# Properties

 Label 380.2.bb.a.59.13 Level $380$ Weight $2$ Character 380.59 Analytic conductor $3.034$ Analytic rank $0$ Dimension $336$ CM no Inner twists $8$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [380,2,Mod(59,380)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(380, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([9, 9, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("380.59");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$380 = 2^{2} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 380.bb (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$3.03431527681$$ Analytic rank: $$0$$ Dimension: $$336$$ Relative dimension: $$56$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

## Embedding invariants

 Embedding label 59.13 Character $$\chi$$ $$=$$ 380.59 Dual form 380.2.bb.a.219.13

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-1.04981 - 0.947574i) q^{2} +(0.664457 - 0.791869i) q^{3} +(0.204208 + 1.98955i) q^{4} +(-0.681915 - 2.12955i) q^{5} +(-1.44791 + 0.201691i) q^{6} +(1.98367 + 3.43582i) q^{7} +(1.67086 - 2.28215i) q^{8} +(0.335391 + 1.90210i) q^{9} +O(q^{10})$$ $$q+(-1.04981 - 0.947574i) q^{2} +(0.664457 - 0.791869i) q^{3} +(0.204208 + 1.98955i) q^{4} +(-0.681915 - 2.12955i) q^{5} +(-1.44791 + 0.201691i) q^{6} +(1.98367 + 3.43582i) q^{7} +(1.67086 - 2.28215i) q^{8} +(0.335391 + 1.90210i) q^{9} +(-1.30203 + 2.88179i) q^{10} +(3.95947 + 2.28600i) q^{11} +(1.71115 + 1.16026i) q^{12} +(1.59714 - 1.34016i) q^{13} +(1.17321 - 5.48664i) q^{14} +(-2.13943 - 0.875008i) q^{15} +(-3.91660 + 0.812561i) q^{16} +(3.02148 + 0.532768i) q^{17} +(1.45028 - 2.31465i) q^{18} +(-2.31915 - 3.69074i) q^{19} +(4.09759 - 1.79157i) q^{20} +(4.03878 + 0.712147i) q^{21} +(-1.99054 - 6.15176i) q^{22} +(-4.89694 - 1.78234i) q^{23} +(-0.696948 - 2.83950i) q^{24} +(-4.06998 + 2.90435i) q^{25} +(-2.94660 - 0.106493i) q^{26} +(4.41473 + 2.54884i) q^{27} +(-6.43065 + 4.64823i) q^{28} +(8.07431 - 1.42372i) q^{29} +(1.41686 + 2.94586i) q^{30} +(-0.128751 - 0.223003i) q^{31} +(4.88165 + 2.85823i) q^{32} +(4.44111 - 1.61643i) q^{33} +(-2.66715 - 3.42238i) q^{34} +(5.96406 - 6.56727i) q^{35} +(-3.71582 + 1.05570i) q^{36} -4.87597 q^{37} +(-1.06258 + 6.07214i) q^{38} -2.15520i q^{39} +(-5.99935 - 2.00196i) q^{40} +(3.49860 - 4.16946i) q^{41} +(-3.56515 - 4.57467i) q^{42} +(-3.50528 + 1.27582i) q^{43} +(-3.73955 + 8.34437i) q^{44} +(3.82191 - 2.01130i) q^{45} +(3.45196 + 6.51133i) q^{46} +(-1.32983 - 7.54185i) q^{47} +(-1.95897 + 3.64135i) q^{48} +(-4.36990 + 7.56889i) q^{49} +(7.02480 + 0.807591i) q^{50} +(2.42953 - 2.03861i) q^{51} +(2.99246 + 2.90391i) q^{52} +(-5.94655 - 2.16437i) q^{53} +(-2.21941 - 6.85908i) q^{54} +(2.16813 - 9.99075i) q^{55} +(11.1555 + 1.21375i) q^{56} +(-4.46356 - 0.615877i) q^{57} +(-9.82559 - 6.15637i) q^{58} +(-0.0505433 + 0.286645i) q^{59} +(1.30398 - 4.43518i) q^{60} +(12.9746 + 4.72236i) q^{61} +(-0.0761478 + 0.356113i) q^{62} +(-5.86996 + 4.92548i) q^{63} +(-2.41643 - 7.62633i) q^{64} +(-3.94305 - 2.48732i) q^{65} +(-6.19402 - 2.51133i) q^{66} +(6.61416 - 1.16625i) q^{67} +(-0.442959 + 6.12017i) q^{68} +(-4.66519 + 2.69345i) q^{69} +(-12.4841 + 1.24301i) q^{70} +(-4.32369 + 1.57370i) q^{71} +(4.90127 + 2.41273i) q^{72} +(-4.91224 + 5.85418i) q^{73} +(5.11885 + 4.62035i) q^{74} +(-0.404465 + 5.15271i) q^{75} +(6.86931 - 5.36773i) q^{76} +18.1387i q^{77} +(-2.04221 + 2.26256i) q^{78} +(-1.37594 - 1.15455i) q^{79} +(4.40118 + 7.78650i) q^{80} +(-0.493133 + 0.179486i) q^{81} +(-7.62374 + 1.06197i) q^{82} +(3.10221 + 5.37319i) q^{83} +(-0.592099 + 8.18078i) q^{84} +(-0.925836 - 6.79770i) q^{85} +(4.88882 + 1.98214i) q^{86} +(4.23764 - 7.33980i) q^{87} +(11.8327 - 5.21651i) q^{88} +(0.410842 + 0.489623i) q^{89} +(-5.91814 - 1.51005i) q^{90} +(7.77274 + 2.82905i) q^{91} +(2.54606 - 10.1067i) q^{92} +(-0.262139 - 0.0462222i) q^{93} +(-5.75039 + 9.17763i) q^{94} +(-6.27816 + 7.45552i) q^{95} +(5.50699 - 1.96646i) q^{96} +(-3.18700 + 18.0744i) q^{97} +(11.7597 - 3.80510i) q^{98} +(-3.02022 + 8.29800i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9}+O(q^{10})$$ 336 * q - 18 * q^4 - 12 * q^5 - 18 * q^6 - 24 * q^9 $$336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9} - 15 q^{10} + 18 q^{14} - 6 q^{16} - 42 q^{20} + 12 q^{21} + 12 q^{24} - 12 q^{25} + 18 q^{26} - 24 q^{29} - 24 q^{30} + 12 q^{34} - 6 q^{36} - 48 q^{40} - 12 q^{41} - 36 q^{44} - 6 q^{45} - 18 q^{46} - 108 q^{49} - 36 q^{50} + 36 q^{54} - 30 q^{60} - 24 q^{61} + 18 q^{64} - 18 q^{65} - 48 q^{66} - 180 q^{69} - 21 q^{70} - 30 q^{74} - 48 q^{76} + 3 q^{80} - 60 q^{81} + 90 q^{84} - 36 q^{85} + 102 q^{86} - 48 q^{89} - 78 q^{90} + 24 q^{96}+O(q^{100})$$ 336 * q - 18 * q^4 - 12 * q^5 - 18 * q^6 - 24 * q^9 - 15 * q^10 + 18 * q^14 - 6 * q^16 - 42 * q^20 + 12 * q^21 + 12 * q^24 - 12 * q^25 + 18 * q^26 - 24 * q^29 - 24 * q^30 + 12 * q^34 - 6 * q^36 - 48 * q^40 - 12 * q^41 - 36 * q^44 - 6 * q^45 - 18 * q^46 - 108 * q^49 - 36 * q^50 + 36 * q^54 - 30 * q^60 - 24 * q^61 + 18 * q^64 - 18 * q^65 - 48 * q^66 - 180 * q^69 - 21 * q^70 - 30 * q^74 - 48 * q^76 + 3 * q^80 - 60 * q^81 + 90 * q^84 - 36 * q^85 + 102 * q^86 - 48 * q^89 - 78 * q^90 + 24 * q^96

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/380\mathbb{Z}\right)^\times$$.

 $$n$$ $$21$$ $$77$$ $$191$$ $$\chi(n)$$ $$e\left(\frac{1}{18}\right)$$ $$-1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.04981 0.947574i −0.742329 0.670036i
$$3$$ 0.664457 0.791869i 0.383624 0.457186i −0.539330 0.842094i $$-0.681323\pi$$
0.922955 + 0.384908i $$0.125767\pi$$
$$4$$ 0.204208 + 1.98955i 0.102104 + 0.994774i
$$5$$ −0.681915 2.12955i −0.304962 0.952365i
$$6$$ −1.44791 + 0.201691i −0.591106 + 0.0823400i
$$7$$ 1.98367 + 3.43582i 0.749757 + 1.29862i 0.947939 + 0.318452i $$0.103163\pi$$
−0.198182 + 0.980165i $$0.563504\pi$$
$$8$$ 1.67086 2.28215i 0.590740 0.806862i
$$9$$ 0.335391 + 1.90210i 0.111797 + 0.634032i
$$10$$ −1.30203 + 2.88179i −0.411736 + 0.911303i
$$11$$ 3.95947 + 2.28600i 1.19382 + 0.689255i 0.959172 0.282824i $$-0.0912712\pi$$
0.234653 + 0.972079i $$0.424605\pi$$
$$12$$ 1.71115 + 1.16026i 0.493966 + 0.334939i
$$13$$ 1.59714 1.34016i 0.442967 0.371693i −0.393851 0.919174i $$-0.628858\pi$$
0.836818 + 0.547481i $$0.184413\pi$$
$$14$$ 1.17321 5.48664i 0.313554 1.46637i
$$15$$ −2.13943 0.875008i −0.552398 0.225926i
$$16$$ −3.91660 + 0.812561i −0.979150 + 0.203140i
$$17$$ 3.02148 + 0.532768i 0.732817 + 0.129215i 0.527590 0.849499i $$-0.323096\pi$$
0.205227 + 0.978714i $$0.434207\pi$$
$$18$$ 1.45028 2.31465i 0.341834 0.545568i
$$19$$ −2.31915 3.69074i −0.532049 0.846714i
$$20$$ 4.09759 1.79157i 0.916250 0.400608i
$$21$$ 4.03878 + 0.712147i 0.881335 + 0.155403i
$$22$$ −1.99054 6.15176i −0.424385 1.31156i
$$23$$ −4.89694 1.78234i −1.02108 0.371644i −0.223404 0.974726i $$-0.571717\pi$$
−0.797679 + 0.603082i $$0.793939\pi$$
$$24$$ −0.696948 2.83950i −0.142264 0.579610i
$$25$$ −4.06998 + 2.90435i −0.813997 + 0.580870i
$$26$$ −2.94660 0.106493i −0.577875 0.0208851i
$$27$$ 4.41473 + 2.54884i 0.849615 + 0.490525i
$$28$$ −6.43065 + 4.64823i −1.21528 + 0.878433i
$$29$$ 8.07431 1.42372i 1.49936 0.264378i 0.637077 0.770800i $$-0.280143\pi$$
0.862286 + 0.506422i $$0.169032\pi$$
$$30$$ 1.41686 + 2.94586i 0.258683 + 0.537838i
$$31$$ −0.128751 0.223003i −0.0231244 0.0400526i 0.854232 0.519893i $$-0.174028\pi$$
−0.877356 + 0.479840i $$0.840695\pi$$
$$32$$ 4.88165 + 2.85823i 0.862962 + 0.505269i
$$33$$ 4.44111 1.61643i 0.773098 0.281385i
$$34$$ −2.66715 3.42238i −0.457412 0.586934i
$$35$$ 5.96406 6.56727i 1.00811 1.11007i
$$36$$ −3.71582 + 1.05570i −0.619304 + 0.175950i
$$37$$ −4.87597 −0.801605 −0.400803 0.916164i $$-0.631269\pi$$
−0.400803 + 0.916164i $$0.631269\pi$$
$$38$$ −1.06258 + 6.07214i −0.172373 + 0.985032i
$$39$$ 2.15520i 0.345109i
$$40$$ −5.99935 2.00196i −0.948580 0.316537i
$$41$$ 3.49860 4.16946i 0.546389 0.651161i −0.420218 0.907423i $$-0.638047\pi$$
0.966607 + 0.256262i $$0.0824910\pi$$
$$42$$ −3.56515 4.57467i −0.550114 0.705886i
$$43$$ −3.50528 + 1.27582i −0.534550 + 0.194560i −0.595169 0.803601i $$-0.702915\pi$$
0.0606186 + 0.998161i $$0.480693\pi$$
$$44$$ −3.73955 + 8.34437i −0.563759 + 1.25796i
$$45$$ 3.82191 2.01130i 0.569736 0.299827i
$$46$$ 3.45196 + 6.51133i 0.508964 + 0.960044i
$$47$$ −1.32983 7.54185i −0.193976 1.10009i −0.913870 0.406007i $$-0.866921\pi$$
0.719894 0.694084i $$-0.244190\pi$$
$$48$$ −1.95897 + 3.64135i −0.282753 + 0.525583i
$$49$$ −4.36990 + 7.56889i −0.624272 + 1.08127i
$$50$$ 7.02480 + 0.807591i 0.993457 + 0.114211i
$$51$$ 2.42953 2.03861i 0.340202 0.285463i
$$52$$ 2.99246 + 2.90391i 0.414979 + 0.402700i
$$53$$ −5.94655 2.16437i −0.816822 0.297299i −0.100383 0.994949i $$-0.532007\pi$$
−0.716439 + 0.697650i $$0.754229\pi$$
$$54$$ −2.21941 6.85908i −0.302024 0.933403i
$$55$$ 2.16813 9.99075i 0.292351 1.34715i
$$56$$ 11.1555 + 1.21375i 1.49072 + 0.162194i
$$57$$ −4.46356 0.615877i −0.591212 0.0815748i
$$58$$ −9.82559 6.15637i −1.29016 0.808371i
$$59$$ −0.0505433 + 0.286645i −0.00658017 + 0.0373180i −0.987921 0.154958i $$-0.950476\pi$$
0.981341 + 0.192276i $$0.0615869\pi$$
$$60$$ 1.30398 4.43518i 0.168343 0.572579i
$$61$$ 12.9746 + 4.72236i 1.66122 + 0.604636i 0.990555 0.137119i $$-0.0437844\pi$$
0.670670 + 0.741756i $$0.266007\pi$$
$$62$$ −0.0761478 + 0.356113i −0.00967078 + 0.0452263i
$$63$$ −5.86996 + 4.92548i −0.739545 + 0.620552i
$$64$$ −2.41643 7.62633i −0.302053 0.953291i
$$65$$ −3.94305 2.48732i −0.489076 0.308514i
$$66$$ −6.19402 2.51133i −0.762431 0.309124i
$$67$$ 6.61416 1.16625i 0.808048 0.142481i 0.245662 0.969356i $$-0.420995\pi$$
0.562386 + 0.826875i $$0.309884\pi$$
$$68$$ −0.442959 + 6.12017i −0.0537167 + 0.742180i
$$69$$ −4.66519 + 2.69345i −0.561623 + 0.324253i
$$70$$ −12.4841 + 1.24301i −1.49214 + 0.148568i
$$71$$ −4.32369 + 1.57370i −0.513128 + 0.186763i −0.585589 0.810608i $$-0.699137\pi$$
0.0724613 + 0.997371i $$0.476915\pi$$
$$72$$ 4.90127 + 2.41273i 0.577620 + 0.284343i
$$73$$ −4.91224 + 5.85418i −0.574934 + 0.685180i −0.972636 0.232335i $$-0.925364\pi$$
0.397701 + 0.917515i $$0.369808\pi$$
$$74$$ 5.11885 + 4.62035i 0.595055 + 0.537104i
$$75$$ −0.404465 + 5.15271i −0.0467035 + 0.594984i
$$76$$ 6.86931 5.36773i 0.787964 0.615721i
$$77$$ 18.1387i 2.06710i
$$78$$ −2.04221 + 2.26256i −0.231235 + 0.256184i
$$79$$ −1.37594 1.15455i −0.154805 0.129897i 0.562095 0.827073i $$-0.309995\pi$$
−0.716901 + 0.697175i $$0.754440\pi$$
$$80$$ 4.40118 + 7.78650i 0.492067 + 0.870557i
$$81$$ −0.493133 + 0.179486i −0.0547925 + 0.0199429i
$$82$$ −7.62374 + 1.06197i −0.841901 + 0.117275i
$$83$$ 3.10221 + 5.37319i 0.340512 + 0.589784i 0.984528 0.175228i $$-0.0560664\pi$$
−0.644016 + 0.765012i $$0.722733\pi$$
$$84$$ −0.592099 + 8.18078i −0.0646033 + 0.892596i
$$85$$ −0.925836 6.79770i −0.100421 0.737314i
$$86$$ 4.88882 + 1.98214i 0.527174 + 0.213740i
$$87$$ 4.23764 7.33980i 0.454322 0.786909i
$$88$$ 11.8327 5.21651i 1.26137 0.556082i
$$89$$ 0.410842 + 0.489623i 0.0435492 + 0.0518999i 0.787379 0.616469i $$-0.211437\pi$$
−0.743830 + 0.668369i $$0.766993\pi$$
$$90$$ −5.91814 1.51005i −0.623826 0.159173i
$$91$$ 7.77274 + 2.82905i 0.814805 + 0.296565i
$$92$$ 2.54606 10.1067i 0.265445 1.05369i
$$93$$ −0.262139 0.0462222i −0.0271825 0.00479302i
$$94$$ −5.75039 + 9.17763i −0.593107 + 0.946600i
$$95$$ −6.27816 + 7.45552i −0.644125 + 0.764920i
$$96$$ 5.50699 1.96646i 0.562055 0.200701i
$$97$$ −3.18700 + 18.0744i −0.323591 + 1.83517i 0.195807 + 0.980642i $$0.437267\pi$$
−0.519398 + 0.854532i $$0.673844\pi$$
$$98$$ 11.7597 3.80510i 1.18791 0.384374i
$$99$$ −3.02022 + 8.29800i −0.303544 + 0.833980i
$$100$$ −6.60946 7.50433i −0.660946 0.750433i
$$101$$ −3.59331 + 3.01515i −0.357548 + 0.300018i −0.803812 0.594883i $$-0.797198\pi$$
0.446265 + 0.894901i $$0.352754\pi$$
$$102$$ −4.48228 0.161995i −0.443812 0.0160399i
$$103$$ −7.45958 4.30679i −0.735014 0.424361i 0.0852396 0.996360i $$-0.472834\pi$$
−0.820254 + 0.572000i $$0.806168\pi$$
$$104$$ −0.389843 5.88414i −0.0382273 0.576987i
$$105$$ −1.23756 9.08642i −0.120773 0.886744i
$$106$$ 4.19186 + 7.90698i 0.407150 + 0.767994i
$$107$$ −10.1060 + 5.83472i −0.976986 + 0.564063i −0.901359 0.433073i $$-0.857429\pi$$
−0.0756275 + 0.997136i $$0.524096\pi$$
$$108$$ −4.16953 + 9.30380i −0.401213 + 0.895259i
$$109$$ −6.34238 17.4255i −0.607490 1.66906i −0.735692 0.677316i $$-0.763143\pi$$
0.128203 0.991748i $$-0.459079\pi$$
$$110$$ −11.7431 + 8.43394i −1.11966 + 0.804145i
$$111$$ −3.23988 + 3.86113i −0.307515 + 0.366483i
$$112$$ −10.5611 11.8449i −0.997926 1.11924i
$$113$$ −0.0574513 −0.00540456 −0.00270228 0.999996i $$-0.500860\pi$$
−0.00270228 + 0.999996i $$0.500860\pi$$
$$114$$ 4.10230 + 4.87610i 0.384216 + 0.456689i
$$115$$ −0.456287 + 11.6437i −0.0425490 + 1.08578i
$$116$$ 4.48139 + 15.7735i 0.416087 + 1.46453i
$$117$$ 3.08478 + 2.58844i 0.285188 + 0.239301i
$$118$$ 0.324678 0.253030i 0.0298891 0.0232933i
$$119$$ 4.16313 + 11.4381i 0.381633 + 1.04853i
$$120$$ −5.57160 + 3.42048i −0.508615 + 0.312246i
$$121$$ 4.95160 + 8.57642i 0.450145 + 0.779675i
$$122$$ −9.14607 17.2520i −0.828047 1.56192i
$$123$$ −0.977003 5.54086i −0.0880934 0.499603i
$$124$$ 0.417384 0.301695i 0.0374822 0.0270930i
$$125$$ 8.96035 + 6.68672i 0.801438 + 0.598078i
$$126$$ 10.8296 + 0.391395i 0.964778 + 0.0348682i
$$127$$ 4.64726 + 5.53839i 0.412378 + 0.491453i 0.931753 0.363094i $$-0.118279\pi$$
−0.519375 + 0.854547i $$0.673835\pi$$
$$128$$ −4.68972 + 10.2959i −0.414516 + 0.910042i
$$129$$ −1.31883 + 3.62345i −0.116116 + 0.319027i
$$130$$ 1.78255 + 6.34755i 0.156340 + 0.556717i
$$131$$ −20.4129 3.59935i −1.78349 0.314477i −0.818056 0.575139i $$-0.804948\pi$$
−0.965430 + 0.260662i $$0.916059\pi$$
$$132$$ 4.12288 + 8.50571i 0.358850 + 0.740327i
$$133$$ 8.08029 15.2894i 0.700650 1.32576i
$$134$$ −8.04873 5.04305i −0.695304 0.435654i
$$135$$ 2.41742 11.1395i 0.208059 0.958734i
$$136$$ 6.26434 6.00529i 0.537163 0.514949i
$$137$$ 6.83556 18.7805i 0.584001 1.60453i −0.197278 0.980348i $$-0.563210\pi$$
0.781279 0.624182i $$-0.214568\pi$$
$$138$$ 7.44981 + 1.59300i 0.634170 + 0.135605i
$$139$$ 0.375344 + 0.447318i 0.0318363 + 0.0379410i 0.781728 0.623620i $$-0.214339\pi$$
−0.749891 + 0.661561i $$0.769894\pi$$
$$140$$ 14.2838 + 10.5247i 1.20720 + 0.889499i
$$141$$ −6.85577 3.95818i −0.577360 0.333339i
$$142$$ 6.03026 + 2.44494i 0.506048 + 0.205174i
$$143$$ 9.38743 1.65526i 0.785016 0.138420i
$$144$$ −2.85916 7.17723i −0.238264 0.598102i
$$145$$ −8.53789 16.2238i −0.709033 1.34731i
$$146$$ 10.7042 1.49107i 0.885886 0.123402i
$$147$$ 3.08996 + 8.48960i 0.254856 + 0.700210i
$$148$$ −0.995711 9.70098i −0.0818469 0.797416i
$$149$$ −11.6884 9.80770i −0.957548 0.803478i 0.0230042 0.999735i $$-0.492677\pi$$
−0.980553 + 0.196257i $$0.937121\pi$$
$$150$$ 5.30718 5.02611i 0.433330 0.410380i
$$151$$ −5.24500 −0.426832 −0.213416 0.976961i $$-0.568459\pi$$
−0.213416 + 0.976961i $$0.568459\pi$$
$$152$$ −12.2978 0.874078i −0.997484 0.0708971i
$$153$$ 5.92583i 0.479075i
$$154$$ 17.1878 19.0422i 1.38503 1.53446i
$$155$$ −0.387100 + 0.426251i −0.0310926 + 0.0342373i
$$156$$ 4.28788 0.440109i 0.343305 0.0352369i
$$157$$ 3.05158 + 8.38416i 0.243543 + 0.669129i 0.999888 + 0.0149560i $$0.00476082\pi$$
−0.756345 + 0.654173i $$0.773017\pi$$
$$158$$ 0.350456 + 2.51587i 0.0278807 + 0.200152i
$$159$$ −5.66513 + 3.27076i −0.449274 + 0.259388i
$$160$$ 2.75788 12.3448i 0.218029 0.975942i
$$161$$ −3.59012 20.3606i −0.282941 1.60464i
$$162$$ 0.687772 + 0.278854i 0.0540365 + 0.0219088i
$$163$$ 4.03953 6.99668i 0.316401 0.548022i −0.663333 0.748324i $$-0.730859\pi$$
0.979734 + 0.200302i $$0.0641922\pi$$
$$164$$ 9.00979 + 6.10919i 0.703546 + 0.477047i
$$165$$ −6.47074 8.35531i −0.503746 0.650460i
$$166$$ 1.83475 8.58040i 0.142405 0.665968i
$$167$$ 2.06631 5.67714i 0.159896 0.439310i −0.833712 0.552200i $$-0.813789\pi$$
0.993608 + 0.112890i $$0.0360107\pi$$
$$168$$ 8.37348 8.02721i 0.646028 0.619313i
$$169$$ −1.50260 + 8.52166i −0.115584 + 0.655512i
$$170$$ −5.46937 + 8.01360i −0.419482 + 0.614615i
$$171$$ 6.24232 5.64908i 0.477362 0.431996i
$$172$$ −3.25410 6.71339i −0.248123 0.511891i
$$173$$ 2.77551 15.7407i 0.211018 1.19674i −0.676666 0.736290i $$-0.736576\pi$$
0.887684 0.460453i $$-0.152313\pi$$
$$174$$ −11.4037 + 3.68993i −0.864514 + 0.279733i
$$175$$ −18.0523 8.22245i −1.36463 0.621559i
$$176$$ −17.3652 5.73604i −1.30895 0.432370i
$$177$$ 0.193402 + 0.230487i 0.0145370 + 0.0173245i
$$178$$ 0.0326469 0.903315i 0.00244699 0.0677063i
$$179$$ 7.75350 13.4294i 0.579523 1.00376i −0.416010 0.909360i $$-0.636572\pi$$
0.995534 0.0944043i $$-0.0300946\pi$$
$$180$$ 4.78204 + 7.19314i 0.356432 + 0.536145i
$$181$$ −18.9443 + 3.34039i −1.40812 + 0.248289i −0.825475 0.564439i $$-0.809092\pi$$
−0.582643 + 0.812728i $$0.697981\pi$$
$$182$$ −5.47918 10.3352i −0.406144 0.766097i
$$183$$ 12.3605 7.13636i 0.913718 0.527535i
$$184$$ −12.2497 + 8.19751i −0.903059 + 0.604328i
$$185$$ 3.32500 + 10.3836i 0.244459 + 0.763420i
$$186$$ 0.231398 + 0.296921i 0.0169669 + 0.0217713i
$$187$$ 10.7455 + 9.01659i 0.785792 + 0.659358i
$$188$$ 14.7333 4.18586i 1.07454 0.305286i
$$189$$ 20.2243i 1.47110i
$$190$$ 13.6555 1.87787i 0.990677 0.136235i
$$191$$ 0.422809i 0.0305934i 0.999883 + 0.0152967i $$0.00486928\pi$$
−0.999883 + 0.0152967i $$0.995131\pi$$
$$192$$ −7.64467 3.15387i −0.551706 0.227611i
$$193$$ 4.65164 + 3.90319i 0.334832 + 0.280957i 0.794665 0.607048i $$-0.207646\pi$$
−0.459833 + 0.888005i $$0.652091\pi$$
$$194$$ 20.4726 15.9548i 1.46984 1.14549i
$$195$$ −4.58962 + 1.46967i −0.328669 + 0.105245i
$$196$$ −15.9510 7.14850i −1.13936 0.510607i
$$197$$ −8.04555 + 4.64510i −0.573222 + 0.330950i −0.758435 0.651748i $$-0.774036\pi$$
0.185213 + 0.982698i $$0.440702\pi$$
$$198$$ 11.0336 5.84945i 0.784126 0.415702i
$$199$$ 13.8858 2.44844i 0.984336 0.173565i 0.341760 0.939787i $$-0.388977\pi$$
0.642576 + 0.766222i $$0.277866\pi$$
$$200$$ −0.172224 + 14.1411i −0.0121780 + 0.999926i
$$201$$ 3.47130 6.01247i 0.244847 0.424087i
$$202$$ 6.62937 + 0.239593i 0.466441 + 0.0168577i
$$203$$ 20.9084 + 24.9177i 1.46748 + 1.74888i
$$204$$ 4.55205 + 4.41736i 0.318707 + 0.309277i
$$205$$ −11.2648 4.60722i −0.786770 0.321782i
$$206$$ 3.75015 + 11.5898i 0.261285 + 0.807501i
$$207$$ 1.74780 9.91224i 0.121480 0.688948i
$$208$$ −5.16639 + 6.54664i −0.358225 + 0.453928i
$$209$$ −0.745561 19.9149i −0.0515715 1.37755i
$$210$$ −7.31086 + 10.7117i −0.504497 + 0.739178i
$$211$$ −2.65099 + 15.0345i −0.182501 + 1.03502i 0.746622 + 0.665248i $$0.231674\pi$$
−0.929124 + 0.369769i $$0.879437\pi$$
$$212$$ 3.09178 12.2729i 0.212345 0.842909i
$$213$$ −1.62675 + 4.46945i −0.111463 + 0.306242i
$$214$$ 16.1382 + 3.45085i 1.10319 + 0.235896i
$$215$$ 5.10723 + 6.59468i 0.348310 + 0.449753i
$$216$$ 13.1933 5.81630i 0.897687 0.395749i
$$217$$ 0.510799 0.884731i 0.0346753 0.0600594i
$$218$$ −9.85369 + 24.3034i −0.667376 + 1.64603i
$$219$$ 1.37177 + 7.77970i 0.0926958 + 0.525704i
$$220$$ 20.3198 + 2.27342i 1.36996 + 0.153274i
$$221$$ 5.53972 3.19836i 0.372642 0.215145i
$$222$$ 7.05997 0.983440i 0.473834 0.0660042i
$$223$$ −6.03784 16.5888i −0.404324 1.11087i −0.960129 0.279558i $$-0.909812\pi$$
0.555805 0.831313i $$-0.312410\pi$$
$$224$$ −0.136773 + 22.4423i −0.00913855 + 1.49949i
$$225$$ −6.88939 6.76741i −0.459293 0.451161i
$$226$$ 0.0603130 + 0.0544393i 0.00401196 + 0.00362125i
$$227$$ 11.4524i 0.760124i 0.924961 + 0.380062i $$0.124097\pi$$
−0.924961 + 0.380062i $$0.875903\pi$$
$$228$$ 0.313824 9.00622i 0.0207835 0.596452i
$$229$$ −1.48570 −0.0981780 −0.0490890 0.998794i $$-0.515632\pi$$
−0.0490890 + 0.998794i $$0.515632\pi$$
$$230$$ 11.5123 11.7913i 0.759097 0.777496i
$$231$$ 14.3635 + 12.0524i 0.945047 + 0.792989i
$$232$$ 10.2419 20.8056i 0.672416 1.36596i
$$233$$ 1.91800 + 5.26965i 0.125652 + 0.345227i 0.986529 0.163587i $$-0.0523065\pi$$
−0.860877 + 0.508814i $$0.830084\pi$$
$$234$$ −0.785701 5.64043i −0.0513629 0.368726i
$$235$$ −15.1539 + 7.97485i −0.988533 + 0.520222i
$$236$$ −0.580615 0.0420232i −0.0377948 0.00273547i
$$237$$ −1.82851 + 0.322415i −0.118774 + 0.0209431i
$$238$$ 6.46794 15.9527i 0.419255 1.03406i
$$239$$ −21.7366 12.5496i −1.40603 0.811769i −0.411023 0.911625i $$-0.634828\pi$$
−0.995002 + 0.0998560i $$0.968162\pi$$
$$240$$ 9.09029 + 1.68864i 0.586775 + 0.109001i
$$241$$ 2.71066 + 3.23043i 0.174609 + 0.208090i 0.846250 0.532786i $$-0.178855\pi$$
−0.671641 + 0.740876i $$0.734410\pi$$
$$242$$ 2.92855 13.6956i 0.188254 0.880388i
$$243$$ −5.41607 + 14.8805i −0.347441 + 0.954587i
$$244$$ −6.74585 + 26.7779i −0.431859 + 1.71428i
$$245$$ 19.0983 + 4.14459i 1.22014 + 0.264788i
$$246$$ −4.22471 + 6.74264i −0.269357 + 0.429895i
$$247$$ −8.65018 2.78660i −0.550398 0.177307i
$$248$$ −0.724053 0.0787789i −0.0459774 0.00500246i
$$249$$ 6.31614 + 1.11371i 0.400269 + 0.0705783i
$$250$$ −3.07051 15.5104i −0.194196 0.980963i
$$251$$ 2.14945 5.90557i 0.135672 0.372756i −0.853188 0.521603i $$-0.825334\pi$$
0.988860 + 0.148847i $$0.0475563\pi$$
$$252$$ −10.9982 10.6727i −0.692819 0.672319i
$$253$$ −15.3149 18.2515i −0.962837 1.14746i
$$254$$ 0.369287 10.2179i 0.0231711 0.641128i
$$255$$ −5.99807 3.78364i −0.375614 0.236941i
$$256$$ 14.6795 6.36495i 0.917468 0.397809i
$$257$$ 3.78461 + 21.4636i 0.236077 + 1.33886i 0.840333 + 0.542070i $$0.182359\pi$$
−0.604256 + 0.796790i $$0.706530\pi$$
$$258$$ 4.81801 2.55425i 0.299956 0.159021i
$$259$$ −9.67233 16.7530i −0.601009 1.04098i
$$260$$ 4.14343 8.35282i 0.256965 0.518020i
$$261$$ 5.41611 + 14.8806i 0.335249 + 0.921088i
$$262$$ 18.0191 + 23.1214i 1.11322 + 1.42844i
$$263$$ −18.5204 15.5405i −1.14202 0.958267i −0.142515 0.989793i $$-0.545519\pi$$
−0.999503 + 0.0315254i $$0.989964\pi$$
$$264$$ 3.73155 12.8361i 0.229661 0.790009i
$$265$$ −0.554088 + 14.1394i −0.0340374 + 0.868577i
$$266$$ −22.9706 + 8.39430i −1.40842 + 0.514688i
$$267$$ 0.660704 0.0404344
$$268$$ 3.67098 + 12.9210i 0.224241 + 0.789277i
$$269$$ 15.2264 18.1461i 0.928370 1.10639i −0.0657210 0.997838i $$-0.520935\pi$$
0.994091 0.108550i $$-0.0346208\pi$$
$$270$$ −13.0933 + 9.40367i −0.796834 + 0.572289i
$$271$$ −0.387915 1.06579i −0.0235641 0.0647419i 0.927353 0.374188i $$-0.122079\pi$$
−0.950917 + 0.309446i $$0.899856\pi$$
$$272$$ −12.2668 + 0.368497i −0.743786 + 0.0223434i
$$273$$ 7.40489 4.27522i 0.448164 0.258748i
$$274$$ −24.9720 + 13.2388i −1.50861 + 0.799787i
$$275$$ −22.7543 + 2.19570i −1.37214 + 0.132406i
$$276$$ −6.31141 8.73159i −0.379902 0.525580i
$$277$$ −20.3177 11.7304i −1.22077 0.704814i −0.255691 0.966759i $$-0.582303\pi$$
−0.965083 + 0.261944i $$0.915636\pi$$
$$278$$ 0.0298261 0.825266i 0.00178885 0.0494962i
$$279$$ 0.380992 0.319690i 0.0228094 0.0191394i
$$280$$ −5.02237 24.5839i −0.300144 1.46917i
$$281$$ 0.855721 2.35107i 0.0510480 0.140253i −0.911548 0.411193i $$-0.865112\pi$$
0.962596 + 0.270940i $$0.0873344\pi$$
$$282$$ 3.44660 + 10.6517i 0.205242 + 0.634299i
$$283$$ −0.826243 + 4.68586i −0.0491151 + 0.278545i −0.999467 0.0326302i $$-0.989612\pi$$
0.950352 + 0.311176i $$0.100723\pi$$
$$284$$ −4.01387 8.28083i −0.238180 0.491377i
$$285$$ 1.73223 + 9.92535i 0.102608 + 0.587927i
$$286$$ −11.4235 7.15758i −0.675486 0.423236i
$$287$$ 21.2656 + 3.74970i 1.25527 + 0.221338i
$$288$$ −3.79937 + 10.2440i −0.223880 + 0.603633i
$$289$$ −7.12928 2.59484i −0.419369 0.152638i
$$290$$ −6.41010 + 25.1222i −0.376414 + 1.47523i
$$291$$ 12.1949 + 14.5333i 0.714879 + 0.851959i
$$292$$ −12.6503 8.57767i −0.740302 0.501970i
$$293$$ −1.26210 + 2.18602i −0.0737325 + 0.127708i −0.900534 0.434785i $$-0.856824\pi$$
0.826802 + 0.562493i $$0.190158\pi$$
$$294$$ 4.80064 11.8404i 0.279979 0.690549i
$$295$$ 0.644892 0.0878332i 0.0375471 0.00511385i
$$296$$ −8.14709 + 11.1277i −0.473540 + 0.646785i
$$297$$ 11.6533 + 20.1841i 0.676194 + 1.17120i
$$298$$ 2.97706 + 21.3718i 0.172456 + 1.23804i
$$299$$ −10.2097 + 3.71603i −0.590443 + 0.214904i
$$300$$ −10.3342 + 0.247520i −0.596643 + 0.0142906i
$$301$$ −11.3368 9.51271i −0.653443 0.548303i
$$302$$ 5.50626 + 4.97003i 0.316850 + 0.285993i
$$303$$ 4.84887i 0.278560i
$$304$$ 12.0821 + 12.5707i 0.692957 + 0.720979i
$$305$$ 1.20895 30.8503i 0.0692240 1.76648i
$$306$$ 5.61517 6.22101i 0.320998 0.355631i
$$307$$ 12.8740 15.3426i 0.734758 0.875651i −0.261217 0.965280i $$-0.584124\pi$$
0.995975 + 0.0896294i $$0.0285683\pi$$
$$308$$ −36.0878 + 3.70406i −2.05629 + 0.211058i
$$309$$ −8.36698 + 3.04533i −0.475981 + 0.173243i
$$310$$ 0.810286 0.0806779i 0.0460212 0.00458220i
$$311$$ −12.0659 + 6.96627i −0.684196 + 0.395021i −0.801434 0.598083i $$-0.795929\pi$$
0.117238 + 0.993104i $$0.462596\pi$$
$$312$$ −4.91850 3.60105i −0.278455 0.203869i
$$313$$ 2.34444 0.413387i 0.132515 0.0233660i −0.106997 0.994259i $$-0.534124\pi$$
0.239512 + 0.970893i $$0.423012\pi$$
$$314$$ 4.74102 11.6934i 0.267551 0.659896i
$$315$$ 14.4919 + 9.14162i 0.816525 + 0.515072i
$$316$$ 2.01606 2.97327i 0.113412 0.167259i
$$317$$ −8.65458 + 7.26205i −0.486090 + 0.407878i −0.852622 0.522528i $$-0.824989\pi$$
0.366533 + 0.930405i $$0.380545\pi$$
$$318$$ 9.04660 + 1.93444i 0.507308 + 0.108478i
$$319$$ 35.2246 + 12.8207i 1.97220 + 0.717822i
$$320$$ −14.5929 + 10.3464i −0.815766 + 0.578382i
$$321$$ −2.09469 + 11.8796i −0.116914 + 0.663053i
$$322$$ −15.5242 + 24.7767i −0.865130 + 1.38075i
$$323$$ −5.04095 12.3871i −0.280486 0.689235i
$$324$$ −0.457797 0.944459i −0.0254332 0.0524699i
$$325$$ −2.60804 + 10.0931i −0.144668 + 0.559863i
$$326$$ −10.8706 + 3.51744i −0.602068 + 0.194813i
$$327$$ −18.0130 6.55619i −0.996120 0.362558i
$$328$$ −3.66967 14.9509i −0.202624 0.825527i
$$329$$ 23.2745 19.5296i 1.28316 1.07670i
$$330$$ −1.12422 + 14.9030i −0.0618860 + 0.820383i
$$331$$ 14.6407 25.3585i 0.804727 1.39383i −0.111748 0.993737i $$-0.535645\pi$$
0.916475 0.400092i $$-0.131022\pi$$
$$332$$ −10.0567 + 7.26924i −0.551934 + 0.398951i
$$333$$ −1.63536 9.27458i −0.0896171 0.508244i
$$334$$ −7.54874 + 4.00194i −0.413049 + 0.218977i
$$335$$ −6.99389 13.2899i −0.382117 0.726105i
$$336$$ −16.3970 + 0.492566i −0.894527 + 0.0268717i
$$337$$ −15.5806 + 5.67086i −0.848727 + 0.308911i −0.729521 0.683958i $$-0.760257\pi$$
−0.119206 + 0.992870i $$0.538035\pi$$
$$338$$ 9.65235 7.52231i 0.525018 0.409160i
$$339$$ −0.0381739 + 0.0454939i −0.00207332 + 0.00247089i
$$340$$ 13.3353 3.23014i 0.723207 0.175179i
$$341$$ 1.17730i 0.0637544i
$$342$$ −11.9062 + 0.0154106i −0.643813 + 0.000833311i
$$343$$ −6.90241 −0.372695
$$344$$ −2.94524 + 10.1313i −0.158797 + 0.546243i
$$345$$ 8.91710 + 8.09806i 0.480080 + 0.435985i
$$346$$ −17.8292 + 13.8948i −0.958506 + 0.746987i
$$347$$ 10.6119 3.86241i 0.569675 0.207345i −0.0410915 0.999155i $$-0.513084\pi$$
0.610767 + 0.791811i $$0.290861\pi$$
$$348$$ 15.4682 + 6.93214i 0.829185 + 0.371601i
$$349$$ 13.5944 + 23.5462i 0.727691 + 1.26040i 0.957857 + 0.287247i $$0.0927400\pi$$
−0.230165 + 0.973152i $$0.573927\pi$$
$$350$$ 11.1602 + 25.7379i 0.596535 + 1.37575i
$$351$$ 10.4668 1.84558i 0.558676 0.0985097i
$$352$$ 12.7948 + 22.4765i 0.681967 + 1.19800i
$$353$$ 5.58477 + 3.22437i 0.297247 + 0.171616i 0.641206 0.767369i $$-0.278435\pi$$
−0.343958 + 0.938985i $$0.611768\pi$$
$$354$$ 0.0153683 0.425230i 0.000816817 0.0226007i
$$355$$ 6.29966 + 8.13440i 0.334351 + 0.431729i
$$356$$ −0.890230 + 0.917374i −0.0471821 + 0.0486207i
$$357$$ 11.8237 + 4.30347i 0.625776 + 0.227764i
$$358$$ −20.8651 + 6.75138i −1.10275 + 0.356821i
$$359$$ 21.8079 + 3.84532i 1.15098 + 0.202948i 0.716402 0.697688i $$-0.245788\pi$$
0.434574 + 0.900636i $$0.356899\pi$$
$$360$$ 1.79579 12.0828i 0.0946464 0.636818i
$$361$$ −8.24311 + 17.1187i −0.433848 + 0.900986i
$$362$$ 23.0532 + 14.4443i 1.21165 + 0.759177i
$$363$$ 10.0815 + 1.77765i 0.529143 + 0.0933022i
$$364$$ −4.04127 + 16.0420i −0.211820 + 0.840827i
$$365$$ 15.8165 + 6.46882i 0.827874 + 0.338593i
$$366$$ −19.7385 4.22069i −1.03175 0.220619i
$$367$$ −16.5138 + 13.8568i −0.862016 + 0.723317i −0.962401 0.271631i $$-0.912437\pi$$
0.100386 + 0.994949i $$0.467992\pi$$
$$368$$ 20.6276 + 3.00165i 1.07529 + 0.156472i
$$369$$ 9.10412 + 5.25627i 0.473942 + 0.273630i
$$370$$ 6.34864 14.0515i 0.330050 0.730505i
$$371$$ −4.35963 24.7247i −0.226341 1.28364i
$$372$$ 0.0384305 0.530977i 0.00199253 0.0275299i
$$373$$ 14.6160 + 25.3156i 0.756787 + 1.31079i 0.944481 + 0.328565i $$0.106565\pi$$
−0.187695 + 0.982227i $$0.560102\pi$$
$$374$$ −2.73692 19.6479i −0.141523 1.01597i
$$375$$ 11.2488 2.65238i 0.580884 0.136969i
$$376$$ −19.4336 9.56653i −1.00221 0.493356i
$$377$$ 10.9878 13.0947i 0.565900 0.674414i
$$378$$ 19.1640 21.2317i 0.985689 1.09204i
$$379$$ −7.88618 −0.405086 −0.202543 0.979273i $$-0.564921\pi$$
−0.202543 + 0.979273i $$0.564921\pi$$
$$380$$ −16.1152 10.9682i −0.826690 0.562658i
$$381$$ 7.47359 0.382884
$$382$$ 0.400643 0.443870i 0.0204987 0.0227104i
$$383$$ −3.42713 + 4.08430i −0.175118 + 0.208698i −0.846463 0.532447i $$-0.821272\pi$$
0.671345 + 0.741145i $$0.265717\pi$$
$$384$$ 5.03693 + 10.5549i 0.257040 + 0.538625i
$$385$$ 38.6273 12.3691i 1.96863 0.630386i
$$386$$ −1.18478 8.50538i −0.0603039 0.432912i
$$387$$ −3.60237 6.23949i −0.183119 0.317171i
$$388$$ −36.6106 2.64976i −1.85862 0.134521i
$$389$$ 4.33138 + 24.5645i 0.219610 + 1.24547i 0.872726 + 0.488211i $$0.162350\pi$$
−0.653116 + 0.757258i $$0.726539\pi$$
$$390$$ 6.21085 + 2.80613i 0.314499 + 0.142094i
$$391$$ −13.8464 7.99424i −0.700244 0.404286i
$$392$$ 9.97185 + 22.6194i 0.503654 + 1.14245i
$$393$$ −16.4137 + 13.7728i −0.827963 + 0.694744i
$$394$$ 12.8479 + 2.74728i 0.647267 + 0.138406i
$$395$$ −1.52040 + 3.71744i −0.0764997 + 0.187045i
$$396$$ −17.1260 4.31437i −0.860615 0.216805i
$$397$$ −2.57500 0.454043i −0.129236 0.0227877i 0.108656 0.994079i $$-0.465345\pi$$
−0.237892 + 0.971292i $$0.576456\pi$$
$$398$$ −16.8975 10.5874i −0.846996 0.530698i
$$399$$ −6.73819 16.5577i −0.337331 0.828920i
$$400$$ 13.5805 14.6823i 0.679026 0.734114i
$$401$$ 4.45669 + 0.785835i 0.222557 + 0.0392427i 0.283814 0.958879i $$-0.408400\pi$$
−0.0612577 + 0.998122i $$0.519511\pi$$
$$402$$ −9.34147 + 3.02265i −0.465910 + 0.150756i
$$403$$ −0.504493 0.183621i −0.0251306 0.00914679i
$$404$$ −6.73256 6.53335i −0.334957 0.325046i
$$405$$ 0.718499 + 0.927758i 0.0357025 + 0.0461007i
$$406$$ 1.66145 45.9712i 0.0824565 2.28151i
$$407$$ −19.3063 11.1465i −0.956976 0.552511i
$$408$$ −0.593019 8.95079i −0.0293588 0.443130i
$$409$$ −17.8969 + 3.15570i −0.884944 + 0.156040i −0.597606 0.801790i $$-0.703881\pi$$
−0.287338 + 0.957829i $$0.592770\pi$$
$$410$$ 7.46027 + 15.5110i 0.368437 + 0.766032i
$$411$$ −10.3298 17.8917i −0.509531 0.882534i
$$412$$ 7.04526 15.7207i 0.347095 0.774501i
$$413$$ −1.08512 + 0.394952i −0.0533954 + 0.0194343i
$$414$$ −11.2274 + 8.74981i −0.551798 + 0.430030i
$$415$$ 9.32703 10.2704i 0.457846 0.504153i
$$416$$ 11.6272 1.97720i 0.570069 0.0969400i
$$417$$ 0.603618 0.0295593
$$418$$ −18.0882 + 21.6134i −0.884722 + 1.05715i
$$419$$ 1.56858i 0.0766301i 0.999266 + 0.0383151i $$0.0121990\pi$$
−0.999266 + 0.0383151i $$0.987801\pi$$
$$420$$ 17.8252 4.31769i 0.869778 0.210682i
$$421$$ 8.20836 9.78234i 0.400051 0.476762i −0.527985 0.849254i $$-0.677052\pi$$
0.928035 + 0.372492i $$0.121497\pi$$
$$422$$ 17.0293 13.2714i 0.828974 0.646040i
$$423$$ 13.8993 5.05894i 0.675808 0.245974i
$$424$$ −14.8753 + 9.95457i −0.722408 + 0.483437i
$$425$$ −13.8447 + 6.60707i −0.671567 + 0.320490i
$$426$$ 5.94292 3.15062i 0.287935 0.152648i
$$427$$ 9.51212 + 53.9459i 0.460324 + 2.61063i
$$428$$ −13.6722 18.9149i −0.660869 0.914288i
$$429$$ 4.92680 8.53346i 0.237868 0.411999i
$$430$$ 0.887321 11.7626i 0.0427904 0.567245i
$$431$$ −21.4377 + 17.9884i −1.03262 + 0.866469i −0.991160 0.132671i $$-0.957645\pi$$
−0.0414579 + 0.999140i $$0.513200\pi$$
$$432$$ −19.3618 6.39556i −0.931545 0.307707i
$$433$$ −7.43239 2.70517i −0.357178 0.130002i 0.157198 0.987567i $$-0.449754\pi$$
−0.514375 + 0.857565i $$0.671976\pi$$
$$434$$ −1.37459 + 0.444780i −0.0659825 + 0.0213501i
$$435$$ −18.5202 4.01914i −0.887975 0.192703i
$$436$$ 33.3738 16.1769i 1.59831 0.774732i
$$437$$ 4.77857 + 22.2068i 0.228590 + 1.06230i
$$438$$ 5.93174 9.46708i 0.283430 0.452354i
$$439$$ 5.70310 32.3439i 0.272194 1.54369i −0.475541 0.879693i $$-0.657748\pi$$
0.747735 0.663997i $$-0.231141\pi$$
$$440$$ −19.1778 21.6412i −0.914264 1.03170i
$$441$$ −15.8624 5.77344i −0.755352 0.274926i
$$442$$ −8.84634 1.89162i −0.420778 0.0899752i
$$443$$ −27.1882 + 22.8136i −1.29175 + 1.08391i −0.300241 + 0.953864i $$0.597067\pi$$
−0.991508 + 0.130043i $$0.958489\pi$$
$$444$$ −8.34352 5.65741i −0.395966 0.268489i
$$445$$ 0.762517 1.20879i 0.0361468 0.0573022i
$$446$$ −9.38055 + 23.1365i −0.444182 + 1.09554i
$$447$$ −15.5328 + 2.73886i −0.734678 + 0.129544i
$$448$$ 21.4093 23.4305i 1.01149 1.10699i
$$449$$ −17.0572 + 9.84799i −0.804980 + 0.464755i −0.845210 0.534435i $$-0.820524\pi$$
0.0402295 + 0.999190i $$0.487191\pi$$
$$450$$ 0.819938 + 13.6327i 0.0386523 + 0.642652i
$$451$$ 23.3840 8.51107i 1.10111 0.400771i
$$452$$ −0.0117320 0.114302i −0.000551826 0.00537632i
$$453$$ −3.48508 + 4.15335i −0.163743 + 0.195142i
$$454$$ 10.8520 12.0229i 0.509310 0.564262i
$$455$$ 0.724249 18.4816i 0.0339533 0.866432i
$$456$$ −8.86352 + 9.15746i −0.415072 + 0.428838i
$$457$$ 7.37551i 0.345012i −0.985008 0.172506i $$-0.944814\pi$$
0.985008 0.172506i $$-0.0551864\pi$$
$$458$$ 1.55971 + 1.40781i 0.0728803 + 0.0657828i
$$459$$ 11.9811 + 10.0533i 0.559228 + 0.469248i
$$460$$ −23.2589 + 1.46993i −1.08445 + 0.0685356i
$$461$$ −6.47105 + 2.35527i −0.301387 + 0.109696i −0.488287 0.872683i $$-0.662378\pi$$
0.186900 + 0.982379i $$0.440156\pi$$
$$462$$ −3.65841 26.2632i −0.170205 1.22187i
$$463$$ 2.35608 + 4.08086i 0.109497 + 0.189654i 0.915566 0.402167i $$-0.131743\pi$$
−0.806070 + 0.591820i $$0.798409\pi$$
$$464$$ −30.4670 + 12.1370i −1.41439 + 0.563447i
$$465$$ 0.0803241 + 0.589758i 0.00372494 + 0.0273494i
$$466$$ 2.97985 7.34959i 0.138039 0.340463i
$$467$$ 13.1780 22.8250i 0.609807 1.05622i −0.381465 0.924383i $$-0.624580\pi$$
0.991272 0.131833i $$-0.0420862\pi$$
$$468$$ −4.51988 + 6.66589i −0.208932 + 0.308131i
$$469$$ 17.1274 + 20.4116i 0.790868 + 0.942519i
$$470$$ 23.4655 + 5.98738i 1.08238 + 0.276177i
$$471$$ 8.66680 + 3.15446i 0.399345 + 0.145350i
$$472$$ 0.569717 + 0.594292i 0.0262233 + 0.0273545i
$$473$$ −16.7956 2.96151i −0.772261 0.136170i
$$474$$ 2.22510 + 1.39417i 0.102202 + 0.0640364i
$$475$$ 20.1581 + 8.28563i 0.924916 + 0.380171i
$$476$$ −21.9065 + 10.6185i −1.00408 + 0.486697i
$$477$$ 2.12242 12.0368i 0.0971789 0.551129i
$$478$$ 10.9276 + 33.7718i 0.499818 + 1.54469i
$$479$$ −6.46310 + 17.7572i −0.295307 + 0.811348i 0.699961 + 0.714181i $$0.253201\pi$$
−0.995268 + 0.0971677i $$0.969022\pi$$
$$480$$ −7.94298 10.3865i −0.362546 0.474075i
$$481$$ −7.78761 + 6.53458i −0.355085 + 0.297951i
$$482$$ 0.215398 5.95989i 0.00981109 0.271466i
$$483$$ −18.5084 10.6858i −0.842161 0.486222i
$$484$$ −16.0520 + 11.6028i −0.729638 + 0.527400i
$$485$$ 40.6636 5.53831i 1.84644 0.251482i
$$486$$ 19.7863 10.4896i 0.897523 0.475819i
$$487$$ 29.3650 16.9539i 1.33065 0.768253i 0.345254 0.938509i $$-0.387793\pi$$
0.985400 + 0.170256i $$0.0544595\pi$$
$$488$$ 32.4559 21.7195i 1.46921 0.983197i
$$489$$ −2.85636 7.84778i −0.129169 0.354889i
$$490$$ −16.1223 22.4480i −0.728330 1.01410i
$$491$$ 23.7768 28.3361i 1.07303 1.27879i 0.114618 0.993410i $$-0.463436\pi$$
0.958414 0.285380i $$-0.0921198\pi$$
$$492$$ 10.8243 3.07528i 0.487997 0.138644i
$$493$$ 25.1549 1.13292
$$494$$ 6.44055 + 11.1221i 0.289774 + 0.500406i
$$495$$ 19.7306 + 0.773191i 0.886823 + 0.0347524i
$$496$$ 0.685470 + 0.768796i 0.0307785 + 0.0345200i
$$497$$ −13.9837 11.7337i −0.627256 0.526330i
$$498$$ −5.57544 7.15420i −0.249841 0.320587i
$$499$$ 14.0038 + 38.4750i 0.626894 + 1.72238i 0.689447 + 0.724336i $$0.257854\pi$$
−0.0625524 + 0.998042i $$0.519924\pi$$
$$500$$ −11.4738 + 19.1925i −0.513123 + 0.858315i
$$501$$ −3.12258 5.40846i −0.139506 0.241632i
$$502$$ −7.85248 + 4.16297i −0.350473 + 0.185802i
$$503$$ −1.93511 10.9746i −0.0862825 0.489332i −0.997072 0.0764623i $$-0.975638\pi$$
0.910790 0.412870i $$-0.135474\pi$$
$$504$$ 1.43279 + 21.6259i 0.0638214 + 0.963296i
$$505$$ 8.87124 + 5.59607i 0.394765 + 0.249022i
$$506$$ −1.21697 + 33.6726i −0.0541008 + 1.49693i
$$507$$ 5.74963 + 6.85214i 0.255350 + 0.304314i
$$508$$ −10.0699 + 10.3769i −0.446779 + 0.460402i
$$509$$ 9.13289 25.0924i 0.404808 1.11220i −0.555075 0.831801i $$-0.687310\pi$$
0.959883 0.280401i $$-0.0904675\pi$$
$$510$$ 2.71156 + 9.65572i 0.120070 + 0.427562i
$$511$$ −29.8582 5.26480i −1.32085 0.232901i
$$512$$ −21.4420 7.22790i −0.947609 0.319431i
$$513$$ −0.831285 22.2047i −0.0367021 0.980364i
$$514$$ 16.3652 26.1189i 0.721838 1.15205i
$$515$$ −4.08473 + 18.8224i −0.179995 + 0.829415i
$$516$$ −7.47834 1.88394i −0.329216 0.0829356i
$$517$$ 11.9752 32.9017i 0.526671 1.44702i
$$518$$ −5.72055 + 26.7527i −0.251347 + 1.17545i
$$519$$ −10.6204 12.6569i −0.466182 0.555574i
$$520$$ −12.2647 + 4.84268i −0.537844 + 0.212365i
$$521$$ −24.2785 14.0172i −1.06366 0.614105i −0.137218 0.990541i $$-0.543816\pi$$
−0.926443 + 0.376436i $$0.877150\pi$$
$$522$$ 8.41461 20.7540i 0.368297 0.908378i
$$523$$ 11.0297 1.94483i 0.482294 0.0850414i 0.0727853 0.997348i $$-0.476811\pi$$
0.409509 + 0.912306i $$0.365700\pi$$
$$524$$ 2.99260 41.3475i 0.130733 1.80627i
$$525$$ −18.5061 + 8.83161i −0.807672 + 0.385443i
$$526$$ 4.71720 + 33.8640i 0.205680 + 1.47654i
$$527$$ −0.270210 0.742395i −0.0117705 0.0323392i
$$528$$ −16.0806 + 9.93959i −0.699818 + 0.432565i
$$529$$ 3.18427 + 2.67192i 0.138446 + 0.116170i
$$530$$ 13.9798 14.3187i 0.607245 0.621964i
$$531$$ −0.562179 −0.0243965
$$532$$ 32.0690 + 12.9539i 1.39037 + 0.561623i
$$533$$ 11.3479i 0.491532i
$$534$$ −0.693614 0.626066i −0.0300156 0.0270925i
$$535$$ 19.3168 + 17.5425i 0.835138 + 0.758429i
$$536$$ 8.38979 17.0432i 0.362384 0.736152i
$$537$$ −5.48250 15.0630i −0.236587 0.650018i
$$538$$ −33.1796 + 4.62186i −1.43048 + 0.199263i
$$539$$ −34.6050 + 19.9792i −1.49054 + 0.860565i
$$540$$ 22.6562 + 2.53481i 0.974967 + 0.109081i
$$541$$ 2.40757 + 13.6540i 0.103509 + 0.587031i 0.991805 + 0.127759i $$0.0407785\pi$$
−0.888296 + 0.459272i $$0.848110\pi$$
$$542$$ −0.602674 + 1.48645i −0.0258871 + 0.0638486i
$$543$$ −9.94251 + 17.2209i −0.426674 + 0.739021i
$$544$$ 13.2270 + 11.2369i 0.567104 + 0.481777i
$$545$$ −32.7836 + 25.3892i −1.40430 + 1.08755i
$$546$$ −11.8248 2.52851i −0.506056 0.108210i
$$547$$ −0.202171 + 0.555462i −0.00864423 + 0.0237498i −0.943940 0.330118i $$-0.892911\pi$$
0.935295 + 0.353868i $$0.115134\pi$$
$$548$$ 38.7606 + 9.76454i 1.65577 + 0.417120i
$$549$$ −4.63083 + 26.2627i −0.197639 + 1.12087i
$$550$$ 25.9683 + 19.2563i 1.10729 + 0.821092i
$$551$$ −23.9801 26.4984i −1.02159 1.12887i
$$552$$ −1.64804 + 15.1470i −0.0701452 + 0.644701i
$$553$$ 1.23742 7.01774i 0.0526203 0.298425i
$$554$$ 10.2143 + 31.5673i 0.433965 + 1.34117i
$$555$$ 10.4318 + 4.26652i 0.442806 + 0.181104i
$$556$$ −0.813312 + 0.838111i −0.0344921 + 0.0355438i
$$557$$ −9.63929 11.4877i −0.408430 0.486748i 0.522141 0.852859i $$-0.325133\pi$$
−0.930571 + 0.366111i $$0.880689\pi$$
$$558$$ −0.702900 0.0254036i −0.0297561 0.00107542i
$$559$$ −3.88862 + 6.73529i −0.164471 + 0.284873i
$$560$$ −18.0225 + 30.5675i −0.761590 + 1.29171i
$$561$$ 14.2799 2.51793i 0.602898 0.106307i
$$562$$ −3.12616 + 1.65732i −0.131869 + 0.0699100i
$$563$$ 10.0719 5.81500i 0.424479 0.245073i −0.272513 0.962152i $$-0.587855\pi$$
0.696992 + 0.717079i $$0.254521\pi$$
$$564$$ 6.47499 14.4482i 0.272646 0.608378i
$$565$$ 0.0391769 + 0.122346i 0.00164819 + 0.00514711i
$$566$$ 5.30760 4.13634i 0.223095 0.173863i
$$567$$ −1.59489 1.33827i −0.0669793 0.0562023i
$$568$$ −3.63289 + 12.4968i −0.152433 + 0.524352i
$$569$$ 34.7145i 1.45531i −0.685945 0.727654i $$-0.740611\pi$$
0.685945 0.727654i $$-0.259389\pi$$
$$570$$ 7.58649 12.0612i 0.317763 0.505186i
$$571$$ 17.7069i 0.741009i 0.928831 + 0.370505i $$0.120815\pi$$
−0.928831 + 0.370505i $$0.879185\pi$$
$$572$$ 5.21020 + 18.3387i 0.217849 + 0.766781i
$$573$$ 0.334810 + 0.280939i 0.0139869 + 0.0117364i
$$574$$ −18.7717 24.0872i −0.783517 1.00538i
$$575$$ 25.1070 6.96833i 1.04703 0.290599i
$$576$$ 13.6956 7.15408i 0.570649 0.298087i
$$577$$ 32.1774 18.5777i 1.33956 0.773398i 0.352822 0.935691i $$-0.385222\pi$$
0.986743 + 0.162293i $$0.0518890\pi$$
$$578$$ 5.02559 + 9.47961i 0.209037 + 0.394300i
$$579$$ 6.18163 1.08999i 0.256900 0.0452983i
$$580$$ 30.5346 20.2996i 1.26788 0.842893i
$$581$$ −12.3075 + 21.3173i −0.510602 + 0.884389i
$$582$$ 0.969048 26.8128i 0.0401683 1.11143i
$$583$$ −18.5975 22.1636i −0.770228 0.917922i
$$584$$ 5.15244 + 20.9920i 0.213209 + 0.868656i
$$585$$ 3.40865 8.33429i 0.140930 0.344581i
$$586$$ 3.39638 1.09897i 0.140303 0.0453982i
$$587$$ 2.19964 12.4748i 0.0907889 0.514889i −0.905168 0.425054i $$-0.860255\pi$$
0.995957 0.0898349i $$-0.0286339\pi$$
$$588$$ −16.2595 + 7.88126i −0.670529 + 0.325018i
$$589$$ −0.524454 + 0.992364i −0.0216098 + 0.0408896i
$$590$$ −0.760243 0.518874i −0.0312987 0.0213617i
$$591$$ −1.66761 + 9.45750i −0.0685964 + 0.389029i
$$592$$ 19.0972 3.96203i 0.784892 0.162838i
$$593$$ −1.55303 + 4.26691i −0.0637752 + 0.175221i −0.967487 0.252920i $$-0.918609\pi$$
0.903712 + 0.428141i $$0.140831\pi$$
$$594$$ 6.89218 32.2319i 0.282789 1.32249i
$$595$$ 21.5191 16.6654i 0.882198 0.683215i
$$596$$ 17.1260 25.2574i 0.701510 1.03458i
$$597$$ 7.28766 12.6226i 0.298264 0.516608i
$$598$$ 14.2395 + 5.77333i 0.582296 + 0.236089i
$$599$$ 0.980322 + 5.55968i 0.0400549 + 0.227162i 0.998263 0.0589082i $$-0.0187619\pi$$
−0.958209 + 0.286071i $$0.907651\pi$$
$$600$$ 11.0835 + 9.53252i 0.452480 + 0.389164i
$$601$$ −33.5942 + 19.3956i −1.37034 + 0.791164i −0.990970 0.134083i $$-0.957191\pi$$
−0.379366 + 0.925247i $$0.623858\pi$$
$$602$$ 2.88751 + 20.7290i 0.117686 + 0.844851i
$$603$$ 4.43666 + 12.1896i 0.180675 + 0.496400i
$$604$$ −1.07107 10.4352i −0.0435812 0.424601i
$$605$$ 14.8874 16.3931i 0.605257 0.666473i
$$606$$ 4.59466 5.09039i 0.186645 0.206783i
$$607$$ 4.10304i 0.166537i 0.996527 + 0.0832686i $$0.0265359\pi$$
−0.996527 + 0.0832686i $$0.973464\pi$$
$$608$$ −0.772285 24.6456i −0.0313203 0.999509i
$$609$$ 33.6243 1.36253
$$610$$ −30.5021 + 31.2414i −1.23499 + 1.26493i
$$611$$ −12.2312 10.2632i −0.494822 0.415205i
$$612$$ −11.7897 + 1.21010i −0.476572 + 0.0489154i
$$613$$ 10.9979 + 30.2165i 0.444202 + 1.22043i 0.936704 + 0.350123i $$0.113860\pi$$
−0.492502 + 0.870312i $$0.663917\pi$$
$$614$$ −28.0536 + 3.90781i −1.13215 + 0.157706i
$$615$$ −11.1333 + 5.85898i −0.448939 + 0.236257i
$$616$$ 41.3952 + 30.3073i 1.66786 + 1.22112i
$$617$$ 24.8937 4.38943i 1.00218 0.176712i 0.351602 0.936150i $$-0.385637\pi$$
0.650580 + 0.759438i $$0.274526\pi$$
$$618$$ 11.6694 + 4.73131i 0.469413 + 0.190321i
$$619$$ 14.5190 + 8.38253i 0.583567 + 0.336922i 0.762550 0.646930i $$-0.223947\pi$$
−0.178983 + 0.983852i $$0.557281\pi$$
$$620$$ −0.927096 0.683110i −0.0372331 0.0274343i
$$621$$ −17.0757 20.3501i −0.685226 0.816621i
$$622$$ 19.2680 + 4.12009i 0.772576 + 0.165201i
$$623$$ −0.867279 + 2.38283i −0.0347468 + 0.0954660i
$$624$$ 1.75123 + 8.44107i 0.0701055 + 0.337913i
$$625$$ 8.12952 23.6413i 0.325181 0.945652i
$$626$$ −2.85293 1.78755i −0.114026 0.0714448i
$$627$$ −16.2654 12.6422i −0.649578 0.504882i
$$628$$ −16.0575 + 7.78338i −0.640765 + 0.310591i
$$629$$ −14.7327 2.59777i −0.587430 0.103580i
$$630$$ −6.55138 23.3291i −0.261013 0.929453i
$$631$$ −6.84502 + 18.8065i −0.272496 + 0.748677i 0.725664 + 0.688049i $$0.241533\pi$$
−0.998160 + 0.0606280i $$0.980690\pi$$
$$632$$ −4.93387 + 1.21101i −0.196259 + 0.0481713i
$$633$$ 10.1439 + 12.0890i 0.403183 + 0.480495i
$$634$$ 15.9670 + 0.577066i 0.634131 + 0.0229182i
$$635$$ 8.62526 13.6733i 0.342283 0.542609i
$$636$$ −7.66420 10.6031i −0.303905 0.420441i
$$637$$ 3.16418 + 17.9449i 0.125369 + 0.711005i
$$638$$ −24.8306 46.8373i −0.983054 1.85431i
$$639$$ −4.44345 7.69628i −0.175780 0.304460i
$$640$$ 25.1237 + 2.96603i 0.993103 + 0.117242i
$$641$$ 9.77899 + 26.8676i 0.386247 + 1.06120i 0.968677 + 0.248324i $$0.0798797\pi$$
−0.582430 + 0.812881i $$0.697898\pi$$
$$642$$ 13.4558 10.4864i 0.531058 0.413867i
$$643$$ 2.49978 + 2.09757i 0.0985819 + 0.0827200i 0.690747 0.723097i $$-0.257282\pi$$
−0.592165 + 0.805817i $$0.701726\pi$$
$$644$$ 39.7752 11.3005i 1.56736 0.445302i
$$645$$ 8.61565 + 0.337626i 0.339241 + 0.0132940i
$$646$$ −6.44561 + 17.7807i −0.253599 + 0.699574i
$$647$$ −3.62076 −0.142347 −0.0711733 0.997464i $$-0.522674\pi$$
−0.0711733 + 0.997464i $$0.522674\pi$$
$$648$$ −0.414344 + 1.42530i −0.0162770 + 0.0559911i
$$649$$ −0.855396 + 1.01942i −0.0335772 + 0.0400158i
$$650$$ 12.3019 8.12451i 0.482520 0.318670i
$$651$$ −0.361186 0.992352i −0.0141560 0.0388933i
$$652$$ 14.7451 + 6.60807i 0.577464 + 0.258792i
$$653$$ −28.0083 + 16.1706i −1.09605 + 0.632805i −0.935181 0.354170i $$-0.884763\pi$$
−0.160870 + 0.986976i $$0.551430\pi$$
$$654$$ 12.6978 + 23.9514i 0.496522 + 0.936574i
$$655$$ 6.25489 + 45.9248i 0.244399 + 1.79443i
$$656$$ −10.3147 + 19.1729i −0.402719 + 0.748578i
$$657$$ −12.7827 7.38012i −0.498702 0.287926i
$$658$$ −42.9396 1.55189i −1.67396 0.0604988i
$$659$$ 27.5520 23.1188i 1.07327 0.900582i 0.0779270 0.996959i $$-0.475170\pi$$
0.995345 + 0.0963770i $$0.0307254\pi$$
$$660$$ 15.3019 14.5801i 0.595626 0.567528i
$$661$$ 16.7489 46.0171i 0.651455 1.78986i 0.0391562 0.999233i $$-0.487533\pi$$
0.612299 0.790626i $$-0.290245\pi$$
$$662$$ −39.3990 + 12.7485i −1.53129 + 0.495483i
$$663$$ 1.14822 6.51191i 0.0445933 0.252901i
$$664$$ 17.4458 + 1.89815i 0.677028 + 0.0736625i
$$665$$ −38.0696 6.78132i −1.47628 0.262968i
$$666$$ −7.07153 + 11.2862i −0.274016 + 0.437331i
$$667$$ −42.0770 7.41931i −1.62923 0.287277i
$$668$$ 11.7169 + 2.95171i 0.453340 + 0.114205i
$$669$$ −17.1481 6.24139i −0.662983 0.241306i
$$670$$ −5.25089 + 20.5791i −0.202860 + 0.795041i
$$671$$ 40.5771 + 48.3579i 1.56646 + 1.86684i
$$672$$ 17.6805 + 15.0202i 0.682038 + 0.579418i
$$673$$ 7.23324 12.5283i 0.278821 0.482932i −0.692271 0.721638i $$-0.743390\pi$$
0.971092 + 0.238705i $$0.0767230\pi$$
$$674$$ 21.7302 + 8.81040i 0.837016 + 0.339364i
$$675$$ −25.3706 + 2.44816i −0.976515 + 0.0942296i
$$676$$ −17.2611 1.24930i −0.663888 0.0480502i
$$677$$ −18.0848 31.3239i −0.695057 1.20387i −0.970161 0.242460i $$-0.922046\pi$$
0.275104 0.961414i $$-0.411288\pi$$
$$678$$ 0.0831842 0.0115874i 0.00319467 0.000445012i
$$679$$ −68.4222 + 24.9037i −2.62580 + 0.955715i
$$680$$ −17.0603 9.24514i −0.654234 0.354535i
$$681$$ 9.06882 + 7.60964i 0.347518 + 0.291602i
$$682$$ −1.11558 + 1.23594i −0.0427177 + 0.0473267i
$$683$$ 35.2724i 1.34966i 0.737973 + 0.674830i $$0.235783\pi$$
−0.737973 + 0.674830i $$0.764217\pi$$
$$684$$ 12.5139 + 11.2658i 0.478479 + 0.430759i
$$685$$ −44.6554 1.74993i −1.70620 0.0668615i
$$686$$ 7.24623 + 6.54054i 0.276662 + 0.249719i
$$687$$ −0.987186 + 1.17648i −0.0376635 + 0.0448856i
$$688$$ 12.6921 7.84512i 0.483882 0.299092i
$$689$$ −12.3981 + 4.51253i −0.472329 + 0.171914i
$$690$$ −1.68777 16.9510i −0.0642522 0.645315i
$$691$$ 16.0220 9.25033i 0.609507 0.351899i −0.163265 0.986582i $$-0.552203\pi$$
0.772773 + 0.634683i $$0.218869\pi$$
$$692$$ 31.8836 + 2.30764i 1.21203 + 0.0877233i
$$693$$ −34.5016 + 6.08356i −1.31061 + 0.231095i
$$694$$ −14.8004 6.00074i −0.561815 0.227785i
$$695$$ 0.696634 1.10435i 0.0264248 0.0418903i
$$696$$ −9.67002 21.9347i −0.366541 0.831434i
$$697$$ 12.7923 10.7340i 0.484543 0.406580i
$$698$$ 8.04020 37.6007i 0.304326 1.42321i
$$699$$ 5.44730 + 1.98266i 0.206036 + 0.0749909i
$$700$$ 12.6725 37.5950i 0.478977 1.42096i
$$701$$ 1.38515 7.85560i 0.0523165 0.296702i −0.947412 0.320018i $$-0.896311\pi$$
0.999728 + 0.0233157i $$0.00742230\pi$$
$$702$$ −12.7370 7.98055i −0.480726 0.301206i
$$703$$ 11.3081 + 17.9960i 0.426493 + 0.678730i
$$704$$ 7.86602 35.7202i 0.296462 1.34625i
$$705$$ −3.75410 + 17.2989i −0.141387 + 0.651513i
$$706$$ −2.80763 8.67696i −0.105666 0.326562i
$$707$$ −17.4874 6.36491i −0.657683 0.239377i
$$708$$ −0.419071 + 0.431849i −0.0157496 + 0.0162299i
$$709$$ 21.0922 17.6985i 0.792136 0.664681i −0.154137 0.988049i $$-0.549260\pi$$
0.946273 + 0.323369i $$0.104815\pi$$
$$710$$ 1.09449 14.5090i 0.0410756 0.544512i
$$711$$ 1.73459 3.00440i 0.0650523 0.112674i
$$712$$ 1.80385 0.119511i 0.0676023 0.00447887i
$$713$$ 0.233018 + 1.32151i 0.00872660 + 0.0494910i
$$714$$ −8.33479 15.7217i −0.311922 0.588368i
$$715$$ −9.92639 18.8623i −0.371226 0.705409i
$$716$$ 28.3018 + 12.6836i 1.05769 + 0.474007i
$$717$$ −24.3807 + 8.87386i −0.910515 + 0.331400i
$$718$$ −19.2504 24.7014i −0.718420 0.921850i
$$719$$ 26.5671 31.6614i 0.990785 1.18077i 0.00726446 0.999974i $$-0.497688\pi$$
0.983520 0.180798i $$-0.0578679\pi$$
$$720$$ −13.3346 + 10.9830i −0.496950 + 0.409312i
$$721$$ 34.1730i 1.27267i
$$722$$ 24.8750 10.1605i 0.925751 0.378134i
$$723$$ 4.35919 0.162120
$$724$$ −10.5144 37.0084i −0.390766 1.37541i
$$725$$ −28.7273 + 29.2451i −1.06691 + 1.08614i
$$726$$ −8.89925 11.4192i −0.330282 0.423806i
$$727$$ −20.2269 + 7.36199i −0.750174 + 0.273041i −0.688679 0.725066i $$-0.741809\pi$$
−0.0614953 + 0.998107i $$0.519587\pi$$
$$728$$ 19.4435 13.0116i 0.720625 0.482243i
$$729$$ 7.39752 + 12.8129i 0.273982 + 0.474551i
$$730$$ −10.4747 21.7784i −0.387685 0.806053i
$$731$$ −11.2709 + 1.98736i −0.416867 + 0.0735050i
$$732$$ 16.7222 + 23.1346i 0.618072 + 0.855079i
$$733$$ 30.6070 + 17.6710i 1.13049 + 0.652692i 0.944059 0.329776i $$-0.106973\pi$$
0.186436 + 0.982467i $$0.440306\pi$$
$$734$$ 30.4667 + 1.10110i 1.12455 + 0.0406425i
$$735$$ 15.9719 12.3694i 0.589134 0.456253i
$$736$$ −18.8108 22.6974i −0.693376 0.836635i
$$737$$ 28.8546 + 10.5022i 1.06287 + 0.386854i
$$738$$ −4.57691 14.1449i −0.168478 0.520682i
$$739$$ −30.7103 5.41506i −1.12970 0.199196i −0.422603 0.906315i $$-0.638883\pi$$
−0.707095 + 0.707119i $$0.749994\pi$$
$$740$$ −19.9798 + 8.73567i −0.734470 + 0.321130i
$$741$$ −7.95430 + 4.99824i −0.292208 + 0.183615i
$$742$$ −18.8517 + 30.0873i −0.692067 + 1.10454i
$$743$$ 5.87565 + 1.03604i 0.215557 + 0.0380085i 0.280384 0.959888i $$-0.409538\pi$$
−0.0648267 + 0.997897i $$0.520649\pi$$
$$744$$ −0.543485 + 0.521010i −0.0199251 + 0.0191011i
$$745$$ −12.9155 + 31.5790i −0.473189 + 1.15697i
$$746$$ 8.64440 40.4263i 0.316494 1.48011i
$$747$$ −9.17987 + 7.70282i −0.335874 + 0.281832i
$$748$$ −15.7446 + 23.2200i −0.575680 + 0.849008i
$$749$$ −40.0941 23.1483i −1.46501 0.845821i
$$750$$ −14.3224 7.87454i −0.522981 0.287538i
$$751$$ 3.87069 + 21.9518i 0.141244 + 0.801032i 0.970307 + 0.241877i $$0.0777631\pi$$
−0.829063 + 0.559155i $$0.811126\pi$$
$$752$$ 11.3366 + 28.4578i 0.413404 + 1.03775i
$$753$$ −3.24822 5.62608i −0.118372 0.205026i
$$754$$ −23.9434 + 3.33526i −0.871965 + 0.121463i
$$755$$ 3.57665 + 11.1695i 0.130168 + 0.406500i
$$756$$ −40.2371 + 4.12995i −1.46341 + 0.150205i
$$757$$ −2.83015 + 3.37284i −0.102863 + 0.122588i −0.815020 0.579433i $$-0.803274\pi$$
0.712157 + 0.702021i $$0.247719\pi$$
$$758$$ 8.27900 + 7.47274i 0.300707 + 0.271422i
$$759$$ −24.6289 −0.893972
$$760$$ 6.52467 + 26.7849i 0.236675 + 0.971589i
$$761$$ 13.2216 0.479284 0.239642 0.970861i $$-0.422970\pi$$
0.239642 + 0.970861i $$0.422970\pi$$
$$762$$ −7.84586 7.08178i −0.284226 0.256546i
$$763$$ 47.2898 56.3578i 1.71201 2.04029i
$$764$$ −0.841199 + 0.0863409i −0.0304335 + 0.00312370i
$$765$$ 12.6194 4.04092i 0.456254 0.146100i
$$766$$ 7.46801 1.04028i 0.269830 0.0375868i
$$767$$ 0.303425 + 0.525548i 0.0109561 + 0.0189765i
$$768$$ 4.71368 15.8535i 0.170090 0.5720