Properties

Label 380.2.bb.a.59.5
Level $380$
Weight $2$
Character 380.59
Analytic conductor $3.034$
Analytic rank $0$
Dimension $336$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(59,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.59");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(336\)
Relative dimension: \(56\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 59.5
Character \(\chi\) \(=\) 380.59
Dual form 380.2.bb.a.219.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34415 - 0.439613i) q^{2} +(-1.17302 + 1.39795i) q^{3} +(1.61348 + 1.18181i) q^{4} +(0.426294 + 2.19506i) q^{5} +(2.19126 - 1.36338i) q^{6} +(1.36812 + 2.36965i) q^{7} +(-1.64922 - 2.29784i) q^{8} +(-0.0573416 - 0.325200i) q^{9} +O(q^{10})\) \(q+(-1.34415 - 0.439613i) q^{2} +(-1.17302 + 1.39795i) q^{3} +(1.61348 + 1.18181i) q^{4} +(0.426294 + 2.19506i) q^{5} +(2.19126 - 1.36338i) q^{6} +(1.36812 + 2.36965i) q^{7} +(-1.64922 - 2.29784i) q^{8} +(-0.0573416 - 0.325200i) q^{9} +(0.391971 - 3.13789i) q^{10} +(2.24016 + 1.29335i) q^{11} +(-3.54475 + 0.869277i) q^{12} +(0.527993 - 0.443038i) q^{13} +(-0.797230 - 3.78661i) q^{14} +(-3.56862 - 1.97890i) q^{15} +(1.20665 + 3.81366i) q^{16} +(-0.544629 - 0.0960328i) q^{17} +(-0.0658864 + 0.462326i) q^{18} +(1.26967 - 4.16989i) q^{19} +(-1.90632 + 4.04548i) q^{20} +(-4.91747 - 0.867083i) q^{21} +(-2.44253 - 2.72326i) q^{22} +(0.366941 + 0.133555i) q^{23} +(5.14682 + 0.389876i) q^{24} +(-4.63655 + 1.87148i) q^{25} +(-0.904467 + 0.363398i) q^{26} +(-4.21932 - 2.43603i) q^{27} +(-0.593046 + 5.44025i) q^{28} +(-8.63898 + 1.52328i) q^{29} +(3.92681 + 4.22875i) q^{30} +(4.91391 + 8.51114i) q^{31} +(0.0546187 - 5.65659i) q^{32} +(-4.43578 + 1.61449i) q^{33} +(0.689846 + 0.368508i) q^{34} +(-4.61830 + 4.01327i) q^{35} +(0.291806 - 0.592472i) q^{36} +9.48947 q^{37} +(-3.53976 + 5.04679i) q^{38} +1.25780i q^{39} +(4.34083 - 4.59969i) q^{40} +(-3.19809 + 3.81133i) q^{41} +(6.22864 + 3.32727i) q^{42} +(-2.46866 + 0.898519i) q^{43} +(2.08595 + 4.73425i) q^{44} +(0.689389 - 0.264499i) q^{45} +(-0.434511 - 0.340830i) q^{46} +(-0.347487 - 1.97070i) q^{47} +(-6.74670 - 2.78666i) q^{48} +(-0.243505 + 0.421764i) q^{49} +(7.05494 - 0.477266i) q^{50} +(0.773107 - 0.648714i) q^{51} +(1.37549 - 0.0908469i) q^{52} +(-9.32287 - 3.39325i) q^{53} +(4.60050 + 5.12926i) q^{54} +(-1.88402 + 5.46862i) q^{55} +(3.18875 - 7.05181i) q^{56} +(4.33993 + 6.66626i) q^{57} +(12.2817 + 1.75028i) q^{58} +(1.22506 - 6.94767i) q^{59} +(-3.41922 - 7.41035i) q^{60} +(-1.23607 - 0.449894i) q^{61} +(-2.86343 - 13.6005i) q^{62} +(0.692162 - 0.580793i) q^{63} +(-2.56012 + 7.57930i) q^{64} +(1.19757 + 0.970109i) q^{65} +(6.67210 - 0.220096i) q^{66} +(3.08193 - 0.543427i) q^{67} +(-0.765256 - 0.798596i) q^{68} +(-0.617130 + 0.356300i) q^{69} +(7.97198 - 3.36418i) q^{70} +(3.62520 - 1.31947i) q^{71} +(-0.652689 + 0.668090i) q^{72} +(5.31372 - 6.33264i) q^{73} +(-12.7553 - 4.17169i) q^{74} +(2.82251 - 8.67691i) q^{75} +(6.97660 - 5.22753i) q^{76} +7.07786i q^{77} +(0.552943 - 1.69067i) q^{78} +(-9.44434 - 7.92474i) q^{79} +(-7.85681 + 4.27440i) q^{80} +(9.28567 - 3.37971i) q^{81} +(5.97422 - 3.71709i) q^{82} +(-0.643215 - 1.11408i) q^{83} +(-6.90952 - 7.21055i) q^{84} +(-0.0213748 - 1.23643i) q^{85} +(3.71325 - 0.122491i) q^{86} +(8.00419 - 13.8637i) q^{87} +(-0.722598 - 7.28055i) q^{88} +(7.29789 + 8.69728i) q^{89} +(-1.04292 + 0.0524626i) q^{90} +(1.77221 + 0.645030i) q^{91} +(0.434215 + 0.649144i) q^{92} +(-17.6622 - 3.11432i) q^{93} +(-0.399268 + 2.80167i) q^{94} +(9.69439 + 1.00939i) q^{95} +(7.84354 + 6.71162i) q^{96} +(-1.36674 + 7.75117i) q^{97} +(0.512720 - 0.459866i) q^{98} +(0.292145 - 0.802662i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9} - 15 q^{10} + 18 q^{14} - 6 q^{16} - 42 q^{20} + 12 q^{21} + 12 q^{24} - 12 q^{25} + 18 q^{26} - 24 q^{29} - 24 q^{30} + 12 q^{34} - 6 q^{36} - 48 q^{40} - 12 q^{41} - 36 q^{44} - 6 q^{45} - 18 q^{46} - 108 q^{49} - 36 q^{50} + 36 q^{54} - 30 q^{60} - 24 q^{61} + 18 q^{64} - 18 q^{65} - 48 q^{66} - 180 q^{69} - 21 q^{70} - 30 q^{74} - 48 q^{76} + 3 q^{80} - 60 q^{81} + 90 q^{84} - 36 q^{85} + 102 q^{86} - 48 q^{89} - 78 q^{90} + 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34415 0.439613i −0.950458 0.310853i
\(3\) −1.17302 + 1.39795i −0.677241 + 0.807104i −0.989750 0.142811i \(-0.954386\pi\)
0.312509 + 0.949915i \(0.398830\pi\)
\(4\) 1.61348 + 1.18181i 0.806741 + 0.590905i
\(5\) 0.426294 + 2.19506i 0.190645 + 0.981659i
\(6\) 2.19126 1.36338i 0.894580 0.556596i
\(7\) 1.36812 + 2.36965i 0.517101 + 0.895645i 0.999803 + 0.0198602i \(0.00632211\pi\)
−0.482702 + 0.875785i \(0.660345\pi\)
\(8\) −1.64922 2.29784i −0.583089 0.812409i
\(9\) −0.0573416 0.325200i −0.0191139 0.108400i
\(10\) 0.391971 3.13789i 0.123952 0.992288i
\(11\) 2.24016 + 1.29335i 0.675433 + 0.389961i 0.798132 0.602483i \(-0.205822\pi\)
−0.122699 + 0.992444i \(0.539155\pi\)
\(12\) −3.54475 + 0.869277i −1.02328 + 0.250939i
\(13\) 0.527993 0.443038i 0.146439 0.122877i −0.566625 0.823976i \(-0.691751\pi\)
0.713064 + 0.701099i \(0.247307\pi\)
\(14\) −0.797230 3.78661i −0.213069 1.01202i
\(15\) −3.56862 1.97890i −0.921413 0.510950i
\(16\) 1.20665 + 3.81366i 0.301662 + 0.953415i
\(17\) −0.544629 0.0960328i −0.132092 0.0232914i 0.107211 0.994236i \(-0.465808\pi\)
−0.239303 + 0.970945i \(0.576919\pi\)
\(18\) −0.0658864 + 0.462326i −0.0155296 + 0.108971i
\(19\) 1.26967 4.16989i 0.291281 0.956637i
\(20\) −1.90632 + 4.04548i −0.426267 + 0.904597i
\(21\) −4.91747 0.867083i −1.07308 0.189213i
\(22\) −2.44253 2.72326i −0.520750 0.580602i
\(23\) 0.366941 + 0.133555i 0.0765124 + 0.0278482i 0.379993 0.924989i \(-0.375926\pi\)
−0.303480 + 0.952838i \(0.598149\pi\)
\(24\) 5.14682 + 0.389876i 1.05059 + 0.0795831i
\(25\) −4.63655 + 1.87148i −0.927309 + 0.374296i
\(26\) −0.904467 + 0.363398i −0.177381 + 0.0712683i
\(27\) −4.21932 2.43603i −0.812009 0.468814i
\(28\) −0.593046 + 5.44025i −0.112075 + 1.02811i
\(29\) −8.63898 + 1.52328i −1.60422 + 0.282867i −0.902857 0.429940i \(-0.858535\pi\)
−0.701360 + 0.712807i \(0.747424\pi\)
\(30\) 3.92681 + 4.22875i 0.716935 + 0.772060i
\(31\) 4.91391 + 8.51114i 0.882564 + 1.52865i 0.848481 + 0.529226i \(0.177518\pi\)
0.0340829 + 0.999419i \(0.489149\pi\)
\(32\) 0.0546187 5.65659i 0.00965531 0.999953i
\(33\) −4.43578 + 1.61449i −0.772170 + 0.281047i
\(34\) 0.689846 + 0.368508i 0.118308 + 0.0631987i
\(35\) −4.61830 + 4.01327i −0.780636 + 0.678367i
\(36\) 0.291806 0.592472i 0.0486343 0.0987453i
\(37\) 9.48947 1.56006 0.780030 0.625743i \(-0.215204\pi\)
0.780030 + 0.625743i \(0.215204\pi\)
\(38\) −3.53976 + 5.04679i −0.574224 + 0.818698i
\(39\) 1.25780i 0.201409i
\(40\) 4.34083 4.59969i 0.686346 0.727275i
\(41\) −3.19809 + 3.81133i −0.499457 + 0.595230i −0.955596 0.294678i \(-0.904787\pi\)
0.456139 + 0.889908i \(0.349232\pi\)
\(42\) 6.22864 + 3.32727i 0.961101 + 0.513409i
\(43\) −2.46866 + 0.898519i −0.376467 + 0.137023i −0.523322 0.852135i \(-0.675307\pi\)
0.146854 + 0.989158i \(0.453085\pi\)
\(44\) 2.08595 + 4.73425i 0.314469 + 0.713714i
\(45\) 0.689389 0.264499i 0.102768 0.0394292i
\(46\) −0.434511 0.340830i −0.0640651 0.0502527i
\(47\) −0.347487 1.97070i −0.0506862 0.287456i 0.948920 0.315517i \(-0.102178\pi\)
−0.999606 + 0.0280610i \(0.991067\pi\)
\(48\) −6.74670 2.78666i −0.973803 0.402219i
\(49\) −0.243505 + 0.421764i −0.0347865 + 0.0602519i
\(50\) 7.05494 0.477266i 0.997720 0.0674957i
\(51\) 0.773107 0.648714i 0.108257 0.0908381i
\(52\) 1.37549 0.0908469i 0.190747 0.0125982i
\(53\) −9.32287 3.39325i −1.28059 0.466098i −0.389966 0.920829i \(-0.627513\pi\)
−0.890629 + 0.454731i \(0.849735\pi\)
\(54\) 4.60050 + 5.12926i 0.626049 + 0.698003i
\(55\) −1.88402 + 5.46862i −0.254041 + 0.737388i
\(56\) 3.18875 7.05181i 0.426114 0.942337i
\(57\) 4.33993 + 6.66626i 0.574838 + 0.882968i
\(58\) 12.2817 + 1.75028i 1.61267 + 0.229823i
\(59\) 1.22506 6.94767i 0.159490 0.904510i −0.795076 0.606510i \(-0.792569\pi\)
0.954566 0.298000i \(-0.0963197\pi\)
\(60\) −3.41922 7.41035i −0.441419 0.956672i
\(61\) −1.23607 0.449894i −0.158263 0.0576031i 0.261674 0.965156i \(-0.415726\pi\)
−0.419937 + 0.907553i \(0.637948\pi\)
\(62\) −2.86343 13.6005i −0.363656 1.72726i
\(63\) 0.692162 0.580793i 0.0872042 0.0731730i
\(64\) −2.56012 + 7.57930i −0.320015 + 0.947412i
\(65\) 1.19757 + 0.970109i 0.148541 + 0.120327i
\(66\) 6.67210 0.220096i 0.821279 0.0270919i
\(67\) 3.08193 0.543427i 0.376518 0.0663902i 0.0178130 0.999841i \(-0.494330\pi\)
0.358705 + 0.933451i \(0.383219\pi\)
\(68\) −0.765256 0.798596i −0.0928010 0.0968440i
\(69\) −0.617130 + 0.356300i −0.0742938 + 0.0428935i
\(70\) 7.97198 3.36418i 0.952834 0.402096i
\(71\) 3.62520 1.31947i 0.430233 0.156592i −0.117821 0.993035i \(-0.537591\pi\)
0.548054 + 0.836443i \(0.315369\pi\)
\(72\) −0.652689 + 0.668090i −0.0769201 + 0.0787351i
\(73\) 5.31372 6.33264i 0.621924 0.741180i −0.359476 0.933154i \(-0.617045\pi\)
0.981400 + 0.191974i \(0.0614890\pi\)
\(74\) −12.7553 4.17169i −1.48277 0.484949i
\(75\) 2.82251 8.67691i 0.325916 1.00192i
\(76\) 6.97660 5.22753i 0.800271 0.599639i
\(77\) 7.07786i 0.806597i
\(78\) 0.552943 1.69067i 0.0626084 0.191430i
\(79\) −9.44434 7.92474i −1.06257 0.891603i −0.0682124 0.997671i \(-0.521730\pi\)
−0.994359 + 0.106068i \(0.966174\pi\)
\(80\) −7.85681 + 4.27440i −0.878419 + 0.477892i
\(81\) 9.28567 3.37971i 1.03174 0.375523i
\(82\) 5.97422 3.71709i 0.659742 0.410483i
\(83\) −0.643215 1.11408i −0.0706020 0.122286i 0.828563 0.559895i \(-0.189159\pi\)
−0.899165 + 0.437609i \(0.855825\pi\)
\(84\) −6.90952 7.21055i −0.753891 0.786735i
\(85\) −0.0213748 1.23643i −0.00231842 0.134110i
\(86\) 3.71325 0.122491i 0.400410 0.0132085i
\(87\) 8.00419 13.8637i 0.858139 1.48634i
\(88\) −0.722598 7.28055i −0.0770292 0.776109i
\(89\) 7.29789 + 8.69728i 0.773574 + 0.921910i 0.998624 0.0524373i \(-0.0166990\pi\)
−0.225050 + 0.974347i \(0.572255\pi\)
\(90\) −1.04292 + 0.0524626i −0.109933 + 0.00553004i
\(91\) 1.77221 + 0.645030i 0.185778 + 0.0676175i
\(92\) 0.434215 + 0.649144i 0.0452700 + 0.0676779i
\(93\) −17.6622 3.11432i −1.83148 0.322940i
\(94\) −0.399268 + 2.80167i −0.0411814 + 0.288971i
\(95\) 9.69439 + 1.00939i 0.994623 + 0.103561i
\(96\) 7.84354 + 6.71162i 0.800528 + 0.685002i
\(97\) −1.36674 + 7.75117i −0.138772 + 0.787012i 0.833387 + 0.552689i \(0.186398\pi\)
−0.972159 + 0.234323i \(0.924713\pi\)
\(98\) 0.512720 0.459866i 0.0517926 0.0464535i
\(99\) 0.292145 0.802662i 0.0293617 0.0806706i
\(100\) −9.69272 2.45992i −0.969272 0.245992i
\(101\) 5.70389 4.78613i 0.567558 0.476238i −0.313276 0.949662i \(-0.601427\pi\)
0.880835 + 0.473424i \(0.156982\pi\)
\(102\) −1.32435 + 0.532101i −0.131131 + 0.0526859i
\(103\) 9.76852 + 5.63986i 0.962521 + 0.555712i 0.896948 0.442136i \(-0.145779\pi\)
0.0655730 + 0.997848i \(0.479112\pi\)
\(104\) −1.88881 0.482572i −0.185213 0.0473201i
\(105\) −0.192993 11.1638i −0.0188342 1.08947i
\(106\) 11.0396 + 8.65949i 1.07226 + 0.841084i
\(107\) −8.30629 + 4.79564i −0.802999 + 0.463612i −0.844519 0.535526i \(-0.820113\pi\)
0.0415197 + 0.999138i \(0.486780\pi\)
\(108\) −3.92888 8.91693i −0.378056 0.858032i
\(109\) −4.54408 12.4848i −0.435244 1.19582i −0.942552 0.334059i \(-0.891582\pi\)
0.507308 0.861765i \(-0.330641\pi\)
\(110\) 4.93648 6.52241i 0.470675 0.621887i
\(111\) −11.1313 + 13.2658i −1.05654 + 1.25913i
\(112\) −7.38622 + 8.07688i −0.697932 + 0.763193i
\(113\) 16.7648 1.57710 0.788551 0.614970i \(-0.210832\pi\)
0.788551 + 0.614970i \(0.210832\pi\)
\(114\) −2.90295 10.8684i −0.271886 1.01791i
\(115\) −0.136737 + 0.862390i −0.0127508 + 0.0804182i
\(116\) −15.7391 7.75184i −1.46134 0.719741i
\(117\) −0.174352 0.146299i −0.0161189 0.0135253i
\(118\) −4.70095 + 8.80017i −0.432758 + 0.810121i
\(119\) −0.517554 1.42197i −0.0474441 0.130351i
\(120\) 1.33826 + 11.4638i 0.122166 + 1.04649i
\(121\) −2.15447 3.73165i −0.195861 0.339241i
\(122\) 1.46369 + 1.14812i 0.132516 + 0.103946i
\(123\) −1.57663 8.94150i −0.142160 0.806228i
\(124\) −2.13005 + 19.5399i −0.191285 + 1.75473i
\(125\) −6.08454 9.37968i −0.544217 0.838944i
\(126\) −1.18569 + 0.476390i −0.105630 + 0.0424402i
\(127\) 13.1642 + 15.6884i 1.16813 + 1.39212i 0.903944 + 0.427651i \(0.140659\pi\)
0.264186 + 0.964472i \(0.414897\pi\)
\(128\) 6.77315 9.06226i 0.598667 0.800998i
\(129\) 1.63970 4.50503i 0.144367 0.396646i
\(130\) −1.18325 1.83044i −0.103778 0.160540i
\(131\) 0.182318 + 0.0321476i 0.0159292 + 0.00280875i 0.181607 0.983371i \(-0.441870\pi\)
−0.165678 + 0.986180i \(0.552981\pi\)
\(132\) −9.06507 2.63730i −0.789013 0.229547i
\(133\) 11.6182 2.69624i 1.00743 0.233793i
\(134\) −4.38147 0.624407i −0.378502 0.0539405i
\(135\) 3.54855 10.3001i 0.305410 0.886493i
\(136\) 0.677547 + 1.40985i 0.0580992 + 0.120894i
\(137\) 0.245425 0.674299i 0.0209681 0.0576092i −0.928767 0.370664i \(-0.879130\pi\)
0.949735 + 0.313055i \(0.101352\pi\)
\(138\) 0.986150 0.207623i 0.0839467 0.0176741i
\(139\) −2.54609 3.03431i −0.215956 0.257367i 0.647180 0.762337i \(-0.275948\pi\)
−0.863137 + 0.504970i \(0.831504\pi\)
\(140\) −12.1945 + 1.01738i −1.03062 + 0.0859842i
\(141\) 3.16254 + 1.82589i 0.266334 + 0.153768i
\(142\) −5.45287 + 0.179876i −0.457595 + 0.0150949i
\(143\) 1.75579 0.309593i 0.146827 0.0258895i
\(144\) 1.17101 0.611083i 0.0975844 0.0509236i
\(145\) −7.02644 18.3137i −0.583514 1.52087i
\(146\) −9.92635 + 6.17605i −0.821510 + 0.511134i
\(147\) −0.303967 0.835142i −0.0250708 0.0688814i
\(148\) 15.3111 + 11.2148i 1.25856 + 0.921847i
\(149\) 10.7942 + 9.05743i 0.884297 + 0.742013i 0.967058 0.254556i \(-0.0819293\pi\)
−0.0827608 + 0.996569i \(0.526374\pi\)
\(150\) −7.60836 + 10.4223i −0.621220 + 0.850974i
\(151\) 15.0663 1.22608 0.613038 0.790054i \(-0.289947\pi\)
0.613038 + 0.790054i \(0.289947\pi\)
\(152\) −11.6757 + 3.95959i −0.947023 + 0.321165i
\(153\) 0.182620i 0.0147640i
\(154\) 3.11152 9.51371i 0.250733 0.766636i
\(155\) −16.5877 + 14.4146i −1.33235 + 1.15780i
\(156\) −1.48648 + 2.02943i −0.119013 + 0.162484i
\(157\) 6.52871 + 17.9375i 0.521048 + 1.43157i 0.869355 + 0.494187i \(0.164534\pi\)
−0.348307 + 0.937380i \(0.613243\pi\)
\(158\) 9.21080 + 14.8039i 0.732772 + 1.17773i
\(159\) 15.6794 9.05253i 1.24346 0.717913i
\(160\) 12.4398 2.29148i 0.983454 0.181157i
\(161\) 0.185539 + 1.05224i 0.0146225 + 0.0829283i
\(162\) −13.9671 + 0.460739i −1.09736 + 0.0361991i
\(163\) −7.60887 + 13.1789i −0.595972 + 1.03225i 0.397437 + 0.917630i \(0.369900\pi\)
−0.993409 + 0.114625i \(0.963433\pi\)
\(164\) −9.66433 + 2.36998i −0.754657 + 0.185064i
\(165\) −5.43484 9.04853i −0.423102 0.704427i
\(166\) 0.374814 + 1.78026i 0.0290912 + 0.138175i
\(167\) −1.44630 + 3.97367i −0.111918 + 0.307492i −0.982989 0.183665i \(-0.941204\pi\)
0.871071 + 0.491157i \(0.163426\pi\)
\(168\) 6.11759 + 12.7296i 0.471983 + 0.982108i
\(169\) −2.17493 + 12.3347i −0.167303 + 0.948820i
\(170\) −0.514819 + 1.67134i −0.0394848 + 0.128186i
\(171\) −1.42885 0.173788i −0.109267 0.0132899i
\(172\) −5.04502 1.46775i −0.384679 0.111915i
\(173\) 0.635695 3.60521i 0.0483310 0.274099i −0.951060 0.309008i \(-0.900003\pi\)
0.999390 + 0.0349091i \(0.0111142\pi\)
\(174\) −16.8535 + 15.1161i −1.27766 + 1.14595i
\(175\) −10.7781 8.42660i −0.814749 0.636991i
\(176\) −2.22934 + 10.1038i −0.168043 + 0.761604i
\(177\) 8.27545 + 9.86230i 0.622021 + 0.741296i
\(178\) −5.98602 14.8987i −0.448671 1.11670i
\(179\) −10.1085 + 17.5085i −0.755546 + 1.30864i 0.189556 + 0.981870i \(0.439295\pi\)
−0.945102 + 0.326775i \(0.894038\pi\)
\(180\) 1.42490 + 0.387963i 0.106206 + 0.0289170i
\(181\) 21.1624 3.73150i 1.57299 0.277360i 0.681987 0.731364i \(-0.261116\pi\)
0.891000 + 0.454004i \(0.150005\pi\)
\(182\) −2.09855 1.64610i −0.155555 0.122017i
\(183\) 2.07886 1.20023i 0.153674 0.0887237i
\(184\) −0.298278 1.06343i −0.0219894 0.0783973i
\(185\) 4.04531 + 20.8299i 0.297417 + 1.53145i
\(186\) 22.3716 + 11.9506i 1.64036 + 0.876263i
\(187\) −1.09585 0.919527i −0.0801365 0.0672425i
\(188\) 1.76833 3.59035i 0.128969 0.261853i
\(189\) 13.3311i 0.969696i
\(190\) −12.5870 5.61855i −0.913155 0.407612i
\(191\) 6.21850i 0.449955i 0.974364 + 0.224977i \(0.0722308\pi\)
−0.974364 + 0.224977i \(0.927769\pi\)
\(192\) −7.59238 12.4695i −0.547933 0.899912i
\(193\) −10.5116 8.82024i −0.756638 0.634895i 0.180611 0.983555i \(-0.442192\pi\)
−0.937249 + 0.348660i \(0.886637\pi\)
\(194\) 5.24462 9.81791i 0.376542 0.704885i
\(195\) −2.76093 + 0.536191i −0.197715 + 0.0383974i
\(196\) −0.891336 + 0.392731i −0.0636669 + 0.0280522i
\(197\) 11.8514 6.84239i 0.844375 0.487500i −0.0143741 0.999897i \(-0.504576\pi\)
0.858749 + 0.512397i \(0.171242\pi\)
\(198\) −0.745548 + 0.950468i −0.0529838 + 0.0675468i
\(199\) −10.4631 + 1.84493i −0.741709 + 0.130783i −0.531720 0.846920i \(-0.678454\pi\)
−0.209990 + 0.977704i \(0.567343\pi\)
\(200\) 11.9471 + 7.56755i 0.844785 + 0.535106i
\(201\) −2.85547 + 4.94582i −0.201409 + 0.348851i
\(202\) −9.77093 + 3.92578i −0.687480 + 0.276217i
\(203\) −15.4288 18.3873i −1.08289 1.29054i
\(204\) 2.01405 0.133022i 0.141012 0.00931337i
\(205\) −9.72942 5.39523i −0.679532 0.376820i
\(206\) −10.6510 11.8752i −0.742091 0.827383i
\(207\) 0.0223913 0.126987i 0.00155630 0.00882624i
\(208\) 2.32670 + 1.47899i 0.161328 + 0.102550i
\(209\) 8.23739 7.69907i 0.569792 0.532556i
\(210\) −4.64832 + 15.0906i −0.320764 + 1.04135i
\(211\) 0.507885 2.88036i 0.0349643 0.198292i −0.962322 0.271912i \(-0.912344\pi\)
0.997286 + 0.0736198i \(0.0234551\pi\)
\(212\) −11.0321 16.4928i −0.757688 1.13273i
\(213\) −2.40788 + 6.61559i −0.164985 + 0.453293i
\(214\) 13.2731 2.79451i 0.907332 0.191029i
\(215\) −3.02467 5.03581i −0.206281 0.343440i
\(216\) 1.36101 + 13.7129i 0.0926050 + 0.933043i
\(217\) −13.4456 + 23.2885i −0.912749 + 1.58093i
\(218\) 0.619473 + 18.7790i 0.0419560 + 1.27188i
\(219\) 2.61962 + 14.8566i 0.177017 + 1.00391i
\(220\) −9.50271 + 6.59696i −0.640672 + 0.444767i
\(221\) −0.330106 + 0.190587i −0.0222054 + 0.0128203i
\(222\) 20.7939 12.9377i 1.39560 0.868323i
\(223\) −0.702531 1.93019i −0.0470450 0.129255i 0.913945 0.405838i \(-0.133020\pi\)
−0.960990 + 0.276583i \(0.910798\pi\)
\(224\) 13.4789 7.60947i 0.900596 0.508429i
\(225\) 0.874472 + 1.40049i 0.0582982 + 0.0933662i
\(226\) −22.5344 7.37002i −1.49897 0.490247i
\(227\) 12.0059i 0.796857i −0.917199 0.398428i \(-0.869556\pi\)
0.917199 0.398428i \(-0.130444\pi\)
\(228\) −0.875859 + 15.8849i −0.0580052 + 1.05200i
\(229\) 14.3495 0.948243 0.474122 0.880459i \(-0.342766\pi\)
0.474122 + 0.880459i \(0.342766\pi\)
\(230\) 0.562913 1.09907i 0.0371174 0.0724705i
\(231\) −9.89446 8.30244i −0.651008 0.546260i
\(232\) 17.7479 + 17.3387i 1.16520 + 1.13834i
\(233\) 3.31500 + 9.10788i 0.217173 + 0.596677i 0.999662 0.0259867i \(-0.00827274\pi\)
−0.782490 + 0.622664i \(0.786051\pi\)
\(234\) 0.170041 + 0.273295i 0.0111159 + 0.0178659i
\(235\) 4.17766 1.60285i 0.272521 0.104558i
\(236\) 10.1875 9.76215i 0.663147 0.635462i
\(237\) 22.1567 3.90683i 1.43923 0.253776i
\(238\) 0.0705555 + 2.13886i 0.00457344 + 0.138642i
\(239\) 7.14550 + 4.12545i 0.462204 + 0.266853i 0.712970 0.701194i \(-0.247349\pi\)
−0.250767 + 0.968048i \(0.580683\pi\)
\(240\) 3.24079 15.9973i 0.209192 1.03262i
\(241\) −9.16260 10.9196i −0.590215 0.703391i 0.385432 0.922736i \(-0.374052\pi\)
−0.975647 + 0.219345i \(0.929608\pi\)
\(242\) 1.25545 + 5.96302i 0.0807034 + 0.383318i
\(243\) −1.16857 + 3.21061i −0.0749636 + 0.205961i
\(244\) −1.46269 2.18670i −0.0936394 0.139989i
\(245\) −1.02960 0.354713i −0.0657787 0.0226618i
\(246\) −1.81157 + 12.7118i −0.115502 + 0.810477i
\(247\) −1.17705 2.76418i −0.0748936 0.175881i
\(248\) 11.4531 25.3281i 0.727272 1.60834i
\(249\) 2.31192 + 0.407655i 0.146512 + 0.0258341i
\(250\) 4.05511 + 15.2825i 0.256468 + 0.966553i
\(251\) 4.54394 12.4844i 0.286811 0.788007i −0.709697 0.704507i \(-0.751168\pi\)
0.996508 0.0834994i \(-0.0266097\pi\)
\(252\) 1.80318 0.119094i 0.113589 0.00750222i
\(253\) 0.649270 + 0.773770i 0.0408192 + 0.0486465i
\(254\) −10.7978 26.8747i −0.677513 1.68627i
\(255\) 1.75353 + 1.42047i 0.109811 + 0.0889533i
\(256\) −13.0880 + 9.20348i −0.818001 + 0.575217i
\(257\) −0.0276182 0.156631i −0.00172278 0.00977034i 0.983934 0.178531i \(-0.0571345\pi\)
−0.985657 + 0.168761i \(0.946023\pi\)
\(258\) −4.18446 + 5.33460i −0.260513 + 0.332118i
\(259\) 12.9827 + 22.4868i 0.806708 + 1.39726i
\(260\) 0.785779 + 2.98056i 0.0487320 + 0.184846i
\(261\) 0.990745 + 2.72205i 0.0613256 + 0.168491i
\(262\) −0.230931 0.123361i −0.0142669 0.00762124i
\(263\) 5.37382 + 4.50917i 0.331364 + 0.278047i 0.793255 0.608889i \(-0.208385\pi\)
−0.461891 + 0.886936i \(0.652829\pi\)
\(264\) 11.0254 + 7.53004i 0.678568 + 0.463442i
\(265\) 3.47409 21.9108i 0.213411 1.34597i
\(266\) −16.8020 1.48338i −1.03019 0.0909517i
\(267\) −20.7189 −1.26797
\(268\) 5.61487 + 2.76545i 0.342982 + 0.168927i
\(269\) 4.32068 5.14918i 0.263436 0.313951i −0.618070 0.786123i \(-0.712085\pi\)
0.881507 + 0.472172i \(0.156530\pi\)
\(270\) −9.29784 + 12.2849i −0.565849 + 0.747637i
\(271\) −5.61426 15.4251i −0.341042 0.937006i −0.985093 0.172023i \(-0.944970\pi\)
0.644051 0.764983i \(-0.277253\pi\)
\(272\) −0.290938 2.19291i −0.0176407 0.132965i
\(273\) −2.98054 + 1.72082i −0.180391 + 0.104149i
\(274\) −0.626318 + 0.798468i −0.0378373 + 0.0482372i
\(275\) −12.8071 1.80429i −0.772296 0.108803i
\(276\) −1.41681 0.154447i −0.0852818 0.00929663i
\(277\) −17.2303 9.94792i −1.03527 0.597713i −0.116779 0.993158i \(-0.537257\pi\)
−0.918490 + 0.395445i \(0.870590\pi\)
\(278\) 2.08841 + 5.19786i 0.125254 + 0.311747i
\(279\) 2.48605 2.08605i 0.148836 0.124888i
\(280\) 16.8385 + 3.99333i 1.00629 + 0.238647i
\(281\) −7.32284 + 20.1193i −0.436844 + 1.20022i 0.504689 + 0.863301i \(0.331607\pi\)
−0.941534 + 0.336919i \(0.890615\pi\)
\(282\) −3.44824 3.84456i −0.205340 0.228940i
\(283\) 0.697814 3.95750i 0.0414808 0.235249i −0.957018 0.290030i \(-0.906335\pi\)
0.998498 + 0.0547806i \(0.0174459\pi\)
\(284\) 7.40856 + 2.15537i 0.439617 + 0.127898i
\(285\) −12.7827 + 12.3682i −0.757184 + 0.732628i
\(286\) −2.49615 0.355728i −0.147600 0.0210346i
\(287\) −13.4069 2.36400i −0.791385 0.139542i
\(288\) −1.84266 + 0.306596i −0.108580 + 0.0180663i
\(289\) −15.6874 5.70974i −0.922787 0.335867i
\(290\) 1.39367 + 27.7052i 0.0818394 + 1.62691i
\(291\) −9.23251 11.0029i −0.541219 0.645000i
\(292\) 16.0576 3.93779i 0.939699 0.230442i
\(293\) −12.0729 + 20.9108i −0.705305 + 1.22162i 0.261277 + 0.965264i \(0.415857\pi\)
−0.966581 + 0.256360i \(0.917477\pi\)
\(294\) 0.0414383 + 1.25618i 0.00241673 + 0.0732622i
\(295\) 15.7728 0.272672i 0.918326 0.0158755i
\(296\) −15.6503 21.8053i −0.909653 1.26741i
\(297\) −6.30130 10.9142i −0.365638 0.633304i
\(298\) −10.5273 16.9198i −0.609830 0.980139i
\(299\) 0.252912 0.0920525i 0.0146263 0.00532353i
\(300\) 14.8085 10.6644i 0.854972 0.615707i
\(301\) −5.50660 4.62059i −0.317395 0.266326i
\(302\) −20.2513 6.62332i −1.16533 0.381129i
\(303\) 13.5879i 0.780607i
\(304\) 17.4346 0.189501i 0.999941 0.0108686i
\(305\) 0.460612 2.90504i 0.0263746 0.166342i
\(306\) 0.0802821 0.245469i 0.00458942 0.0140325i
\(307\) −4.07184 + 4.85263i −0.232392 + 0.276954i −0.869620 0.493721i \(-0.835636\pi\)
0.637228 + 0.770675i \(0.280081\pi\)
\(308\) −8.36469 + 11.4200i −0.476622 + 0.650715i
\(309\) −19.3428 + 7.04022i −1.10038 + 0.400504i
\(310\) 28.6331 12.0832i 1.62625 0.686279i
\(311\) 24.9320 14.3945i 1.41376 0.816236i 0.418022 0.908437i \(-0.362724\pi\)
0.995740 + 0.0922011i \(0.0293903\pi\)
\(312\) 2.89021 2.07439i 0.163626 0.117439i
\(313\) 31.2411 5.50865i 1.76585 0.311367i 0.806009 0.591903i \(-0.201623\pi\)
0.959844 + 0.280536i \(0.0905122\pi\)
\(314\) −0.890028 26.9808i −0.0502272 1.52261i
\(315\) 1.56994 + 1.27175i 0.0884559 + 0.0716547i
\(316\) −5.87272 23.9479i −0.330367 1.34717i
\(317\) 22.2893 18.7029i 1.25189 1.05046i 0.255392 0.966838i \(-0.417796\pi\)
0.996498 0.0836220i \(-0.0266488\pi\)
\(318\) −25.0551 + 5.27509i −1.40502 + 0.295812i
\(319\) −21.3228 7.76087i −1.19385 0.434525i
\(320\) −17.7284 2.38861i −0.991045 0.133527i
\(321\) 3.03936 17.2371i 0.169641 0.962081i
\(322\) 0.213187 1.49594i 0.0118804 0.0833653i
\(323\) −1.09194 + 2.14911i −0.0607573 + 0.119580i
\(324\) 18.9764 + 5.52081i 1.05425 + 0.306712i
\(325\) −1.61893 + 3.04230i −0.0898018 + 0.168756i
\(326\) 16.0211 14.3695i 0.887326 0.795855i
\(327\) 22.7833 + 8.29244i 1.25992 + 0.458573i
\(328\) 14.0322 + 1.06295i 0.774798 + 0.0586916i
\(329\) 4.19447 3.51958i 0.231248 0.194040i
\(330\) 3.32740 + 14.5518i 0.183167 + 0.801051i
\(331\) −9.41823 + 16.3128i −0.517673 + 0.896635i 0.482117 + 0.876107i \(0.339868\pi\)
−0.999789 + 0.0205282i \(0.993465\pi\)
\(332\) 0.278817 2.55771i 0.0153021 0.140372i
\(333\) −0.544141 3.08598i −0.0298187 0.169111i
\(334\) 3.69092 4.70540i 0.201958 0.257468i
\(335\) 2.50666 + 6.53335i 0.136954 + 0.356955i
\(336\) −2.62689 19.7998i −0.143309 1.08017i
\(337\) −11.2305 + 4.08757i −0.611764 + 0.222664i −0.629275 0.777183i \(-0.716648\pi\)
0.0175107 + 0.999847i \(0.494426\pi\)
\(338\) 8.34591 15.6235i 0.453958 0.849807i
\(339\) −19.6654 + 23.4363i −1.06808 + 1.27289i
\(340\) 1.42674 2.02022i 0.0773758 0.109562i
\(341\) 25.4217i 1.37666i
\(342\) 1.84419 + 0.861739i 0.0997226 + 0.0465975i
\(343\) 17.8211 0.962249
\(344\) 6.13602 + 4.19072i 0.330832 + 0.225949i
\(345\) −1.04518 1.20275i −0.0562705 0.0647537i
\(346\) −2.43936 + 4.56648i −0.131141 + 0.245495i
\(347\) 7.72163 2.81044i 0.414519 0.150872i −0.126338 0.991987i \(-0.540322\pi\)
0.540857 + 0.841115i \(0.318100\pi\)
\(348\) 29.2988 12.9093i 1.57058 0.692012i
\(349\) −1.88320 3.26180i −0.100805 0.174600i 0.811211 0.584753i \(-0.198809\pi\)
−0.912017 + 0.410153i \(0.865475\pi\)
\(350\) 10.7830 + 16.0648i 0.576374 + 0.858700i
\(351\) −3.30703 + 0.583118i −0.176516 + 0.0311245i
\(352\) 7.43833 12.6010i 0.396464 0.671636i
\(353\) −15.3251 8.84794i −0.815672 0.470928i 0.0332500 0.999447i \(-0.489414\pi\)
−0.848922 + 0.528519i \(0.822748\pi\)
\(354\) −6.78786 16.8944i −0.360771 0.897928i
\(355\) 4.44171 + 7.39505i 0.235741 + 0.392488i
\(356\) 1.49646 + 22.6576i 0.0793124 + 1.20085i
\(357\) 2.59493 + 0.944477i 0.137338 + 0.0499870i
\(358\) 21.2843 19.0902i 1.12491 1.00895i
\(359\) 27.0391 + 4.76772i 1.42707 + 0.251631i 0.833218 0.552945i \(-0.186496\pi\)
0.593850 + 0.804576i \(0.297607\pi\)
\(360\) −1.74473 1.14789i −0.0919554 0.0604989i
\(361\) −15.7759 10.5887i −0.830310 0.557301i
\(362\) −30.0858 4.28755i −1.58128 0.225349i
\(363\) 7.74386 + 1.36545i 0.406447 + 0.0716676i
\(364\) 2.09712 + 3.13515i 0.109919 + 0.164327i
\(365\) 16.1657 + 8.96435i 0.846152 + 0.469215i
\(366\) −3.32194 + 0.699398i −0.173641 + 0.0365581i
\(367\) 19.3104 16.2034i 1.00800 0.845809i 0.0199242 0.999801i \(-0.493658\pi\)
0.988072 + 0.153992i \(0.0492131\pi\)
\(368\) −0.0665677 + 1.56054i −0.00347008 + 0.0813488i
\(369\) 1.42283 + 0.821471i 0.0740695 + 0.0427641i
\(370\) 3.71959 29.7769i 0.193373 1.54803i
\(371\) −4.71399 26.7343i −0.244738 1.38798i
\(372\) −24.8171 25.8983i −1.28671 1.34276i
\(373\) −13.7616 23.8359i −0.712551 1.23417i −0.963897 0.266277i \(-0.914206\pi\)
0.251345 0.967897i \(-0.419127\pi\)
\(374\) 1.06875 + 1.71773i 0.0552638 + 0.0888218i
\(375\) 20.2495 + 2.49666i 1.04568 + 0.128927i
\(376\) −3.95526 + 4.04859i −0.203977 + 0.208790i
\(377\) −3.88644 + 4.63168i −0.200162 + 0.238544i
\(378\) −5.86052 + 17.9190i −0.301433 + 0.921655i
\(379\) 10.8427 0.556952 0.278476 0.960443i \(-0.410171\pi\)
0.278476 + 0.960443i \(0.410171\pi\)
\(380\) 14.4488 + 13.0856i 0.741208 + 0.671275i
\(381\) −37.3733 −1.91469
\(382\) 2.73373 8.35860i 0.139870 0.427663i
\(383\) 20.9261 24.9387i 1.06927 1.27431i 0.109361 0.994002i \(-0.465120\pi\)
0.959911 0.280306i \(-0.0904359\pi\)
\(384\) 4.72353 + 20.0987i 0.241047 + 1.02566i
\(385\) −15.5363 + 3.01725i −0.791803 + 0.153773i
\(386\) 10.2516 + 16.4767i 0.521794 + 0.838644i
\(387\) 0.433755 + 0.751286i 0.0220490 + 0.0381900i
\(388\) −11.3656 + 10.8911i −0.577003 + 0.552914i
\(389\) 5.36751 + 30.4407i 0.272144 + 1.54340i 0.747891 + 0.663821i \(0.231066\pi\)
−0.475748 + 0.879582i \(0.657823\pi\)
\(390\) 3.94683 + 0.493019i 0.199855 + 0.0249650i
\(391\) −0.187021 0.107977i −0.00945805 0.00546061i
\(392\) 1.37074 0.136047i 0.0692328 0.00687139i
\(393\) −0.258803 + 0.217161i −0.0130549 + 0.0109543i
\(394\) −18.9380 + 3.98719i −0.954084 + 0.200872i
\(395\) 13.3692 24.1091i 0.672677 1.21306i
\(396\) 1.41997 0.949821i 0.0713560 0.0477303i
\(397\) −3.15781 0.556807i −0.158486 0.0279453i 0.0938422 0.995587i \(-0.470085\pi\)
−0.252328 + 0.967642i \(0.581196\pi\)
\(398\) 14.8750 + 2.11985i 0.745618 + 0.106258i
\(399\) −9.85919 + 19.4044i −0.493577 + 0.971435i
\(400\) −12.7319 15.4240i −0.636593 0.771200i
\(401\) 7.29685 + 1.28663i 0.364387 + 0.0642513i 0.352844 0.935682i \(-0.385215\pi\)
0.0115431 + 0.999933i \(0.496326\pi\)
\(402\) 6.01242 5.39262i 0.299872 0.268960i
\(403\) 6.36527 + 2.31677i 0.317077 + 0.115406i
\(404\) 14.8594 0.981417i 0.739284 0.0488273i
\(405\) 11.3771 + 18.9418i 0.565332 + 0.941227i
\(406\) 12.6553 + 31.4981i 0.628074 + 1.56322i
\(407\) 21.2579 + 12.2732i 1.05371 + 0.608362i
\(408\) −2.76567 0.706601i −0.136921 0.0349820i
\(409\) −15.8416 + 2.79329i −0.783315 + 0.138119i −0.550982 0.834517i \(-0.685747\pi\)
−0.232332 + 0.972636i \(0.574636\pi\)
\(410\) 10.7060 + 11.5292i 0.528731 + 0.569386i
\(411\) 0.654746 + 1.13405i 0.0322962 + 0.0559387i
\(412\) 9.09608 + 20.6444i 0.448132 + 1.01707i
\(413\) 18.1396 6.60228i 0.892592 0.324877i
\(414\) −0.0859226 + 0.160847i −0.00422287 + 0.00790519i
\(415\) 2.17127 1.88682i 0.106583 0.0926203i
\(416\) −2.47725 3.01084i −0.121457 0.147618i
\(417\) 7.22840 0.353976
\(418\) −14.4569 + 6.72744i −0.707110 + 0.329050i
\(419\) 33.7665i 1.64960i −0.565424 0.824801i \(-0.691287\pi\)
0.565424 0.824801i \(-0.308713\pi\)
\(420\) 12.8821 18.2406i 0.628580 0.890051i
\(421\) −23.2641 + 27.7250i −1.13382 + 1.35124i −0.205850 + 0.978584i \(0.565996\pi\)
−0.927971 + 0.372652i \(0.878449\pi\)
\(422\) −1.94892 + 3.64837i −0.0948718 + 0.177600i
\(423\) −0.620946 + 0.226006i −0.0301914 + 0.0109888i
\(424\) 7.57836 + 27.0187i 0.368038 + 1.31214i
\(425\) 2.70492 0.574002i 0.131208 0.0278432i
\(426\) 6.14485 7.83382i 0.297719 0.379550i
\(427\) −0.625005 3.54458i −0.0302461 0.171534i
\(428\) −19.0696 2.07879i −0.921763 0.100482i
\(429\) −1.62678 + 2.81766i −0.0785415 + 0.136038i
\(430\) 1.85181 + 8.09858i 0.0893022 + 0.390548i
\(431\) −18.8061 + 15.7802i −0.905858 + 0.760105i −0.971327 0.237749i \(-0.923590\pi\)
0.0654684 + 0.997855i \(0.479146\pi\)
\(432\) 4.19895 19.0305i 0.202022 0.915605i
\(433\) 4.83707 + 1.76055i 0.232455 + 0.0846067i 0.455621 0.890174i \(-0.349417\pi\)
−0.223166 + 0.974780i \(0.571639\pi\)
\(434\) 28.3109 25.3924i 1.35897 1.21887i
\(435\) 33.8436 + 11.6596i 1.62268 + 0.559037i
\(436\) 7.42284 25.5142i 0.355489 1.22191i
\(437\) 1.02280 1.36053i 0.0489273 0.0650830i
\(438\) 3.00998 21.1211i 0.143822 1.00921i
\(439\) −2.13084 + 12.0846i −0.101700 + 0.576767i 0.890788 + 0.454419i \(0.150153\pi\)
−0.992487 + 0.122347i \(0.960958\pi\)
\(440\) 15.6732 4.68980i 0.747189 0.223577i
\(441\) 0.151121 + 0.0550034i 0.00719622 + 0.00261921i
\(442\) 0.527497 0.111059i 0.0250905 0.00528253i
\(443\) −20.1188 + 16.8817i −0.955872 + 0.802072i −0.980277 0.197631i \(-0.936675\pi\)
0.0244049 + 0.999702i \(0.492231\pi\)
\(444\) −33.6378 + 8.24898i −1.59638 + 0.391479i
\(445\) −15.9800 + 19.7269i −0.757524 + 0.935143i
\(446\) 0.0957727 + 2.90331i 0.00453497 + 0.137476i
\(447\) −25.3236 + 4.46523i −1.19776 + 0.211198i
\(448\) −21.4629 + 4.30278i −1.01403 + 0.203287i
\(449\) −20.9114 + 12.0732i −0.986869 + 0.569769i −0.904337 0.426820i \(-0.859634\pi\)
−0.0825318 + 0.996588i \(0.526301\pi\)
\(450\) −0.559749 2.26690i −0.0263868 0.106863i
\(451\) −12.0936 + 4.40172i −0.569466 + 0.207269i
\(452\) 27.0497 + 19.8128i 1.27231 + 0.931918i
\(453\) −17.6730 + 21.0618i −0.830349 + 0.989571i
\(454\) −5.27792 + 16.1377i −0.247705 + 0.757379i
\(455\) −0.660396 + 4.16506i −0.0309599 + 0.195261i
\(456\) 8.16048 20.9666i 0.382149 0.981852i
\(457\) 24.6991i 1.15538i 0.816257 + 0.577689i \(0.196045\pi\)
−0.816257 + 0.577689i \(0.803955\pi\)
\(458\) −19.2879 6.30823i −0.901265 0.294764i
\(459\) 2.06403 + 1.73192i 0.0963406 + 0.0808393i
\(460\) −1.23980 + 1.22985i −0.0578062 + 0.0573422i
\(461\) 18.0400 6.56603i 0.840207 0.305810i 0.114166 0.993462i \(-0.463580\pi\)
0.726041 + 0.687651i \(0.241358\pi\)
\(462\) 9.64979 + 15.5095i 0.448949 + 0.721565i
\(463\) −12.5649 21.7630i −0.583939 1.01141i −0.995007 0.0998074i \(-0.968177\pi\)
0.411068 0.911605i \(-0.365156\pi\)
\(464\) −16.2335 31.1081i −0.753620 1.44416i
\(465\) −0.693178 40.0971i −0.0321454 1.85946i
\(466\) −0.451917 13.6997i −0.0209347 0.634625i
\(467\) 0.475449 0.823502i 0.0220012 0.0381071i −0.854815 0.518933i \(-0.826330\pi\)
0.876816 + 0.480825i \(0.159663\pi\)
\(468\) −0.108416 0.442102i −0.00501155 0.0204362i
\(469\) 5.50418 + 6.55963i 0.254160 + 0.302896i
\(470\) −6.32004 + 0.317921i −0.291522 + 0.0146646i
\(471\) −32.7339 11.9142i −1.50830 0.548976i
\(472\) −17.9850 + 8.64327i −0.827828 + 0.397839i
\(473\) −6.69229 1.18003i −0.307712 0.0542579i
\(474\) −31.4995 4.48901i −1.44682 0.206187i
\(475\) 1.91699 + 21.7100i 0.0879575 + 0.996124i
\(476\) 0.845432 2.90597i 0.0387503 0.133195i
\(477\) −0.568897 + 3.22637i −0.0260480 + 0.147726i
\(478\) −7.79102 8.68648i −0.356353 0.397310i
\(479\) 8.95565 24.6055i 0.409194 1.12425i −0.548421 0.836202i \(-0.684771\pi\)
0.957615 0.288050i \(-0.0930068\pi\)
\(480\) −11.3887 + 20.0781i −0.519822 + 0.916437i
\(481\) 5.01037 4.20420i 0.228453 0.191695i
\(482\) 7.51554 + 18.7055i 0.342323 + 0.852014i
\(483\) −1.68862 0.974924i −0.0768347 0.0443606i
\(484\) 0.933907 8.56711i 0.0424503 0.389414i
\(485\) −17.5969 + 0.304206i −0.799034 + 0.0138133i
\(486\) 2.98216 3.80183i 0.135273 0.172455i
\(487\) −6.80434 + 3.92849i −0.308334 + 0.178017i −0.646181 0.763184i \(-0.723635\pi\)
0.337847 + 0.941201i \(0.390301\pi\)
\(488\) 1.00478 + 3.58228i 0.0454842 + 0.162162i
\(489\) −9.49812 26.0959i −0.429520 1.18010i
\(490\) 1.22800 + 0.929412i 0.0554754 + 0.0419866i
\(491\) −6.11989 + 7.29341i −0.276187 + 0.329147i −0.886251 0.463205i \(-0.846699\pi\)
0.610064 + 0.792352i \(0.291144\pi\)
\(492\) 8.02331 16.2902i 0.361719 0.734420i
\(493\) 4.85132 0.218493
\(494\) 0.366958 + 4.23292i 0.0165102 + 0.190448i
\(495\) 1.88643 + 0.299105i 0.0847887 + 0.0134438i
\(496\) −26.5292 + 29.0099i −1.19120 + 1.30258i
\(497\) 8.08639 + 6.78529i 0.362724 + 0.304362i
\(498\) −2.92836 1.56430i −0.131223 0.0700980i
\(499\) −3.92539 10.7849i −0.175724 0.482799i 0.820294 0.571941i \(-0.193810\pi\)
−0.996019 + 0.0891426i \(0.971587\pi\)
\(500\) 1.26772 22.3247i 0.0566942 0.998392i
\(501\) −3.85844 6.68302i −0.172383 0.298575i
\(502\) −11.5960 + 14.7833i −0.517556 + 0.659811i
\(503\) 3.92980 + 22.2870i 0.175221 + 0.993728i 0.937888 + 0.346937i \(0.112778\pi\)
−0.762667 + 0.646791i \(0.776111\pi\)
\(504\) −2.47610 0.632619i −0.110294 0.0281791i
\(505\) 12.9374 + 10.4801i 0.575705 + 0.466357i
\(506\) −0.532558 1.32549i −0.0236751 0.0589252i
\(507\) −14.6919 17.5092i −0.652492 0.777610i
\(508\) 2.69937 + 40.8705i 0.119765 + 1.81334i
\(509\) −3.07492 + 8.44829i −0.136294 + 0.374464i −0.988998 0.147930i \(-0.952739\pi\)
0.852704 + 0.522394i \(0.174961\pi\)
\(510\) −1.73256 2.68020i −0.0767189 0.118681i
\(511\) 22.2760 + 3.92786i 0.985431 + 0.173758i
\(512\) 21.6382 6.61721i 0.956283 0.292442i
\(513\) −15.5151 + 14.5012i −0.685008 + 0.640242i
\(514\) −0.0317337 + 0.222676i −0.00139972 + 0.00982183i
\(515\) −8.21555 + 23.8467i −0.362020 + 1.05081i
\(516\) 7.96971 5.33097i 0.350847 0.234683i
\(517\) 1.77039 4.86410i 0.0778615 0.213923i
\(518\) −7.56529 35.9330i −0.332400 1.57880i
\(519\) 4.29420 + 5.11763i 0.188494 + 0.224639i
\(520\) 0.254086 4.35176i 0.0111424 0.190837i
\(521\) 28.9479 + 16.7131i 1.26823 + 0.732213i 0.974653 0.223722i \(-0.0718207\pi\)
0.293578 + 0.955935i \(0.405154\pi\)
\(522\) −0.135063 4.09439i −0.00591157 0.179207i
\(523\) −35.3296 + 6.22956i −1.54485 + 0.272399i −0.880146 0.474704i \(-0.842555\pi\)
−0.664708 + 0.747103i \(0.731444\pi\)
\(524\) 0.256175 + 0.267335i 0.0111910 + 0.0116786i
\(525\) 24.4228 5.18268i 1.06590 0.226191i
\(526\) −5.24093 8.42340i −0.228516 0.367278i
\(527\) −1.85891 5.10731i −0.0809753 0.222478i
\(528\) −11.5095 14.9684i −0.500888 0.651417i
\(529\) −17.5022 14.6861i −0.760966 0.638526i
\(530\) −14.3019 + 27.9241i −0.621236 + 1.21295i
\(531\) −2.32963 −0.101097
\(532\) 21.9323 + 9.38024i 0.950884 + 0.406685i
\(533\) 3.42923i 0.148536i
\(534\) 27.8493 + 9.10827i 1.20516 + 0.394153i
\(535\) −14.0676 16.1884i −0.608196 0.699886i
\(536\) −6.33150 6.18554i −0.273479 0.267175i
\(537\) −12.6184 34.6689i −0.544526 1.49607i
\(538\) −8.07129 + 5.02185i −0.347978 + 0.216508i
\(539\) −1.09098 + 0.629878i −0.0469918 + 0.0271307i
\(540\) 17.8983 12.4253i 0.770220 0.534702i
\(541\) −0.791281 4.48758i −0.0340198 0.192936i 0.963062 0.269281i \(-0.0867861\pi\)
−0.997081 + 0.0763450i \(0.975675\pi\)
\(542\) 0.765365 + 23.2017i 0.0328752 + 0.996598i
\(543\) −19.6074 + 33.9610i −0.841433 + 1.45740i
\(544\) −0.572965 + 3.07550i −0.0245657 + 0.131861i
\(545\) 25.4676 15.2967i 1.09091 0.655239i
\(546\) 4.76279 1.00275i 0.203828 0.0429139i
\(547\) −11.2318 + 30.8590i −0.480235 + 1.31944i 0.429057 + 0.903278i \(0.358846\pi\)
−0.909292 + 0.416158i \(0.863376\pi\)
\(548\) 1.19288 0.797923i 0.0509574 0.0340856i
\(549\) −0.0754273 + 0.427769i −0.00321916 + 0.0182568i
\(550\) 16.4214 + 8.05539i 0.700213 + 0.343483i
\(551\) −4.61669 + 37.9576i −0.196678 + 1.61705i
\(552\) 1.83651 + 0.830447i 0.0781669 + 0.0353462i
\(553\) 5.85790 33.2218i 0.249103 1.41274i
\(554\) 18.7869 + 20.9462i 0.798179 + 0.889917i
\(555\) −33.8643 18.7787i −1.43746 0.797112i
\(556\) −0.522087 7.90480i −0.0221414 0.335238i
\(557\) 1.32626 + 1.58057i 0.0561953 + 0.0669710i 0.793410 0.608688i \(-0.208304\pi\)
−0.737215 + 0.675659i \(0.763859\pi\)
\(558\) −4.25868 + 1.71106i −0.180284 + 0.0724349i
\(559\) −0.905356 + 1.56812i −0.0382925 + 0.0663245i
\(560\) −20.8779 12.7700i −0.882253 0.539633i
\(561\) 2.57090 0.453319i 0.108543 0.0191391i
\(562\) 18.6877 23.8242i 0.788294 1.00496i
\(563\) 26.4632 15.2786i 1.11529 0.643915i 0.175098 0.984551i \(-0.443976\pi\)
0.940195 + 0.340636i \(0.110642\pi\)
\(564\) 2.94484 + 6.68356i 0.124000 + 0.281429i
\(565\) 7.14674 + 36.7997i 0.300666 + 1.54818i
\(566\) −2.67773 + 5.01271i −0.112554 + 0.210700i
\(567\) 20.7127 + 17.3800i 0.869850 + 0.729891i
\(568\) −9.01069 6.15404i −0.378080 0.258218i
\(569\) 7.97165i 0.334189i −0.985941 0.167094i \(-0.946562\pi\)
0.985941 0.167094i \(-0.0534385\pi\)
\(570\) 22.6191 11.0053i 0.947411 0.460960i
\(571\) 42.2091i 1.76640i −0.468999 0.883199i \(-0.655385\pi\)
0.468999 0.883199i \(-0.344615\pi\)
\(572\) 3.19882 + 1.57549i 0.133749 + 0.0658746i
\(573\) −8.69312 7.29439i −0.363160 0.304728i
\(574\) 16.9817 + 9.07141i 0.708801 + 0.378634i
\(575\) −1.95128 + 0.0674857i −0.0813742 + 0.00281435i
\(576\) 2.61159 + 0.397944i 0.108816 + 0.0165810i
\(577\) −16.5669 + 9.56489i −0.689688 + 0.398192i −0.803495 0.595311i \(-0.797029\pi\)
0.113807 + 0.993503i \(0.463695\pi\)
\(578\) 18.5761 + 14.5711i 0.772665 + 0.606078i
\(579\) 24.6604 4.34830i 1.02485 0.180709i
\(580\) 10.3063 37.8527i 0.427944 1.57175i
\(581\) 1.75999 3.04839i 0.0730167 0.126469i
\(582\) 7.57288 + 18.8482i 0.313906 + 0.781285i
\(583\) −16.4960 19.6592i −0.683195 0.814200i
\(584\) −23.3149 1.76612i −0.964778 0.0730827i
\(585\) 0.246809 0.445079i 0.0102043 0.0184018i
\(586\) 25.4204 22.7999i 1.05011 0.941856i
\(587\) 3.85916 21.8864i 0.159285 0.903348i −0.795479 0.605982i \(-0.792781\pi\)
0.954763 0.297367i \(-0.0961084\pi\)
\(588\) 0.496535 1.70672i 0.0204768 0.0703839i
\(589\) 41.7295 9.68413i 1.71943 0.399028i
\(590\) −21.3209 6.56740i −0.877766 0.270375i
\(591\) −4.33655 + 24.5938i −0.178382 + 1.01165i
\(592\) 11.4504 + 36.1896i 0.470610 + 1.48738i
\(593\) −6.68355 + 18.3629i −0.274461 + 0.754074i 0.723505 + 0.690319i \(0.242530\pi\)
−0.997966 + 0.0637551i \(0.979692\pi\)
\(594\) 3.67189 + 17.4404i 0.150659 + 0.715589i
\(595\) 2.90067 1.74224i 0.118916 0.0714247i
\(596\) 6.71211 + 27.3707i 0.274939 + 1.12115i
\(597\) 9.69427 16.7910i 0.396760 0.687209i
\(598\) −0.380420 + 0.0125491i −0.0155565 + 0.000513170i
\(599\) −3.71618 21.0755i −0.151839 0.861122i −0.961619 0.274388i \(-0.911525\pi\)
0.809780 0.586734i \(-0.199586\pi\)
\(600\) −24.5931 + 7.82449i −1.00401 + 0.319433i
\(601\) −2.22870 + 1.28674i −0.0909104 + 0.0524871i −0.544766 0.838588i \(-0.683382\pi\)
0.453856 + 0.891075i \(0.350048\pi\)
\(602\) 5.37043 + 8.63153i 0.218882 + 0.351795i
\(603\) −0.353445 0.971083i −0.0143934 0.0395456i
\(604\) 24.3092 + 17.8055i 0.989125 + 0.724495i
\(605\) 7.27274 6.31996i 0.295679 0.256943i
\(606\) 5.97343 18.2642i 0.242654 0.741934i
\(607\) 41.1646i 1.67082i −0.549629 0.835409i \(-0.685231\pi\)
0.549629 0.835409i \(-0.314769\pi\)
\(608\) −23.5180 7.40974i −0.953780 0.300504i
\(609\) 43.8027 1.77498
\(610\) −1.89622 + 3.70232i −0.0767759 + 0.149903i
\(611\) −1.05657 0.886564i −0.0427441 0.0358665i
\(612\) −0.215823 + 0.294654i −0.00872411 + 0.0119107i
\(613\) −0.358494 0.984953i −0.0144794 0.0397819i 0.932242 0.361834i \(-0.117849\pi\)
−0.946722 + 0.322053i \(0.895627\pi\)
\(614\) 7.60644 4.73263i 0.306971 0.190994i
\(615\) 18.9550 7.27250i 0.764339 0.293255i
\(616\) 16.2638 11.6730i 0.655286 0.470317i
\(617\) −23.3255 + 4.11292i −0.939050 + 0.165580i −0.622167 0.782885i \(-0.713747\pi\)
−0.316883 + 0.948465i \(0.602636\pi\)
\(618\) 29.0947 0.959759i 1.17036 0.0386072i
\(619\) −3.88344 2.24210i −0.156089 0.0901178i 0.419921 0.907561i \(-0.362058\pi\)
−0.576010 + 0.817443i \(0.695391\pi\)
\(620\) −43.7992 + 3.65414i −1.75902 + 0.146754i
\(621\) −1.22290 1.45739i −0.0490732 0.0584831i
\(622\) −39.8403 + 8.38794i −1.59745 + 0.336326i
\(623\) −10.6252 + 29.1924i −0.425688 + 1.16957i
\(624\) −4.79681 + 1.51771i −0.192026 + 0.0607572i
\(625\) 17.9951 17.3544i 0.719805 0.694176i
\(626\) −44.4144 6.32953i −1.77516 0.252979i
\(627\) 1.10029 + 20.5466i 0.0439412 + 0.820550i
\(628\) −10.6648 + 36.6575i −0.425570 + 1.46279i
\(629\) −5.16824 0.911300i −0.206071 0.0363359i
\(630\) −1.55116 2.39958i −0.0617996 0.0956016i
\(631\) −5.62826 + 15.4635i −0.224057 + 0.615592i −0.999882 0.0153560i \(-0.995112\pi\)
0.775825 + 0.630948i \(0.217334\pi\)
\(632\) −2.63395 + 34.7712i −0.104773 + 1.38313i
\(633\) 3.43083 + 4.08870i 0.136363 + 0.162511i
\(634\) −38.1821 + 15.3409i −1.51641 + 0.609264i
\(635\) −28.8252 + 35.5840i −1.14389 + 1.41211i
\(636\) 35.9969 + 3.92405i 1.42737 + 0.155599i
\(637\) 0.0582885 + 0.330570i 0.00230947 + 0.0130977i
\(638\) 25.2493 + 19.8055i 0.999629 + 0.784109i
\(639\) −0.636966 1.10326i −0.0251980 0.0436442i
\(640\) 22.7795 + 11.0043i 0.900439 + 0.434981i
\(641\) −3.74903 10.3004i −0.148078 0.406840i 0.843372 0.537330i \(-0.180567\pi\)
−0.991450 + 0.130490i \(0.958345\pi\)
\(642\) −11.6630 + 21.8331i −0.460302 + 0.861684i
\(643\) −20.9035 17.5402i −0.824356 0.691716i 0.129632 0.991562i \(-0.458620\pi\)
−0.953988 + 0.299846i \(0.903065\pi\)
\(644\) −0.944188 + 1.91705i −0.0372062 + 0.0755422i
\(645\) 10.5878 + 1.67876i 0.416894 + 0.0661010i
\(646\) 2.41251 2.40870i 0.0949190 0.0947689i
\(647\) −8.12098 −0.319269 −0.159634 0.987176i \(-0.551031\pi\)
−0.159634 + 0.987176i \(0.551031\pi\)
\(648\) −23.0802 15.7631i −0.906675 0.619232i
\(649\) 11.7301 13.9794i 0.460448 0.548741i
\(650\) 3.51351 3.37760i 0.137811 0.132481i
\(651\) −16.7841 46.1140i −0.657822 1.80735i
\(652\) −27.8518 + 12.2717i −1.09076 + 0.480598i
\(653\) −8.02307 + 4.63212i −0.313967 + 0.181269i −0.648700 0.761044i \(-0.724687\pi\)
0.334733 + 0.942313i \(0.391354\pi\)
\(654\) −26.9787 21.1621i −1.05495 0.827504i
\(655\) 0.00715534 + 0.413903i 0.000279582 + 0.0161725i
\(656\) −18.3941 7.59749i −0.718168 0.296632i
\(657\) −2.36407 1.36490i −0.0922313 0.0532498i
\(658\) −7.18524 + 2.88690i −0.280110 + 0.112543i
\(659\) 20.5268 17.2240i 0.799610 0.670952i −0.148494 0.988913i \(-0.547443\pi\)
0.948104 + 0.317961i \(0.102998\pi\)
\(660\) 1.92463 21.0226i 0.0749163 0.818304i
\(661\) 13.9626 38.3620i 0.543083 1.49211i −0.299795 0.954004i \(-0.596918\pi\)
0.842878 0.538105i \(-0.180859\pi\)
\(662\) 19.8308 17.7866i 0.770748 0.691294i
\(663\) 0.120790 0.685032i 0.00469108 0.0266044i
\(664\) −1.49917 + 3.31537i −0.0581792 + 0.128661i
\(665\) 10.8712 + 24.3533i 0.421566 + 0.944381i
\(666\) −0.625227 + 4.38723i −0.0242270 + 0.170002i
\(667\) −3.37344 0.594828i −0.130620 0.0230318i
\(668\) −7.02970 + 4.70219i −0.271987 + 0.181933i
\(669\) 3.52238 + 1.28204i 0.136183 + 0.0495666i
\(670\) −0.497189 9.88377i −0.0192081 0.381843i
\(671\) −2.18713 2.60652i −0.0844331 0.100623i
\(672\) −5.17332 + 27.7688i −0.199565 + 1.07120i
\(673\) 9.24882 16.0194i 0.356516 0.617504i −0.630860 0.775896i \(-0.717298\pi\)
0.987376 + 0.158393i \(0.0506313\pi\)
\(674\) 16.8924 0.557238i 0.650672 0.0214640i
\(675\) 24.1221 + 3.39838i 0.928459 + 0.130804i
\(676\) −18.0864 + 17.3314i −0.695633 + 0.666592i
\(677\) −10.2412 17.7383i −0.393602 0.681739i 0.599319 0.800510i \(-0.295438\pi\)
−0.992922 + 0.118771i \(0.962105\pi\)
\(678\) 36.7361 22.8568i 1.41084 0.877809i
\(679\) −20.2375 + 7.36583i −0.776642 + 0.282675i
\(680\) −2.80586 + 2.08826i −0.107600 + 0.0800813i
\(681\) 16.7835 + 14.0831i 0.643146 + 0.539664i
\(682\) 11.1757 34.1706i 0.427940 1.30846i
\(683\) 31.6147i 1.20970i 0.796338 + 0.604852i \(0.206768\pi\)
−0.796338 + 0.604852i \(0.793232\pi\)
\(684\) −2.10004 1.96904i −0.0802971 0.0752880i
\(685\) 1.58475 + 0.251272i 0.0605501 + 0.00960059i
\(686\) −23.9542 7.83438i −0.914577 0.299118i
\(687\) −16.8322 + 20.0598i −0.642189 + 0.765331i
\(688\) −6.40544 8.33043i −0.244205 0.317595i
\(689\) −6.42575 + 2.33878i −0.244801 + 0.0891004i
\(690\) 0.876135 + 2.07615i 0.0333539 + 0.0790376i
\(691\) 26.0592 15.0453i 0.991340 0.572350i 0.0856655 0.996324i \(-0.472698\pi\)
0.905675 + 0.423974i \(0.139365\pi\)
\(692\) 5.28635 5.06566i 0.200957 0.192568i
\(693\) 2.30172 0.405856i 0.0874352 0.0154172i
\(694\) −11.6145 + 0.383134i −0.440882 + 0.0145436i
\(695\) 5.57510 6.88232i 0.211476 0.261061i
\(696\) −45.0571 + 4.47194i −1.70789 + 0.169508i
\(697\) 2.10778 1.76864i 0.0798380 0.0669921i
\(698\) 1.09738 + 5.21223i 0.0415364 + 0.197286i
\(699\) −16.6209 6.04950i −0.628659 0.228813i
\(700\) −7.43164 26.3339i −0.280889 0.995326i
\(701\) −0.447131 + 2.53580i −0.0168879 + 0.0957760i −0.992087 0.125555i \(-0.959929\pi\)
0.975199 + 0.221331i \(0.0710400\pi\)
\(702\) 4.70149 + 0.670012i 0.177446 + 0.0252880i
\(703\) 12.0485 39.5700i 0.454416 1.49241i
\(704\) −15.5378 + 13.6677i −0.585603 + 0.515119i
\(705\) −2.65976 + 7.72031i −0.100172 + 0.290764i
\(706\) 16.7095 + 18.6301i 0.628872 + 0.701151i
\(707\) 19.1451 + 6.96824i 0.720025 + 0.262068i
\(708\) 1.69692 + 25.6927i 0.0637740 + 0.965589i
\(709\) −6.24268 + 5.23823i −0.234449 + 0.196726i −0.752441 0.658659i \(-0.771124\pi\)
0.517993 + 0.855385i \(0.326679\pi\)
\(710\) −2.71937 11.8927i −0.102056 0.446325i
\(711\) −2.03557 + 3.52572i −0.0763400 + 0.132225i
\(712\) 7.94910 31.1131i 0.297905 1.16601i
\(713\) 0.666403 + 3.77936i 0.0249570 + 0.141538i
\(714\) −3.07277 2.41028i −0.114996 0.0902026i
\(715\) 1.42806 + 3.72208i 0.0534064 + 0.139198i
\(716\) −37.0016 + 16.3032i −1.38282 + 0.609281i
\(717\) −14.1489 + 5.14979i −0.528402 + 0.192322i
\(718\) −34.2486 18.2953i −1.27815 0.682773i
\(719\) 19.6366 23.4020i 0.732322 0.872748i −0.263443 0.964675i \(-0.584858\pi\)
0.995766 + 0.0919271i \(0.0293027\pi\)
\(720\) 1.84056 + 2.30994i 0.0685935 + 0.0860863i
\(721\) 30.8640i 1.14944i
\(722\) 16.5502 + 21.1681i 0.615936 + 0.787796i
\(723\) 26.0128 0.967427
\(724\) 38.5550 + 18.9892i 1.43289 + 0.705729i
\(725\) 37.2042 23.2304i 1.38173 0.862757i
\(726\) −9.80865 5.23967i −0.364033 0.194462i
\(727\) −17.9504 + 6.53342i −0.665745 + 0.242311i −0.652715 0.757604i \(-0.726370\pi\)
−0.0130301 + 0.999915i \(0.504148\pi\)
\(728\) −1.44059 5.13604i −0.0533917 0.190354i
\(729\) 11.7049 + 20.2735i 0.433515 + 0.750870i
\(730\) −17.7883 19.1561i −0.658375 0.708998i
\(731\) 1.43079 0.252287i 0.0529197 0.00933117i
\(732\) 4.77265 + 0.520270i 0.176402 + 0.0192297i
\(733\) 25.3179 + 14.6173i 0.935139 + 0.539903i 0.888433 0.459006i \(-0.151794\pi\)
0.0467061 + 0.998909i \(0.485128\pi\)
\(734\) −33.0793 + 13.2907i −1.22098 + 0.490568i
\(735\) 1.70361 1.02324i 0.0628384 0.0377428i
\(736\) 0.775511 2.06834i 0.0285857 0.0762400i
\(737\) 7.60685 + 2.76867i 0.280202 + 0.101985i
\(738\) −1.55137 1.72967i −0.0571067 0.0636702i
\(739\) 18.1564 + 3.20146i 0.667894 + 0.117768i 0.497307 0.867575i \(-0.334322\pi\)
0.170587 + 0.985343i \(0.445433\pi\)
\(740\) −18.0900 + 38.3895i −0.665002 + 1.41123i
\(741\) 5.24487 + 1.59698i 0.192675 + 0.0586666i
\(742\) −5.41645 + 38.0073i −0.198844 + 1.39529i
\(743\) 37.2186 + 6.56265i 1.36542 + 0.240760i 0.807859 0.589376i \(-0.200626\pi\)
0.557560 + 0.830137i \(0.311738\pi\)
\(744\) 21.9727 + 45.7211i 0.805558 + 1.67622i
\(745\) −15.2801 + 27.5551i −0.559818 + 1.00954i
\(746\) 8.01918 + 38.0888i 0.293603 + 1.39453i
\(747\) −0.325416 + 0.273057i −0.0119064 + 0.00999062i
\(748\) −0.681426 2.77873i −0.0249154 0.101600i
\(749\) −22.7280 13.1220i −0.830463 0.479468i
\(750\) −26.1209 12.2578i −0.953799 0.447593i
\(751\) 6.53721 + 37.0744i 0.238546 + 1.35286i 0.835015 + 0.550227i \(0.185459\pi\)
−0.596469 + 0.802636i \(0.703430\pi\)
\(752\) 7.09628 3.70313i 0.258775 0.135039i
\(753\) 12.1224 + 20.9965i 0.441763 + 0.765156i
\(754\) 7.26011 4.51715i 0.264398 0.164505i
\(755\) 6.42266 + 33.0713i 0.233745 + 1.20359i
\(756\) 15.7549 21.5095i 0.572999 0.782293i
\(757\) 19.4845 23.2207i 0.708175 0.843970i −0.285250 0.958453i \(-0.592077\pi\)
0.993425 + 0.114483i \(0.0365212\pi\)
\(758\) −14.5742 4.76658i −0.529359 0.173130i
\(759\) −1.84329 −0.0669072
\(760\) −13.6688 23.9408i −0.495819 0.868426i
\(761\) −27.9953 −1.01483 −0.507414 0.861702i \(-0.669399\pi\)
−0.507414 + 0.861702i \(0.669399\pi\)
\(762\) 50.2354 + 16.4298i 1.81984 + 0.595188i
\(763\) 23.3677 27.8486i 0.845968 1.00819i
\(764\) −7.34909 + 10.0334i −0.265881 + 0.362997i
\(765\) −0.400862 + 0.0778499i −0.0144932 + 0.00281467i
\(766\) −39.0911 + 24.3220i −1.41242 + 0.878790i
\(767\) −2.43126 4.21107i −0.0877878 0.152053i
\(768\) 2.48648 29.0921i