553i) q^{19} +(0.353150 - 4.45817i) q^{20} +(-0.0586501 - 0.0103416i) q^{21} +(0.753138 + 0.106941i) q^{22} +(5.38963 + 1.96166i) q^{23} +(-0.207611 - 0.430325i) q^{24} +(0.586103 - 4.96553i) q^{25} +(-2.52864 + 4.73937i) q^{26} +(-0.873580 - 0.504362i) q^{27} +(0.677238 + 0.196286i) q^{28} +(2.19146 - 0.386413i) q^{29} +(-0.213454 - 0.489684i) q^{30} +(3.30786 + 5.72938i) q^{31} +(1.89683 + 5.32936i) q^{32} +(0.0853830 - 0.0310769i) q^{33} +(-1.63340 + 0.344757i) q^{34} +(0.748181 + 0.248392i) q^{35} +(4.79795 + 3.50686i) q^{36} -0.773573 q^{37} +(4.20877 + 4.50403i) q^{38} +0.641641i q^{39} +(1.89016 + 6.03550i) q^{40} +(-2.78057 + 3.31376i) q^{41} +(0.0824077 - 0.0173936i) q^{42} +(10.6401 - 3.87268i) q^{43} +(-1.04456 + 0.257279i) q^{44} +(5.20963 + 4.12405i) q^{45} +(-8.10670 + 0.271525i) q^{46} +(0.460262 + 2.61027i) q^{47} +(0.499554 + 0.454984i) q^{48} +(3.43785 - 5.95454i) q^{49} +(1.85236 + 6.82413i) q^{50} +(-0.152752 + 0.128174i) q^{51} +(0.815614 - 7.55289i) q^{52} +(-4.14817 - 1.50981i) q^{53} +(1.41238 + 0.200551i) q^{54} +(-1.17805 + 0.242551i) q^{55} +(-0.992149 + 0.0999921i) q^{56} +(0.696793 + 0.238012i) q^{57} +(-2.67118 + 1.66385i) q^{58} +(-0.583091 + 3.30687i) q^{59} +(0.538556 + 0.529777i) q^{60} +(-6.49253 - 2.36309i) q^{61} +(-7.36445 - 5.77066i) q^{62} +(-0.802511 + 0.673386i) q^{63} +(-5.30201 - 5.99072i) q^{64} +(1.23575 - 8.40310i) q^{65} +(-0.0956160 + 0.0858466i) q^{66} +(-6.98470 + 1.23159i) q^{67} +(1.96100 - 1.31459i) q^{68} +(-0.839063 + 0.484433i) q^{69} +(-1.11273 + 0.0690808i) q^{70} +(-6.72322 + 2.44705i) q^{71} +(-8.14615 - 2.06810i) q^{72} +(7.32925 - 8.73466i) q^{73} +(1.01492 - 0.408373i) q^{74} +(0.578915 + 0.615012i) q^{75} +(-7.89956 - 3.68741i) q^{76} -0.189636i q^{77} +(-0.338725 - 0.841826i) q^{78} +(5.66076 + 4.74994i) q^{79} +(-5.66604 - 6.92069i) q^{80} +(-8.21667 + 2.99062i) q^{81} +(1.89874 - 5.81550i) q^{82} +(-0.764089 - 1.32344i) q^{83} +(-0.0989359 + 0.0663236i) q^{84} +(2.24733 - 1.38441i) q^{85} +(-11.9153 + 10.6979i) q^{86} +(-0.187950 + 0.325540i) q^{87} +(1.23464 - 0.888977i) q^{88} +(3.25011 + 3.87334i) q^{89} +(-9.01208 - 2.66052i) q^{90} +(1.25838 + 0.458014i) q^{91} +(10.4926 - 4.63580i) q^{92} +(-1.10058 - 0.194061i) q^{93} +(-1.98183 - 3.18168i) q^{94} +(-8.66701 - 4.45904i) q^{95} +(-0.895598 - 0.333217i) q^{96} +(-2.09122 + 11.8599i) q^{97} +(-1.36700 + 9.62715i) q^{98} +(0.546659 - 1.50193i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9} - 15 q^{10} + 18 q^{14} - 6 q^{16} - 42 q^{20} + 12 q^{21} + 12 q^{24} - 12 q^{25} + 18 q^{26} - 24 q^{29} - 24 q^{30} + 12 q^{34} - 6 q^{36} - 48 q^{40} - 12 q^{41} - 36 q^{44} - 6 q^{45} - 18 q^{46} - 108 q^{49} - 36 q^{50} + 36 q^{54} - 30 q^{60} - 24 q^{61} + 18 q^{64} - 18 q^{65} - 48 q^{66} - 180 q^{69} - 21 q^{70} - 30 q^{74} - 48 q^{76} + 3 q^{80} - 60 q^{81} + 90 q^{84} - 36 q^{85} + 102 q^{86} - 48 q^{89} - 78 q^{90} + 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31199 + 0.527904i −0.927717 + 0.373285i
\(3\) −0.108582 + 0.129403i −0.0626900 + 0.0747110i −0.796478 0.604667i \(-0.793306\pi\)
0.733788 + 0.679378i \(0.237750\pi\)
\(4\) 1.44263 1.38521i 0.721317 0.692605i
\(5\) 1.67124 1.48558i 0.747402 0.664372i
\(6\) 0.0741462 0.227097i 0.0302701 0.0927118i
\(7\) 0.176277 + 0.305321i 0.0666265 + 0.115401i 0.897414 0.441189i \(-0.145443\pi\)
−0.830788 + 0.556589i \(0.812110\pi\)
\(8\) −1.16146 + 2.57895i −0.410639 + 0.911798i
\(9\) 0.515989 + 2.92632i 0.171996 + 0.975440i
\(10\) −1.40841 + 2.83132i −0.445378 + 0.895343i
\(11\) −0.465827 0.268946i −0.140452 0.0810901i 0.428127 0.903718i \(-0.359173\pi\)
−0.568579 + 0.822628i \(0.692507\pi\)
\(12\) 0.0226063 + 0.337091i 0.00652589 + 0.0973097i
\(13\) 2.90974 2.44156i 0.807018 0.677168i −0.142876 0.989741i \(-0.545635\pi\)
0.949894 + 0.312572i \(0.101191\pi\)
\(14\) −0.392454 0.307521i −0.104888 0.0821884i
\(15\) 0.0107717 + 0.377572i 0.00278124 + 0.0974886i
\(16\) 0.162385 3.99670i 0.0405962 0.999176i
\(17\) 1.16250 + 0.204980i 0.281947 + 0.0497149i 0.312833 0.949808i \(-0.398722\pi\)
−0.0308862 + 0.999523i \(0.509833\pi\)
\(18\) −2.22179 3.56691i −0.523681 0.840729i
\(19\) −1.57208 4.06553i −0.360661 0.932697i
\(20\) 0.353150 4.45817i 0.0789667 0.996877i
\(21\) −0.0586501 0.0103416i −0.0127985 0.00225672i
\(22\) 0.753138 + 0.106941i 0.160570 + 0.0228000i
\(23\) 5.38963 + 1.96166i 1.12381 + 0.409035i 0.836043 0.548664i \(-0.184863\pi\)
0.287772 + 0.957699i \(0.407086\pi\)
\(24\) −0.207611 0.430325i −0.0423784 0.0878398i
\(25\) 0.586103 4.96553i 0.117221 0.993106i
\(26\) −2.52864 + 4.73937i −0.495907 + 0.929468i
\(27\) −0.873580 0.504362i −0.168121 0.0970644i
\(28\) 0.677238 + 0.196286i 0.127986 + 0.0370945i
\(29\) 2.19146 0.386413i 0.406944 0.0717552i 0.0335705 0.999436i \(-0.489312\pi\)
0.373373 + 0.927681i \(0.378201\pi\)
\(30\) −0.213454 0.489684i −0.0389712 0.0894036i
\(31\) 3.30786 + 5.72938i 0.594110 + 1.02903i 0.993672 + 0.112322i \(0.0358288\pi\)
−0.399562 + 0.916706i \(0.630838\pi\)
\(32\) 1.89683 + 5.32936i 0.335315 + 0.942106i
\(33\) 0.0853830 0.0310769i 0.0148633 0.00540979i
\(34\) −1.63340 + 0.344757i −0.280125 + 0.0591253i
\(35\) 0.748181 + 0.248392i 0.126466 + 0.0419859i
\(36\) 4.79795 + 3.50686i 0.799659 + 0.584476i
\(37\) −0.773573 −0.127175 −0.0635873 0.997976i \(-0.520254\pi\)
−0.0635873 + 0.997976i \(0.520254\pi\)
\(38\) 4.20877 + 4.50403i 0.682753 + 0.730650i
\(39\) 0.641641i 0.102745i
\(40\) 1.89016 + 6.03550i 0.298860 + 0.954297i
\(41\) −2.78057 + 3.31376i −0.434253 + 0.517522i −0.938144 0.346245i \(-0.887457\pi\)
0.503891 + 0.863767i \(0.331901\pi\)
\(42\) 0.0824077 0.0173936i 0.0127158 0.00268389i
\(43\) 10.6401 3.87268i 1.62260 0.590578i 0.638724 0.769436i \(-0.279462\pi\)
0.983875 + 0.178858i \(0.0572402\pi\)
\(44\) −1.04456 + 0.257279i −0.157474 + 0.0387863i
\(45\) 5.20963 + 4.12405i 0.776606 + 0.614777i
\(46\) −8.10670 + 0.271525i −1.19527 + 0.0400342i
\(47\) 0.460262 + 2.61027i 0.0671361 + 0.380748i 0.999800 + 0.0200010i \(0.00636694\pi\)
−0.932664 + 0.360747i \(0.882522\pi\)
\(48\) 0.499554 + 0.454984i 0.0721044 + 0.0656713i
\(49\) 3.43785 5.95454i 0.491122 0.850648i
\(50\) 1.85236 + 6.82413i 0.261964 + 0.965078i
\(51\) −0.152752 + 0.128174i −0.0213895 + 0.0179479i
\(52\) 0.815614 7.55289i 0.113105 1.04740i
\(53\) −4.14817 1.50981i −0.569796 0.207389i 0.0410244 0.999158i \(-0.486938\pi\)
−0.610820 + 0.791770i \(0.709160\pi\)
\(54\) 1.41238 + 0.200551i 0.192201 + 0.0272915i
\(55\) −1.17805 + 0.242551i −0.158848 + 0.0327055i
\(56\) −0.992149 + 0.0999921i −0.132581 + 0.0133620i
\(57\) 0.696793 + 0.238012i 0.0922925 + 0.0315254i
\(58\) −2.67118 + 1.66385i −0.350743 + 0.218474i
\(59\) −0.583091 + 3.30687i −0.0759120 + 0.430518i 0.923038 + 0.384708i \(0.125698\pi\)
−0.998950 + 0.0458100i \(0.985413\pi\)
\(60\) 0.538556 + 0.529777i 0.0695273 + 0.0683939i
\(61\) −6.49253 2.36309i −0.831283 0.302562i −0.108898 0.994053i \(-0.534732\pi\)
−0.722386 + 0.691491i \(0.756954\pi\)
\(62\) −7.36445 5.77066i −0.935286 0.732874i
\(63\) −0.802511 + 0.673386i −0.101107 + 0.0848387i
\(64\) −5.30201 5.99072i −0.662751 0.748839i
\(65\) 1.23575 8.40310i 0.153276 1.04228i
\(66\) −0.0956160 + 0.0858466i −0.0117695 + 0.0105670i
\(67\) −6.98470 + 1.23159i −0.853317 + 0.150463i −0.583164 0.812355i \(-0.698185\pi\)
−0.270153 + 0.962817i \(0.587074\pi\)
\(68\) 1.96100 1.31459i 0.237806 0.159418i
\(69\) −0.839063 + 0.484433i −0.101011 + 0.0583189i
\(70\) −1.11273 + 0.0690808i −0.132997 + 0.00825673i
\(71\) −6.72322 + 2.44705i −0.797899 + 0.290412i −0.708616 0.705595i \(-0.750680\pi\)
−0.0892837 + 0.996006i \(0.528458\pi\)
\(72\) −8.14615 2.06810i −0.960033 0.243728i
\(73\) 7.32925 8.73466i 0.857823 1.02231i −0.141652 0.989917i \(-0.545241\pi\)
0.999475 0.0323977i \(-0.0103143\pi\)
\(74\) 1.01492 0.408373i 0.117982 0.0474724i
\(75\) 0.578915 + 0.615012i 0.0668474 + 0.0710154i
\(76\) −7.89956 3.68741i −0.906141 0.422975i
\(77\) 0.189636i 0.0216110i
\(78\) −0.338725 0.841826i −0.0383530 0.0953180i
\(79\) 5.66076 + 4.74994i 0.636885 + 0.534410i 0.903060 0.429515i \(-0.141315\pi\)
−0.266175 + 0.963925i \(0.585760\pi\)
\(80\) −5.66604 6.92069i −0.633482 0.773757i
\(81\) −8.21667 + 2.99062i −0.912963 + 0.332291i
\(82\) 1.89874 5.81550i 0.209680 0.642214i
\(83\) −0.764089 1.32344i −0.0838696 0.145266i 0.821039 0.570872i \(-0.193395\pi\)
−0.904909 + 0.425605i \(0.860061\pi\)
\(84\) −0.0989359 + 0.0663236i −0.0107948 + 0.00723650i
\(85\) 2.24733 1.38441i 0.243757 0.150161i
\(86\) −11.9153 + 10.6979i −1.28486 + 1.15358i
\(87\) −0.187950 + 0.325540i −0.0201504 + 0.0349015i
\(88\) 1.23464 0.888977i 0.131613 0.0947653i
\(89\) 3.25011 + 3.87334i 0.344511 + 0.410573i 0.910281 0.413991i \(-0.135865\pi\)
−0.565770 + 0.824563i \(0.691421\pi\)
\(90\) −9.01208 2.66052i −0.949957 0.280444i
\(91\) 1.25838 + 0.458014i 0.131914 + 0.0480129i
\(92\) 10.4926 4.63580i 1.09393 0.483316i
\(93\) −1.10058 0.194061i −0.114124 0.0201232i
\(94\) −1.98183 3.18168i −0.204411 0.328165i
\(95\) −8.66701 4.45904i −0.889216 0.457487i
\(96\) −0.895598 0.333217i −0.0914066 0.0340088i
\(97\) −2.09122 + 11.8599i −0.212331 + 1.20419i 0.673147 + 0.739508i \(0.264942\pi\)
−0.885478 + 0.464680i \(0.846169\pi\)
\(98\) −1.36700 + 9.62715i −0.138088 + 0.972489i
\(99\) 0.546659 1.50193i 0.0549413 0.150950i
\(100\) −6.03277 7.97532i −0.603277 0.797532i
\(101\) −6.10589 + 5.12345i −0.607559 + 0.509803i −0.893865 0.448336i \(-0.852017\pi\)
0.286306 + 0.958138i \(0.407573\pi\)
\(102\) 0.132745 0.248801i 0.0131437 0.0246350i
\(103\) −8.62565 4.98002i −0.849911 0.490696i 0.0107099 0.999943i \(-0.496591\pi\)
−0.860621 + 0.509246i \(0.829924\pi\)
\(104\) 2.91713 + 10.3399i 0.286048 + 1.01391i
\(105\) −0.113382 + 0.0698461i −0.0110649 + 0.00681629i
\(106\) 6.23940 0.208982i 0.606024 0.0202981i
\(107\) −9.83620 + 5.67893i −0.950901 + 0.549003i −0.893361 0.449340i \(-0.851659\pi\)
−0.0575406 + 0.998343i \(0.518326\pi\)
\(108\) −1.95890 + 0.482483i −0.188496 + 0.0464269i
\(109\) −1.80107 4.94840i −0.172511 0.473971i 0.823063 0.567950i \(-0.192263\pi\)
−0.995574 + 0.0939794i \(0.970041\pi\)
\(110\) 1.41755 0.940122i 0.135158 0.0896371i
\(111\) 0.0839963 0.100103i 0.00797257 0.00950134i
\(112\) 1.24890 0.654948i 0.118010 0.0618868i
\(113\) −15.1869 −1.42867 −0.714333 0.699806i \(-0.753270\pi\)
−0.714333 + 0.699806i \(0.753270\pi\)
\(114\) −1.03983 + 0.0555712i −0.0973893 + 0.00520472i
\(115\) 11.9216 4.72831i 1.11169 0.440917i
\(116\) 2.62621 3.59309i 0.243837 0.333610i
\(117\) 8.64620 + 7.25502i 0.799341 + 0.670727i
\(118\) −0.980704 4.64640i −0.0902811 0.427736i
\(119\) 0.142337 + 0.391069i 0.0130480 + 0.0358492i
\(120\) −0.986251 0.410756i −0.0900320 0.0374967i
\(121\) −5.35534 9.27572i −0.486849 0.843247i
\(122\) 9.76562 0.327089i 0.884138 0.0296132i
\(123\) −0.126890 0.719631i −0.0114413 0.0648869i
\(124\) 12.7084 + 3.68332i 1.14125 + 0.330772i
\(125\) −6.39717 9.16931i −0.572180 0.820128i
\(126\) 0.697402 1.30713i 0.0621295 0.116448i
\(127\) −10.1362 12.0799i −0.899446 1.07192i −0.997055 0.0766927i \(-0.975564\pi\)
0.0976092 0.995225i \(-0.468880\pi\)
\(128\) 10.1187 + 5.06080i 0.894376 + 0.447316i
\(129\) −0.654188 + 1.79737i −0.0575980 + 0.158249i
\(130\) 2.81475 + 11.6771i 0.246870 + 1.02415i
\(131\) 16.1902 + 2.85477i 1.41455 + 0.249423i 0.828107 0.560571i \(-0.189418\pi\)
0.586439 + 0.809993i \(0.300529\pi\)
\(132\) 0.0801284 0.163106i 0.00697428 0.0141965i
\(133\) 0.964171 1.19665i 0.0836042 0.103763i
\(134\) 8.51369 5.30309i 0.735471 0.458117i
\(135\) −2.20923 + 0.454862i −0.190141 + 0.0391483i
\(136\) −1.87883 + 2.75995i −0.161108 + 0.236664i
\(137\) −7.03395 + 19.3256i −0.600950 + 1.65110i 0.148402 + 0.988927i \(0.452587\pi\)
−0.749353 + 0.662171i \(0.769635\pi\)
\(138\) 0.845107 1.07852i 0.0719403 0.0918094i
\(139\) −5.01188 5.97293i −0.425102 0.506617i 0.510400 0.859937i \(-0.329497\pi\)
−0.935503 + 0.353320i \(0.885053\pi\)
\(140\) 1.42343 0.678050i 0.120301 0.0573057i
\(141\) −0.387754 0.223870i −0.0326548 0.0188532i
\(142\) 7.52899 6.75972i 0.631818 0.567263i
\(143\) −2.01209 + 0.354785i −0.168259 + 0.0296686i
\(144\) 11.7794 1.58707i 0.981619 0.132256i
\(145\) 3.08841 3.90138i 0.256479 0.323992i
\(146\) −5.00483 + 15.3289i −0.414203 + 1.26863i
\(147\) 0.397246 + 1.09143i 0.0327643 + 0.0900193i
\(148\) −1.11598 + 1.07156i −0.0917332 + 0.0880818i
\(149\) 0.955499 + 0.801759i 0.0782775 + 0.0656826i 0.681087 0.732203i \(-0.261508\pi\)
−0.602809 + 0.797885i \(0.705952\pi\)
\(150\) −1.08420 0.501277i −0.0885244 0.0409291i
\(151\) −22.9818 −1.87023 −0.935117 0.354338i \(-0.884706\pi\)
−0.935117 + 0.354338i \(0.884706\pi\)
\(152\) 12.3107 + 0.667631i 0.998533 + 0.0541520i
\(153\) 3.50761i 0.283574i
\(154\) 0.100110 + 0.248800i 0.00806707 + 0.0200489i
\(155\) 14.0397 + 4.66110i 1.12770 + 0.374388i
\(156\) 0.888807 + 0.925652i 0.0711615 + 0.0741115i
\(157\) 4.71179 + 12.9455i 0.376041 + 1.03317i 0.972982 + 0.230880i \(0.0741605\pi\)
−0.596941 + 0.802285i \(0.703617\pi\)
\(158\) −9.93437 3.24353i −0.790336 0.258041i
\(159\) 0.645792 0.372848i 0.0512147 0.0295688i
\(160\) 11.0872 + 6.08875i 0.876524 + 0.481358i
\(161\) 0.351131 + 1.99136i 0.0276730 + 0.156941i
\(162\) 9.20142 8.26128i 0.722932 0.649068i
\(163\) −6.76334 + 11.7144i −0.529746 + 0.917546i 0.469652 + 0.882851i \(0.344379\pi\)
−0.999398 + 0.0346948i \(0.988954\pi\)
\(164\) 0.578903 + 8.63222i 0.0452048 + 0.674063i
\(165\) 0.0965285 0.178780i 0.00751473 0.0139180i
\(166\) 1.70113 + 1.33297i 0.132033 + 0.103459i
\(167\) 4.76621 13.0951i 0.368820 1.01333i −0.606991 0.794709i \(-0.707623\pi\)
0.975811 0.218616i \(-0.0701544\pi\)
\(168\) 0.0947904 0.139245i 0.00731324 0.0107430i
\(169\) 0.247942 1.40615i 0.0190725 0.108165i
\(170\) −2.21764 + 3.00271i −0.170085 + 0.230297i
\(171\) 11.0859 6.69819i 0.847758 0.512224i
\(172\) 9.98529 20.3256i 0.761371 1.54981i
\(173\) −1.22760 + 6.96205i −0.0933325 + 0.529315i 0.901913 + 0.431918i \(0.142163\pi\)
−0.995246 + 0.0973973i \(0.968948\pi\)
\(174\) 0.0747351 0.526324i 0.00566566 0.0399005i
\(175\) 1.61940 0.696360i 0.122415 0.0526399i
\(176\) −1.15054 + 1.81810i −0.0867251 + 0.137044i
\(177\) −0.364607 0.434522i −0.0274055 0.0326606i
\(178\) −6.30887 3.36603i −0.472870 0.252294i
\(179\) 8.98666 15.5654i 0.671695 1.16341i −0.305729 0.952119i \(-0.598900\pi\)
0.977423 0.211291i \(-0.0677667\pi\)
\(180\) 13.2283 1.26694i 0.985976 0.0944320i
\(181\) 5.47047 0.964591i 0.406616 0.0716975i 0.0334007 0.999442i \(-0.489366\pi\)
0.373216 + 0.927745i \(0.378255\pi\)
\(182\) −1.89277 + 0.0633964i −0.140302 + 0.00469925i
\(183\) 1.01076 0.583565i 0.0747179 0.0431384i
\(184\) −11.3189 + 11.6212i −0.834439 + 0.856726i
\(185\) −1.29283 + 1.14920i −0.0950506 + 0.0844912i
\(186\) 1.54639 0.326393i 0.113387 0.0239323i
\(187\) −0.486395 0.408134i −0.0355687 0.0298457i
\(188\) 4.27977 + 3.12811i 0.312134 + 0.228141i
\(189\) 0.355630i 0.0258683i
\(190\) 13.7250 + 1.27486i 0.995714 + 0.0924878i
\(191\) 8.81735i 0.638001i 0.947755 + 0.319001i \(0.103347\pi\)
−0.947755 + 0.319001i \(0.896653\pi\)
\(192\) 1.35092 0.0356124i 0.0974944 0.00257010i
\(193\) 14.7524 + 12.3787i 1.06190 + 0.891041i 0.994294 0.106671i \(-0.0340193\pi\)
0.0676066 + 0.997712i \(0.478464\pi\)
\(194\) −3.51723 16.6640i −0.252522 1.19641i
\(195\) 0.953209 + 1.07234i 0.0682607 + 0.0767917i
\(196\) −3.28872 13.3524i −0.234909 0.953740i
\(197\) −18.2159 + 10.5170i −1.29783 + 0.749304i −0.980029 0.198853i \(-0.936278\pi\)
−0.317803 + 0.948157i \(0.602945\pi\)
\(198\) 0.0756663 + 2.25911i 0.00537737 + 0.160548i
\(199\) −17.2506 + 3.04175i −1.22286 + 0.215624i −0.747557 0.664197i \(-0.768774\pi\)
−0.475305 + 0.879821i \(0.657662\pi\)
\(200\) 12.1251 + 7.27881i 0.857377 + 0.514689i
\(201\) 0.599042 1.03757i 0.0422532 0.0731846i
\(202\) 5.30617 9.94524i 0.373341 0.699745i
\(203\) 0.504285 + 0.600983i 0.0353938 + 0.0421807i
\(204\) −0.0428170 + 0.396501i −0.00299779 + 0.0277606i
\(205\) 0.275841 + 9.66886i 0.0192656 + 0.675303i
\(206\) 13.9457 + 1.98022i 0.971646 + 0.137968i
\(207\) −2.95947 + 16.7840i −0.205697 + 1.16657i
\(208\) −9.28571 12.0259i −0.643848 0.833843i
\(209\) −0.361088 + 2.31664i −0.0249769 + 0.160245i
\(210\) 0.111884 0.151492i 0.00772071 0.0104540i
\(211\) 1.82576 10.3544i 0.125691 0.712827i −0.855205 0.518291i \(-0.826569\pi\)
0.980895 0.194537i \(-0.0623203\pi\)
\(212\) −8.07570 + 3.56799i −0.554642 + 0.245050i
\(213\) 0.413366 1.13571i 0.0283233 0.0778177i
\(214\) 9.90706 12.6433i 0.677233 0.864277i
\(215\) 12.0290 22.2789i 0.820371 1.51941i
\(216\) 2.31536 1.66713i 0.157540 0.113434i
\(217\) −1.16620 + 2.01992i −0.0791669 + 0.137121i
\(218\) 4.97527 + 5.54146i 0.336968 + 0.375315i
\(219\) 0.334467 + 1.89686i 0.0226012 + 0.128178i
\(220\) −1.36351 + 1.98176i −0.0919280 + 0.133610i
\(221\) 3.88304 2.24188i 0.261202 0.150805i
\(222\) −0.0573575 + 0.175676i −0.00384958 + 0.0117906i
\(223\) 3.62008 + 9.94608i 0.242418 + 0.666039i 0.999913 + 0.0131976i \(0.00420103\pi\)
−0.757495 + 0.652842i \(0.773577\pi\)
\(224\) −1.29280 + 1.51859i −0.0863787 + 0.101465i
\(225\) 14.8332 0.847035i 0.988877 0.0564690i
\(226\) 19.9251 8.01725i 1.32540 0.533300i
\(227\) 1.80739i 0.119961i 0.998200 + 0.0599803i \(0.0191038\pi\)
−0.998200 + 0.0599803i \(0.980896\pi\)
\(228\) 1.33491 0.621841i 0.0884068 0.0411824i
\(229\) 0.747250 0.0493797 0.0246898 0.999695i \(-0.492140\pi\)
0.0246898 + 0.999695i \(0.492140\pi\)
\(230\) −13.1449 + 12.4969i −0.866749 + 0.824024i
\(231\) 0.0245395 + 0.0205911i 0.00161458 + 0.00135479i
\(232\) −1.54875 + 6.10048i −0.101681 + 0.400516i
\(233\) −4.01918 11.0426i −0.263306 0.723426i −0.998939 0.0460466i \(-0.985338\pi\)
0.735634 0.677380i \(-0.236884\pi\)
\(234\) −15.1737 4.95415i −0.991935 0.323863i
\(235\) 4.64698 + 3.67864i 0.303136 + 0.239968i
\(236\) 3.73953 + 5.57831i 0.243423 + 0.363117i
\(237\) −1.22931 + 0.216761i −0.0798526 + 0.0140802i
\(238\) −0.393192 0.437938i −0.0254869 0.0283873i
\(239\) 8.67765 + 5.01004i 0.561311 + 0.324073i 0.753671 0.657251i \(-0.228281\pi\)
−0.192361 + 0.981324i \(0.561614\pi\)
\(240\) 1.51079 + 0.0182607i 0.0975211 + 0.00117872i
\(241\) 11.6615 + 13.8976i 0.751181 + 0.895223i 0.997256 0.0740278i \(-0.0235854\pi\)
−0.246075 + 0.969251i \(0.579141\pi\)
\(242\) 11.9228 + 9.34254i 0.766429 + 0.600561i
\(243\) 1.54020 4.23166i 0.0988038 0.271461i
\(244\) −12.6397 + 5.58445i −0.809175 + 0.357508i
\(245\) −3.10045 15.0587i −0.198081 0.962064i
\(246\) 0.546375 + 0.877162i 0.0348356 + 0.0559258i
\(247\) −14.5006 7.99131i −0.922652 0.508475i
\(248\) −18.6178 + 1.87636i −1.18223 + 0.119149i
\(249\) 0.254224 + 0.0448265i 0.0161108 + 0.00284077i
\(250\) 13.2335 + 8.65294i 0.836963 + 0.547260i
\(251\) 6.31812 17.3589i 0.398796 1.09568i −0.564075 0.825724i \(-0.690767\pi\)
0.962871 0.269961i \(-0.0870107\pi\)
\(252\) −0.224947 + 2.08310i −0.0141703 + 0.131223i
\(253\) −1.98305 2.36331i −0.124674 0.148580i
\(254\) 19.6757 + 10.4977i 1.23456 + 0.658687i
\(255\) −0.0648725 + 0.441134i −0.00406247 + 0.0276249i
\(256\) −15.9473 1.29801i −0.996704 0.0811254i
\(257\) −1.52649 8.65713i −0.0952196 0.540017i −0.994680 0.103015i \(-0.967151\pi\)
0.899460 0.437003i \(-0.143960\pi\)
\(258\) −0.0905499 2.70347i −0.00563739 0.168311i
\(259\) −0.136363 0.236188i −0.00847321 0.0146760i
\(260\) −9.85734 13.8344i −0.611326 0.857971i
\(261\) 2.26154 + 6.21353i 0.139986 + 0.384608i
\(262\) −22.7484 + 4.80146i −1.40540 + 0.296635i
\(263\) −19.8411 16.6487i −1.22345 1.02660i −0.998637 0.0521999i \(-0.983377\pi\)
−0.224818 0.974401i \(-0.572179\pi\)
\(264\) −0.0190233 + 0.256293i −0.00117080 + 0.0157738i
\(265\) −9.17555 + 3.63918i −0.563650 + 0.223553i
\(266\) −0.633265 + 2.07898i −0.0388279 + 0.127471i
\(267\) −0.854127 −0.0522717
\(268\) −8.37035 + 11.4520i −0.511300 + 0.699543i
\(269\) −4.22376 + 5.03368i −0.257527 + 0.306909i −0.879281 0.476304i \(-0.841976\pi\)
0.621753 + 0.783213i \(0.286421\pi\)
\(270\) 2.65837 1.76304i 0.161783 0.107295i
\(271\) 5.55145 + 15.2525i 0.337226 + 0.926522i 0.986178 + 0.165692i \(0.0529857\pi\)
−0.648951 + 0.760830i \(0.724792\pi\)
\(272\) 1.00802 4.61287i 0.0611199 0.279697i
\(273\) −0.195906 + 0.113107i −0.0118568 + 0.00684553i
\(274\) −0.973609 29.0682i −0.0588179 1.75608i
\(275\) −1.60848 + 2.15545i −0.0969950 + 0.129978i
\(276\) −0.539419 + 1.86114i −0.0324692 + 0.112027i
\(277\) 14.9324 + 8.62125i 0.897203 + 0.518000i 0.876292 0.481781i \(-0.160010\pi\)
0.0209114 + 0.999781i \(0.493343\pi\)
\(278\) 9.72867 + 5.19062i 0.583487 + 0.311313i
\(279\) −15.0592 + 12.6362i −0.901571 + 0.756508i
\(280\) −1.50958 + 1.64103i −0.0902144 + 0.0980702i
\(281\) 8.80831 24.2006i 0.525460 1.44369i −0.338904 0.940821i \(-0.610056\pi\)
0.864364 0.502867i \(-0.167722\pi\)
\(282\) 0.626911 + 0.0890179i 0.0373320 + 0.00530094i
\(283\) −4.11288 + 23.3253i −0.244486 + 1.38655i 0.577199 + 0.816604i \(0.304146\pi\)
−0.821684 + 0.569943i \(0.806965\pi\)
\(284\) −6.30946 + 12.8433i −0.374398 + 0.762108i
\(285\) 1.51810 0.637367i 0.0899243 0.0377543i
\(286\) 2.45254 1.52766i 0.145022 0.0903326i
\(287\) −1.50191 0.264828i −0.0886551 0.0156323i
\(288\) −14.6167 + 8.30063i −0.861295 + 0.489119i
\(289\) −14.6654 5.33777i −0.862670 0.313986i
\(290\) −1.99241 + 6.74896i −0.116998 + 0.396312i
\(291\) −1.30764 1.55838i −0.0766551 0.0913540i
\(292\) −1.52592 22.7535i −0.0892975 1.33155i
\(293\) 7.68269 13.3068i 0.448828 0.777392i −0.549482 0.835505i \(-0.685175\pi\)
0.998310 + 0.0581131i \(0.0185084\pi\)
\(294\) −1.09735 1.22223i −0.0639989 0.0712820i
\(295\) 3.93814 + 6.39282i 0.229287 + 0.372204i
\(296\) 0.898476 1.99501i 0.0522228 0.115958i
\(297\) 0.271292 + 0.469891i 0.0157419 + 0.0272658i
\(298\) −1.67686 0.547487i −0.0971377 0.0317151i
\(299\) 20.4720 7.45118i 1.18392 0.430913i
\(300\) 1.68708 + 0.0853175i 0.0974038 + 0.00492581i
\(301\) 3.05802 + 2.56598i 0.176261 + 0.147901i
\(302\) 30.1519 12.1322i 1.73505 0.698130i
\(303\) 1.34644i 0.0773508i
\(304\) −16.5040 + 5.62297i −0.946570 + 0.322499i
\(305\) −14.3612 + 5.69588i −0.822317 + 0.326145i
\(306\) −1.85168 4.60195i −0.105854 0.263076i
\(307\) 2.89483 3.44993i 0.165217 0.196898i −0.677084 0.735906i \(-0.736756\pi\)
0.842300 + 0.539008i \(0.181201\pi\)
\(308\) −0.262686 0.273575i −0.0149679 0.0155884i
\(309\) 1.58102 0.575446i 0.0899413 0.0327360i
\(310\) −20.8806 + 1.29631i −1.18594 + 0.0736253i
\(311\) −27.8935 + 16.1043i −1.58170 + 0.913194i −0.587086 + 0.809525i \(0.699725\pi\)
−0.994612 + 0.103669i \(0.966942\pi\)
\(312\) −1.65476 0.745241i −0.0936824 0.0421910i
\(313\) 11.1710 1.96975i 0.631422 0.111337i 0.151228 0.988499i \(-0.451677\pi\)
0.480194 + 0.877162i \(0.340566\pi\)
\(314\) −13.0158 14.4970i −0.734525 0.818114i
\(315\) −0.340820 + 2.31759i −0.0192031 + 0.130581i
\(316\) 14.7461 0.988916i 0.829531 0.0556309i
\(317\) −6.45464 + 5.41608i −0.362528 + 0.304197i −0.805798 0.592191i \(-0.798263\pi\)
0.443269 + 0.896389i \(0.353819\pi\)
\(318\) −0.650445 + 0.830090i −0.0364751 + 0.0465491i
\(319\) −1.12477 0.409381i −0.0629748 0.0229210i
\(320\) −17.7606 2.13537i −0.992850 0.119371i
\(321\) 0.333164 1.88947i 0.0185954 0.105460i
\(322\) −1.51193 2.42728i −0.0842566 0.135267i
\(323\) −0.994192 5.04842i −0.0553183 0.280902i
\(324\) −7.71100 + 15.6962i −0.428389 + 0.872010i
\(325\) −10.4183 15.8794i −0.577901 0.880832i
\(326\) 2.68932 18.9396i 0.148948 1.04897i
\(327\) 0.835903 + 0.304244i 0.0462256 + 0.0168247i
\(328\) −5.31650 11.0198i −0.293555 0.608466i
\(329\) −0.715838 + 0.600660i −0.0394654 + 0.0331154i
\(330\) −0.0322655 + 0.285516i −0.00177616 + 0.0157171i
\(331\) 13.0871 22.6674i 0.719330 1.24592i −0.241936 0.970292i \(-0.577782\pi\)
0.961266 0.275623i \(-0.0888842\pi\)
\(332\) −2.93554 0.850816i −0.161109 0.0466946i
\(333\) −0.399156 2.26372i −0.0218736 0.124051i
\(334\) 0.659719 + 19.6967i 0.0360982 + 1.07775i
\(335\) −9.84350 + 12.4346i −0.537808 + 0.679376i
\(336\) −0.0508562 + 0.232728i −0.00277443 + 0.0126963i
\(337\) 16.5722 6.03180i 0.902746 0.328573i 0.151394 0.988474i \(-0.451624\pi\)
0.751353 + 0.659901i \(0.229402\pi\)
\(338\) 0.417016 + 1.97575i 0.0226827 + 0.107466i
\(339\) 1.64903 1.96524i 0.0895631 0.106737i
\(340\) 1.32437 5.11023i 0.0718241 0.277141i
\(341\) 3.55854i 0.192706i
\(342\) −11.0086 + 14.6402i −0.595274 + 0.791654i
\(343\) 4.89194 0.264140
\(344\) −2.37061 + 31.9383i −0.127815 + 1.72200i
\(345\) −0.682613 + 2.05610i −0.0367507 + 0.110697i
\(346\) −2.06470 9.78219i −0.110999 0.525894i
\(347\) 6.32576 2.30239i 0.339585 0.123599i −0.166598 0.986025i \(-0.553278\pi\)
0.506183 + 0.862426i \(0.331056\pi\)
\(348\) 0.179797 + 0.729985i 0.00963814 + 0.0391313i
\(349\) 2.63674 + 4.56697i 0.141142 + 0.244464i 0.927927 0.372763i \(-0.121589\pi\)
−0.786785 + 0.617227i \(0.788256\pi\)
\(350\) −1.75702 + 1.76850i −0.0939168 + 0.0945306i
\(351\) −3.77332 + 0.665339i −0.201405 + 0.0355132i
\(352\) 0.549711 2.99270i 0.0292997 0.159512i
\(353\) −24.1899 13.9660i −1.28750 0.743337i −0.309290 0.950968i \(-0.600091\pi\)
−0.978207 + 0.207631i \(0.933425\pi\)
\(354\) 0.707746 + 0.377610i 0.0376163 + 0.0200698i
\(355\) −7.60084 + 14.0775i −0.403411 + 0.747156i
\(356\) 10.0541 + 1.08571i 0.532867 + 0.0575427i
\(357\) −0.0660608 0.0240442i −0.00349631 0.00127255i
\(358\) −3.57339 + 25.1657i −0.188859 + 1.33005i
\(359\) −4.12396 0.727165i −0.217654 0.0383783i 0.0637576 0.997965i \(-0.479692\pi\)
−0.281412 + 0.959587i \(0.590803\pi\)
\(360\) −16.6865 + 8.64547i −0.879457 + 0.455656i
\(361\) −14.0571 + 12.7827i −0.739848 + 0.672774i
\(362\) −6.66798 + 4.15342i −0.350461 + 0.218299i
\(363\) 1.78180 + 0.314180i 0.0935203 + 0.0164902i
\(364\) 2.44983 1.08238i 0.128406 0.0567321i
\(365\) −0.727083 25.4859i −0.0380573 1.33399i
\(366\) −1.01805 + 1.29922i −0.0532141 + 0.0679112i
\(367\) 4.01358 3.36779i 0.209507 0.175797i −0.531996 0.846747i \(-0.678558\pi\)
0.741503 + 0.670950i \(0.234113\pi\)
\(368\) 8.71538 21.2222i 0.454320 1.10628i
\(369\) −11.1319 6.42699i −0.579502 0.334576i
\(370\) 1.08951 2.19023i 0.0566408 0.113865i
\(371\) −0.270251 1.53267i −0.0140307 0.0795723i
\(372\) −1.85654 + 1.24457i −0.0962573 + 0.0645279i
\(373\) −8.38038 14.5152i −0.433920 0.751571i 0.563287 0.826261i \(-0.309536\pi\)
−0.997207 + 0.0746904i \(0.976203\pi\)
\(374\) 0.853601 + 0.278697i 0.0441387 + 0.0144111i
\(375\) 1.88116 + 0.167809i 0.0971425 + 0.00866561i
\(376\) −7.26635 1.84474i −0.374734 0.0951352i
\(377\) 5.43313 6.47495i 0.279820 0.333477i
\(378\) 0.187739 + 0.466583i 0.00965623 + 0.0239984i
\(379\) −7.16672 −0.368130 −0.184065 0.982914i \(-0.558926\pi\)
−0.184065 + 0.982914i \(0.558926\pi\)
\(380\) −18.6800 + 5.57287i −0.958265 + 0.285882i
\(381\) 2.66379 0.136470
\(382\) −4.65472 11.5683i −0.238156 0.591884i
\(383\) 21.4278 25.5367i 1.09491 1.30486i 0.146013 0.989283i \(-0.453356\pi\)
0.948898 0.315582i \(-0.102200\pi\)
\(384\) −1.75360 + 0.759881i −0.0894878 + 0.0387775i
\(385\) −0.281719 0.316928i −0.0143577 0.0161521i
\(386\) −25.8898 8.45291i −1.31776 0.430242i
\(387\) 16.8229 + 29.1381i 0.855155 + 1.48117i
\(388\) 13.4116 + 20.0062i 0.680869 + 1.01566i
\(389\) 1.25719 + 7.12991i 0.0637423 + 0.361501i 0.999949 + 0.0100520i \(0.00319969\pi\)
−0.936207 + 0.351449i \(0.885689\pi\)
\(390\) −1.81669 0.903692i −0.0919917 0.0457602i
\(391\) 5.86333 + 3.38519i 0.296521 + 0.171197i
\(392\) 11.3635 + 15.7820i 0.573945 + 0.797113i
\(393\) −2.12739 + 1.78509i −0.107312 + 0.0900458i
\(394\) 18.3472 23.4144i 0.924317 1.17960i
\(395\) 16.5169 0.471208i 0.831056 0.0237091i
\(396\) −1.29186 2.92398i −0.0649187 0.146935i
\(397\) −1.69283 0.298492i −0.0849608 0.0149809i 0.131006 0.991382i \(-0.458179\pi\)
−0.215967 + 0.976401i \(0.569290\pi\)
\(398\) 21.0269 13.0974i 1.05398 0.656514i
\(399\) 0.0501588 + 0.254702i 0.00251108 + 0.0127510i
\(400\) −19.7506 3.14881i −0.987529 0.157440i
\(401\) 14.9749 + 2.64047i 0.747809 + 0.131859i 0.534550 0.845137i \(-0.320481\pi\)
0.213259 + 0.976996i \(0.431592\pi\)
\(402\) −0.238199 + 1.67752i −0.0118803 + 0.0836671i
\(403\) 23.6137 + 8.59468i 1.17628 + 0.428132i
\(404\) −1.71151 + 15.8492i −0.0851507 + 0.788528i
\(405\) −9.28924 + 17.2046i −0.461586 + 0.854902i
\(406\) −0.978878 0.522269i −0.0485809 0.0259198i
\(407\) 0.360352 + 0.208049i 0.0178620 + 0.0103126i
\(408\) −0.153139 0.542809i −0.00758153 0.0268730i
\(409\) −7.87743 + 1.38900i −0.389514 + 0.0686818i −0.364976 0.931017i \(-0.618923\pi\)
−0.0245384 + 0.999699i \(0.507812\pi\)
\(410\) −5.46614 12.5398i −0.269953 0.619298i
\(411\) −1.73703 3.00863i −0.0856816 0.148405i
\(412\) −19.3420 + 4.76399i −0.952914 + 0.234705i
\(413\) −1.11244 + 0.404897i −0.0547398 + 0.0199237i
\(414\) −4.97754 23.5827i −0.244633 1.15903i
\(415\) −3.24305 1.07668i −0.159195 0.0528519i
\(416\) 18.5313 + 10.8758i 0.908570 + 0.533231i
\(417\) 1.31712 0.0644995
\(418\) −0.749222 3.23003i −0.0366456 0.157986i
\(419\) 29.5028i 1.44131i 0.693296 + 0.720653i \(0.256158\pi\)
−0.693296 + 0.720653i \(0.743842\pi\)
\(420\) −0.0668169 + 0.257820i −0.00326033 + 0.0125803i
\(421\) 15.3524 18.2962i 0.748229 0.891704i −0.248814 0.968551i \(-0.580041\pi\)
0.997043 + 0.0768469i \(0.0244853\pi\)
\(422\) 3.07076 + 14.5487i 0.149482 + 0.708220i
\(423\) −7.40101 + 2.69375i −0.359849 + 0.130974i
\(424\) 8.71168 8.94436i 0.423077 0.434377i
\(425\) 1.69918 5.65228i 0.0824222 0.274176i
\(426\) 0.0572163 + 1.70826i 0.00277214 + 0.0827655i
\(427\) −0.422985 2.39887i −0.0204697 0.116089i
\(428\) −6.32352 + 21.8178i −0.305659 + 1.05460i
\(429\) 0.172566 0.298894i 0.00833158 0.0144307i
\(430\) −4.02080 + 35.5798i −0.193900 + 1.71581i
\(431\) −11.0099 + 9.23838i −0.530327 + 0.444997i −0.868214 0.496189i \(-0.834732\pi\)
0.337887 + 0.941187i \(0.390288\pi\)
\(432\) −2.15764 + 3.40954i −0.103809 + 0.164041i
\(433\) 24.8805 + 9.05575i 1.19568 + 0.435191i 0.861714 0.507394i \(-0.169391\pi\)
0.333965 + 0.942586i \(0.391613\pi\)
\(434\) 0.463720 3.26576i 0.0222593 0.156761i
\(435\) 0.169504 + 0.823271i 0.00812712 + 0.0394728i
\(436\) −9.45286 4.64387i −0.452710 0.222401i
\(437\) −0.497733 24.9956i −0.0238098 1.19570i
\(438\) −1.44018 2.31209i −0.0688143 0.110476i
\(439\) −5.33260 + 30.2427i −0.254511 + 1.44341i 0.542813 + 0.839854i \(0.317359\pi\)
−0.797324 + 0.603552i \(0.793752\pi\)
\(440\) 0.742734 3.31985i 0.0354085 0.158268i
\(441\) 19.1988 + 6.98778i 0.914228 + 0.332752i
\(442\) −3.91102 + 4.99119i −0.186028 + 0.237407i
\(443\) 24.3577 20.4385i 1.15727 0.971064i 0.157404 0.987534i \(-0.449687\pi\)
0.999864 + 0.0164704i \(0.00524292\pi\)
\(444\) −0.0174876 0.260764i −0.000829927 0.0123753i
\(445\) 11.1859 + 1.64498i 0.530262 + 0.0779794i
\(446\) −10.0001 11.1381i −0.473518 0.527405i
\(447\) −0.207500 + 0.0365879i −0.00981443 + 0.00173055i
\(448\) 0.894468 2.67484i 0.0422596 0.126374i
\(449\) 21.7050 12.5314i 1.02432 0.591391i 0.108968 0.994045i \(-0.465245\pi\)
0.915352 + 0.402654i \(0.131912\pi\)
\(450\) −19.0138 + 8.94179i −0.896319 + 0.421520i
\(451\) 2.18649 0.795817i 0.102958 0.0374735i
\(452\) −21.9092 + 21.0371i −1.03052 + 0.989502i
\(453\) 2.49542 2.97392i 0.117245 0.139727i
\(454\) −0.954129 2.37128i −0.0447795 0.111290i
\(455\) 2.78348 1.10398i 0.130492 0.0517552i
\(456\) −1.42312 + 1.52056i −0.0666437 + 0.0712066i
\(457\) 28.0718i 1.31314i −0.754264 0.656571i \(-0.772006\pi\)
0.754264 0.656571i \(-0.227994\pi\)
\(458\) −0.980384 + 0.394477i −0.0458103 + 0.0184327i
\(459\) −0.912151 0.765386i −0.0425756 0.0357251i
\(460\) 10.6488 23.3351i 0.496502 1.08800i
\(461\) 8.10603 2.95035i 0.377535 0.137412i −0.146280 0.989243i \(-0.546730\pi\)
0.523816 + 0.851831i \(0.324508\pi\)
\(462\) −0.0430657 0.0140608i −0.00200360 0.000654167i
\(463\) 19.5043 + 33.7824i 0.906440 + 1.57000i 0.818972 + 0.573834i \(0.194544\pi\)
0.0874686 + 0.996167i \(0.472122\pi\)
\(464\) −1.18852 8.82136i −0.0551756 0.409521i
\(465\) −2.12762 + 1.31067i −0.0986661 + 0.0607809i
\(466\) 11.1026 + 12.3661i 0.514317 + 0.572847i
\(467\) 5.82760 10.0937i 0.269669 0.467081i −0.699107 0.715017i \(-0.746419\pi\)
0.968776 + 0.247936i \(0.0797523\pi\)
\(468\) 22.5230 1.51046i 1.04113 0.0698212i
\(469\) −1.60727 1.91547i −0.0742170 0.0884484i
\(470\) −8.03876 2.37318i −0.370800 0.109467i
\(471\) −2.18681 0.795933i −0.100763 0.0366747i
\(472\) −7.85104 5.34457i −0.361373 0.246004i
\(473\) −5.99799 1.05761i −0.275788 0.0486288i
\(474\) 1.49842 0.933349i 0.0688246 0.0428701i
\(475\) −21.1089 + 5.42340i −0.968544 + 0.248843i
\(476\) 0.747053 + 0.367002i 0.0342411 + 0.0168215i
\(477\) 2.27778 12.9179i 0.104292 0.591472i
\(478\) −14.0298 1.99216i −0.641709 0.0911191i
\(479\) 5.89779 16.2040i 0.269477 0.740382i −0.728963 0.684553i \(-0.759998\pi\)
0.998440 0.0558292i \(-0.0177802\pi\)
\(480\) −1.99178 + 0.773595i −0.0909120 + 0.0353096i
\(481\) −2.25090 + 1.88873i −0.102632 + 0.0861186i
\(482\) −22.6363 12.0774i −1.03106 0.550109i
\(483\) −0.295815 0.170789i −0.0134601 0.00777117i
\(484\) −20.5746 5.96319i −0.935209 0.271054i
\(485\) 14.1239 + 22.9274i 0.641332 + 1.04108i
\(486\) 0.213188 + 6.36497i 0.00967040 + 0.288721i
\(487\) −26.0280 + 15.0273i −1.17944 + 0.680950i −0.955885 0.293741i \(-0.905100\pi\)
−0.223555 + 0.974691i \(0.571766\pi\)
\(488\) 13.6351 13.9993i 0.617233 0.633719i
\(489\) −0.781509 2.14718i −0.0353411 0.0970987i
\(490\) 12.0173 + 18.1201i 0.542887 + 0.818582i
\(491\) 12.0290 14.3357i 0.542863 0.646959i −0.422964 0.906147i \(-0.639010\pi\)
0.965827 + 0.259187i \(0.0834547\pi\)
\(492\) −1.17990 0.862394i −0.0531938 0.0388797i
\(493\) 2.62677 0.118304
\(494\) 23.2433 + 2.82958i 1.04577 + 0.127309i
\(495\) −1.31764 3.32220i −0.0592236 0.149322i
\(496\) 23.4358 12.2902i 1.05230 0.551845i
\(497\) −1.93229 1.62138i −0.0866750 0.0727289i
\(498\) −0.357203 + 0.0753940i −0.0160067 + 0.00337848i
\(499\) −1.26220 3.46788i −0.0565040 0.155243i 0.908229 0.418473i \(-0.137435\pi\)
−0.964733 + 0.263230i \(0.915212\pi\)
\(500\) −21.9302 4.36652i −0.980748 0.195277i
\(501\) 1.17702 + 2.03865i 0.0525852 + 0.0910803i
\(502\) 0.874528 + 26.1101i 0.0390321 + 1.16535i
\(503\) −3.50139 19.8574i −0.156119 0.885397i −0.957755 0.287585i \(-0.907148\pi\)
0.801636 0.597813i \(-0.203963\pi\)
\(504\) −0.804547 2.85175i −0.0358374 0.127027i
\(505\) −2.59313 + 17.6333i −0.115393 + 0.784673i
\(506\) 3.84935 + 2.05378i 0.171124 + 0.0913016i
\(507\) 0.155038 + 0.184768i 0.00688550 + 0.00820582i
\(508\) −31.3561 3.38605i −1.39120 0.150232i
\(509\) −8.80102 + 24.1806i −0.390098 + 1.07179i 0.576858 + 0.816844i \(0.304278\pi\)
−0.966956 + 0.254942i \(0.917944\pi\)
\(510\) −0.147765 0.613010i −0.00654313 0.0271446i
\(511\) 3.95886 + 0.698053i 0.175129 + 0.0308800i
\(512\) 21.6079 6.71566i 0.954942 0.296793i
\(513\) −0.677158 + 4.34447i −0.0298973 + 0.191813i
\(514\) 6.57287 + 10.5522i 0.289917 + 0.465439i
\(515\) −21.8138 + 4.49127i −0.961230 + 0.197909i
\(516\) 1.54598 + 3.49913i 0.0680578 + 0.154041i
\(517\) 0.487619 1.33972i 0.0214455 0.0589209i
\(518\) 0.303592 + 0.237890i 0.0133391 + 0.0104523i
\(519\) −0.767616 0.914810i −0.0336946 0.0401557i
\(520\) 20.2359 + 12.9468i 0.887405 + 0.567756i
\(521\) 14.1055 + 8.14382i 0.617974 + 0.356787i 0.776080 0.630635i \(-0.217205\pi\)
−0.158106 + 0.987422i \(0.550539\pi\)
\(522\) −6.24727 6.95821i −0.273435 0.304553i
\(523\) 3.09462 0.545665i 0.135318 0.0238603i −0.105579 0.994411i \(-0.533669\pi\)
0.240897 + 0.970551i \(0.422558\pi\)
\(524\) 27.3110 18.3085i 1.19309 0.799809i
\(525\) −0.0857265 + 0.285168i −0.00374141 + 0.0124457i
\(526\) 34.8202 + 11.3687i 1.51823 + 0.495697i
\(527\) 2.67098 + 7.33844i 0.116350 + 0.319668i
\(528\) −0.110340 0.346297i −0.00480194 0.0150706i
\(529\) 7.58091 + 6.36114i 0.329605 + 0.276571i
\(530\) 10.1171 9.61839i 0.439458 0.417796i
\(531\) −9.97785 −0.433002
\(532\) −0.266668 3.06191i −0.0115615 0.132751i
\(533\) 16.4311i 0.711712i
\(534\) 1.12061 0.450897i 0.0484933 0.0195122i
\(535\) −8.00217 + 24.1033i −0.345964 + 1.04208i
\(536\) 4.93624 19.4437i 0.213213 0.839838i
\(537\) 1.03842 + 2.85302i 0.0448109 + 0.123117i
\(538\) 2.88423 8.83388i 0.124348 0.380856i
\(539\) −3.20289 + 1.84919i −0.137958 + 0.0796503i
\(540\) −2.55703 + 3.71645i −0.110037 + 0.159931i
\(541\) −1.34105 7.60549i −0.0576564 0.326986i 0.942314 0.334731i \(-0.108646\pi\)
−0.999970 + 0.00774564i \(0.997534\pi\)
\(542\) −15.3353 17.0805i −0.658707 0.733668i
\(543\) −0.469174 + 0.812633i −0.0201342 + 0.0348734i
\(544\) 1.11265 + 6.58418i 0.0477045 + 0.282294i
\(545\) −10.3613 5.59434i −0.443828 0.239635i
\(546\) 0.197318 0.251815i 0.00844442 0.0107767i
\(547\) 13.1507 36.1314i 0.562285 1.54487i −0.253992 0.967206i \(-0.581744\pi\)
0.816278 0.577660i \(-0.196034\pi\)
\(548\) 16.6226 + 37.6233i 0.710083 + 1.60719i
\(549\) 3.56508 20.2186i 0.152154 0.862907i
\(550\) 0.972438 3.67705i 0.0414649 0.156790i
\(551\) −5.01613 8.30198i −0.213694 0.353676i
\(552\) −0.274791 2.72656i −0.0116959 0.116050i
\(553\) −0.452394 + 2.56565i −0.0192378 + 0.109103i
\(554\) −24.1424 3.42809i −1.02571 0.145645i
\(555\) −0.00833268 0.292079i −0.000353703 0.0123981i
\(556\) −15.5041 1.67424i −0.657519 0.0710035i
\(557\) 10.8639 + 12.9471i 0.460317 + 0.548585i 0.945412 0.325877i \(-0.105659\pi\)
−0.485095 + 0.874461i \(0.661215\pi\)
\(558\) 13.0868 24.5283i 0.554009 1.03837i
\(559\) 21.5046 37.2470i 0.909546 1.57538i
\(560\) 1.11424 2.94992i 0.0470853 0.124657i
\(561\) 0.105628 0.0186250i 0.00445960 0.000786349i
\(562\) 1.21921 + 36.4009i 0.0514292 + 1.53548i
\(563\) −28.0438 + 16.1911i −1.18190 + 0.682372i −0.956454 0.291883i \(-0.905718\pi\)
−0.225449 + 0.974255i \(0.572385\pi\)
\(564\) −0.869494 + 0.214159i −0.0366123 + 0.00901770i
\(565\) −25.3811 + 22.5614i −1.06779 + 0.949166i
\(566\) −6.91748 32.7738i −0.290763 1.37759i
\(567\) −2.36151 1.98154i −0.0991742 0.0832170i
\(568\) 1.49793 20.1810i 0.0628517 0.846777i
\(569\) 24.2370i 1.01607i 0.861336 + 0.508035i \(0.169628\pi\)
−0.861336 + 0.508035i \(0.830372\pi\)
\(570\) −1.65526 + 1.63763i −0.0693311 + 0.0685927i
\(571\) 37.6440i 1.57535i −0.616090 0.787676i \(-0.711284\pi\)
0.616090 0.787676i \(-0.288716\pi\)
\(572\) −2.41125 + 3.29899i −0.100819 + 0.137938i
\(573\) −1.14099 0.957407i −0.0476657 0.0399963i
\(574\) 2.11030 0.445415i 0.0880822 0.0185913i
\(575\) 12.8996 25.6126i 0.537949 1.06812i
\(576\) 14.7950 18.6065i 0.616457 0.775272i
\(577\) −33.0145 + 19.0610i −1.37441 + 0.793518i −0.991480 0.130258i \(-0.958419\pi\)
−0.382934 + 0.923776i \(0.625086\pi\)
\(578\) 22.0587 0.738831i 0.917520 0.0307313i
\(579\) −3.20370 + 0.564898i −0.133141 + 0.0234764i
\(580\) −0.948783 9.90636i −0.0393961 0.411339i
\(581\) 0.269383 0.466585i 0.0111759 0.0193572i
\(582\) 2.53828 + 1.35427i 0.105215 + 0.0561365i
\(583\) 1.52628 + 1.81894i 0.0632119 + 0.0753330i
\(584\) 14.0136 + 29.0468i 0.579889 + 1.20196i
\(585\) 25.2278 0.719720i 1.04304 0.0297568i
\(586\) −3.05489 + 21.5141i −0.126196 + 0.888740i
\(587\) −2.86570 + 16.2522i −0.118280 + 0.670799i 0.866794 + 0.498667i \(0.166177\pi\)
−0.985074 + 0.172132i \(0.944934\pi\)
\(588\) 2.08494 + 1.02426i 0.0859813 + 0.0422397i
\(589\) 18.0928 22.4553i 0.745499 0.925254i
\(590\) −8.54159 6.30835i −0.351652 0.259711i
\(591\) 0.616996 3.49916i 0.0253798 0.143936i
\(592\) −0.125616 + 3.09174i −0.00516281 + 0.127070i
\(593\) −2.47644 + 6.80396i −0.101695 + 0.279405i −0.980097 0.198517i \(-0.936388\pi\)
0.878402 + 0.477922i \(0.158610\pi\)
\(594\) −0.603989 0.473276i −0.0247820 0.0194187i
\(595\) 0.818844 + 0.442117i 0.0335693 + 0.0181250i
\(596\) 2.48904 0.166923i 0.101955 0.00683742i
\(597\) 1.47950 2.56256i 0.0605518 0.104879i
\(598\) −22.9255 + 20.5831i −0.937493 + 0.841706i
\(599\) −1.58315 8.97847i −0.0646856 0.366850i −0.999918 0.0128156i \(-0.995921\pi\)
0.935232 0.354035i \(-0.115191\pi\)
\(600\) −2.25848 + 0.778683i −0.0922019 + 0.0317896i
\(601\) 12.0081 6.93289i 0.489822 0.282799i −0.234679 0.972073i \(-0.575404\pi\)
0.724500 + 0.689274i \(0.242071\pi\)
\(602\) −5.36668 1.75220i −0.218730 0.0714143i
\(603\) −7.20806 19.8040i −0.293535 0.806481i
\(604\) −33.1544 + 31.8347i −1.34903 + 1.29533i
\(605\) −22.7299 7.54619i −0.924101 0.306796i
\(606\) 0.710790 + 1.76651i 0.0288739 + 0.0717597i
\(607\) 0.0255150i 0.00103562i 1.00000 0.000517812i \(0.000164825\pi\)
−1.00000 0.000517812i \(0.999835\pi\)
\(608\) 18.6847 16.0898i 0.757764 0.652528i
\(609\) −0.132525 −0.00537020
\(610\) 15.8348 15.0543i 0.641132 0.609529i
\(611\) 7.71239 + 6.47147i 0.312010 + 0.261808i
\(612\) 4.85878 + 5.06020i 0.196405 + 0.204546i
\(613\) 11.9906 + 32.9440i 0.484297 + 1.33059i 0.905776 + 0.423757i \(0.139289\pi\)
−0.421479 + 0.906838i \(0.638489\pi\)
\(614\) −1.97676 + 6.05446i −0.0797755 + 0.244338i
\(615\) −1.28113 1.01417i −0.0516603 0.0408953i
\(616\) 0.489062 + 0.220255i 0.0197049 + 0.00887432i
\(617\) −14.8841 + 2.62446i −0.599210 + 0.105657i −0.465022 0.885299i \(-0.653954\pi\)
−0.134188 + 0.990956i \(0.542842\pi\)
\(618\) −1.77051 + 1.58961i −0.0712202 + 0.0639434i
\(619\) 34.3479 + 19.8308i 1.38056 + 0.797066i 0.992225 0.124454i \(-0.0397178\pi\)
0.388333 + 0.921519i \(0.373051\pi\)
\(620\) 26.7107 12.7237i 1.07273 0.510995i
\(621\) −3.71888 4.43199i −0.149234 0.177850i
\(622\) 28.0945 35.8539i 1.12649 1.43761i
\(623\) −0.609690 + 1.67511i −0.0244267 + 0.0671119i
\(624\) 2.56445 + 0.104193i 0.102660 + 0.00417104i
\(625\) −24.3130 5.82062i −0.972519 0.232825i
\(626\) −13.6164 + 8.48150i −0.544220 + 0.338989i
\(627\) −0.260573 0.298272i −0.0104063 0.0119118i
\(628\) 24.7297 + 12.1488i 0.986821 + 0.484791i
\(629\) −0.899278 0.158567i −0.0358565 0.00632248i
\(630\) −0.776311 3.22057i −0.0309290 0.128311i
\(631\) −3.46482 + 9.51953i −0.137932 + 0.378966i −0.989357 0.145511i \(-0.953517\pi\)
0.851424 + 0.524478i \(0.175739\pi\)
\(632\) −18.8246 + 9.08196i −0.748803 + 0.361261i
\(633\) 1.14165 + 1.36056i 0.0453765 + 0.0540776i
\(634\) 5.60924 10.5133i 0.222771 0.417535i
\(635\) −34.8858 5.13024i −1.38440 0.203588i
\(636\) 0.415169 1.43244i 0.0164625 0.0568000i
\(637\) −4.53511 25.7199i −0.179688 1.01906i
\(638\) 1.69180 0.0566648i 0.0669788 0.00224338i
\(639\) −10.6300 18.4117i −0.420515 0.728354i
\(640\) 24.4290 6.57433i 0.965643 0.259873i
\(641\) −8.54858 23.4870i −0.337649 0.927682i −0.986060 0.166392i \(-0.946788\pi\)
0.648411 0.761290i \(-0.275434\pi\)
\(642\) 0.560350 + 2.65484i 0.0221153 + 0.104778i
\(643\) −33.0725 27.7511i −1.30425 1.09440i −0.989394 0.145260i \(-0.953598\pi\)
−0.314860 0.949138i \(-0.601957\pi\)
\(644\) 3.26501 + 2.38642i 0.128659 + 0.0940380i
\(645\) 1.57683 + 3.97568i 0.0620874 + 0.156542i
\(646\) 3.96945 + 6.09864i 0.156176 + 0.239948i
\(647\) 4.50838 0.177243 0.0886214 0.996065i \(-0.471754\pi\)
0.0886214 + 0.996065i \(0.471754\pi\)
\(648\) 1.83067 24.6639i 0.0719155 0.968890i
\(649\) 1.16099 1.38361i 0.0455728 0.0543115i
\(650\) 22.0515 + 15.3338i 0.864929 + 0.601441i
\(651\) −0.134755 0.370238i −0.00528148 0.0145108i
\(652\) 6.46995 + 26.2683i 0.253383 + 1.02875i
\(653\) −22.1636 + 12.7961i −0.867327 + 0.500752i −0.866459 0.499248i \(-0.833610\pi\)
−0.000868020 1.00000i \(0.500276\pi\)
\(654\) −1.25731 + 0.0421122i −0.0491647 + 0.00164672i
\(655\) 31.2988 19.2808i 1.22294 0.753365i
\(656\) 12.7926 + 11.6512i 0.499467 + 0.454904i
\(657\) 29.3422 + 16.9407i 1.14475 + 0.660921i
\(658\) 0.622081 1.16595i 0.0242513 0.0454536i
\(659\) −19.1139 + 16.0385i −0.744573 + 0.624771i −0.934061 0.357112i \(-0.883761\pi\)
0.189489 + 0.981883i \(0.439317\pi\)
\(660\) −0.108393 0.391627i −0.00421919 0.0152440i
\(661\) −16.7028 + 45.8904i −0.649662 + 1.78493i −0.0306753 + 0.999529i \(0.509766\pi\)
−0.618986 + 0.785402i \(0.712456\pi\)
\(662\) −5.20384 + 36.6482i −0.202253 + 1.42437i
\(663\) −0.131523 + 0.745906i −0.00510794 + 0.0289686i
\(664\) 4.30055 0.433424i 0.166894 0.0168201i
\(665\) −0.166358 3.43225i −0.00645110 0.133097i
\(666\) 1.71872 + 2.75927i 0.0665990 + 0.106919i
\(667\) 12.5692 + 2.21628i 0.486680 + 0.0858148i
\(668\) −11.2635 25.4936i −0.435798 0.986376i
\(669\) −1.68013 0.611518i −0.0649576 0.0236426i
\(670\) 6.35028 21.5105i 0.245333 0.831024i
\(671\) 2.38886 + 2.84693i 0.0922208 + 0.109904i
\(672\) −0.0561352 0.332184i −0.00216546 0.0128143i
\(673\) 13.7919 23.8883i 0.531640 0.920827i −0.467678 0.883899i \(-0.654909\pi\)
0.999318 0.0369281i \(-0.0117573\pi\)
\(674\) −18.5584 + 16.6622i −0.714842 + 0.641804i
\(675\) −3.01643 + 4.04218i −0.116102 + 0.155584i
\(676\) −1.59013 2.37201i −0.0611587 0.0912313i
\(677\) −18.5954 32.2082i −0.714679 1.23786i −0.963083 0.269204i \(-0.913239\pi\)
0.248404 0.968657i \(-0.420094\pi\)
\(678\) −1.12605 + 3.44890i −0.0432458 + 0.132454i
\(679\) −3.98971 + 1.45213i −0.153111 + 0.0557278i
\(680\) 0.960150 + 7.40371i 0.0368201 + 0.283919i
\(681\) −0.233882 0.196250i −0.00896238 0.00752033i
\(682\) 1.87857 + 4.66877i 0.0719341 + 0.178776i
\(683\) 36.9807i 1.41503i 0.706700 + 0.707513i \(0.250183\pi\)
−0.706700 + 0.707513i \(0.749817\pi\)
\(684\) 6.71446 25.0193i 0.256734 0.956637i
\(685\) 16.9543 + 42.7473i 0.647791 + 1.63329i
\(686\) −6.41818 + 2.58248i −0.245047 + 0.0985995i
\(687\) −0.0811380 + 0.0966965i −0.00309561 + 0.00368920i
\(688\) −13.7502 43.1542i −0.524220 1.64524i
\(689\) −15.7564 + 5.73487i −0.600272 + 0.218481i
\(690\) −0.189843 3.05794i −0.00722720 0.116414i
\(691\) −7.97564 + 4.60474i −0.303408 + 0.175172i −0.643973 0.765049i \(-0.722715\pi\)
0.340565 + 0.940221i \(0.389382\pi\)
\(692\) 7.87293 + 11.7442i 0.299284 + 0.446446i
\(693\) 0.554936 0.0978501i 0.0210803 0.00371702i
\(694\) −7.08390 + 6.36011i −0.268901 + 0.241426i
\(695\) −17.2493 2.53666i −0.654304 0.0962209i
\(696\) −0.621254 0.862817i −0.0235486 0.0327050i
\(697\) −3.91167 + 3.28228i −0.148165 + 0.124325i
\(698\) −5.87030 4.59987i −0.222194 0.174108i
\(699\) 1.86536 + 0.678936i 0.0705545 + 0.0256797i
\(700\) 1.37159 3.24780i 0.0518413 0.122755i
\(701\) 1.90882 10.8255i 0.0720952 0.408872i −0.927307 0.374302i \(-0.877882\pi\)
0.999402 0.0345708i \(-0.0110064\pi\)
\(702\) 4.59933 2.86487i 0.173590 0.108128i
\(703\) 1.21612 + 3.14499i 0.0458669 + 0.118615i
\(704\) 0.858646 + 4.21659i 0.0323614 + 0.158919i
\(705\) −0.980608 + 0.201899i −0.0369318 + 0.00760395i
\(706\) 39.1096 + 5.55335i 1.47191 + 0.209003i
\(707\) −2.64063 0.961110i −0.0993111 0.0361463i
\(708\) −1.12790 0.121798i −0.0423890 0.00457746i
\(709\) −15.2568 + 12.8020i −0.572982 + 0.480789i −0.882634 0.470061i \(-0.844232\pi\)
0.309652 + 0.950850i \(0.399788\pi\)
\(710\) 2.54065 22.4821i 0.0953488 0.843736i
\(711\) −10.9790 + 19.0161i −0.411743 + 0.713160i
\(712\) −13.7640 + 3.88317i −0.515829 + 0.145528i
\(713\) 6.58901 + 37.3681i 0.246760 + 1.39945i
\(714\) 0.0993642 0.00332810i 0.00371861 0.000124551i
\(715\) −2.83562 + 3.58205i −0.106046 + 0.133961i
\(716\) −8.59683 34.9035i −0.321279 1.30441i
\(717\) −1.59055 + 0.578914i −0.0594003 + 0.0216200i
\(718\) 5.79446 1.22302i 0.216247 0.0456428i
\(719\) 20.6011 24.5514i 0.768290 0.915613i −0.230051 0.973178i \(-0.573889\pi\)
0.998342 + 0.0575658i \(0.0183339\pi\)
\(720\) 17.3286 20.1517i 0.645797 0.751008i
\(721\) 3.51146i 0.130774i
\(722\) 11.6947 24.1916i 0.435233 0.900318i
\(723\) −3.06462 −0.113975
\(724\) 6.55572 8.96930i 0.243641 0.333341i
\(725\) −0.634326 11.1082i −0.0235583 0.412549i
\(726\) −2.50356 + 0.528420i −0.0929159 + 0.0196115i
\(727\) 39.7704 14.4752i 1.47500 0.536857i 0.525548 0.850764i \(-0.323860\pi\)
0.949454 + 0.313908i \(0.101638\pi\)
\(728\) −2.64276 + 2.71335i −0.0979472 + 0.100563i
\(729\) −12.7356 22.0588i −0.471690 0.816992i
\(730\) 14.4081 + 33.0534i 0.533266 + 1.22336i
\(731\) 13.1629 2.32098i 0.486848 0.0858444i
\(732\) 0.649803 2.24199i 0.0240174 0.0828664i
\(733\) 14.9446 + 8.62829i 0.551993 + 0.318693i 0.749925 0.661522i \(-0.230089\pi\)
−0.197932 + 0.980216i \(0.563423\pi\)
\(734\) −3.48790 + 6.53729i −0.128741 + 0.241296i
\(735\) 2.28530 + 1.23390i 0.0842944 + 0.0455129i
\(736\) −0.231199 + 32.4442i −0.00852212 + 1.19591i
\(737\) 3.58489 + 1.30479i 0.132051 + 0.0480627i
\(738\) 17.9977 + 2.55558i 0.662506 + 0.0940722i
\(739\) −41.0588 7.23978i −1.51037 0.266320i −0.643732 0.765251i \(-0.722615\pi\)
−0.866641 + 0.498932i \(0.833726\pi\)
\(740\) −0.273187 + 3.44872i −0.0100426 + 0.126778i
\(741\) 2.60861 1.00871i 0.0958297 0.0370560i
\(742\) 1.16367 + 1.86818i 0.0427197 + 0.0685831i
\(743\) 8.97006 + 1.58166i 0.329080 + 0.0580256i 0.335747 0.941952i \(-0.391011\pi\)
−0.00666746 + 0.999978i \(0.502122\pi\)
\(744\) 1.77875 2.61294i 0.0652122 0.0957950i
\(745\) 2.78795 0.0795369i 0.102142 0.00291401i
\(746\) 18.6576 + 14.6198i 0.683104 + 0.535269i
\(747\) 3.47855 2.91885i 0.127274 0.106795i
\(748\) −1.26704 + 0.0849717i −0.0463276 + 0.00310687i
\(749\) −3.46780 2.00213i −0.126711 0.0731564i
\(750\) −2.55665 + 0.772908i −0.0933555 + 0.0282226i
\(751\) 8.02258 + 45.4983i 0.292748 + 1.66026i 0.676217 + 0.736702i \(0.263618\pi\)
−0.383469 + 0.923554i \(0.625271\pi\)
\(752\) 10.5072 1.41566i 0.383159 0.0516238i
\(753\) 1.56026 + 2.70245i 0.0568591 + 0.0984829i
\(754\) −3.71006 + 11.3632i −0.135112 + 0.413825i
\(755\) −38.4082 + 34.1413i −1.39782 + 1.24253i
\(756\) −0.492622 0.513044i −0.0179165 0.0186592i
\(757\) −1.50549 + 1.79418i −0.0547181 + 0.0652105i −0.792709 0.609600i \(-0.791330\pi\)
0.737991 + 0.674810i \(0.235775\pi\)
\(758\) 9.40266 3.78334i 0.341520 0.137417i
\(759\) 0.521145 0.0189163
\(760\) 21.5660 17.1728i 0.782283 0.622923i
\(761\) −37.7494 −1.36841 −0.684207 0.729288i \(-0.739851\pi\)
−0.684207 + 0.729288i \(0.739851\pi\)
\(762\) −3.49487 + 1.40623i −0.126606 + 0.0509423i
\(763\) 1.19336 1.42220i 0.0432027 0.0514870i
\(764\) 12.2139 + 12.7202i 0.441883 + 0.460201i
\(765\) 5.21084 + 5.86207i 0.188398 + 0.211944i
\(766\) −14.6322 + 44.8157i −0.528682 + 1.61926i
\(767\) 6.37730 + 11.0458i 0.230271 + 0.398841i