Properties

Label 380.2.bb.a.59.12
Level $380$
Weight $2$
Character 380.59
Analytic conductor $3.034$
Analytic rank $0$
Dimension $336$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(59,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.59");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(336\)
Relative dimension: \(56\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 59.12
Character \(\chi\) \(=\) 380.59
Dual form 380.2.bb.a.219.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05231 - 0.944795i) q^{2} +(-0.108582 + 0.129403i) q^{3} +(0.214726 + 1.98844i) q^{4} +(2.23516 + 0.0637665i) q^{5} +(0.236522 - 0.0335848i) q^{6} +(0.176277 + 0.305321i) q^{7} +(1.65271 - 2.29533i) q^{8} +(0.515989 + 2.92632i) q^{9} +O(q^{10})\) \(q+(-1.05231 - 0.944795i) q^{2} +(-0.108582 + 0.129403i) q^{3} +(0.214726 + 1.98844i) q^{4} +(2.23516 + 0.0637665i) q^{5} +(0.236522 - 0.0335848i) q^{6} +(0.176277 + 0.305321i) q^{7} +(1.65271 - 2.29533i) q^{8} +(0.515989 + 2.92632i) q^{9} +(-2.29184 - 2.17887i) q^{10} +(0.465827 + 0.268946i) q^{11} +(-0.280626 - 0.188123i) q^{12} +(-2.90974 + 2.44156i) q^{13} +(0.102967 - 0.487839i) q^{14} +(-0.250950 + 0.282313i) q^{15} +(-3.90779 + 0.853938i) q^{16} +(-1.16250 - 0.204980i) q^{17} +(2.22179 - 3.56691i) q^{18} +(1.57208 + 4.06553i) q^{19} +(0.353150 + 4.45817i) q^{20} +(-0.0586501 - 0.0103416i) q^{21} +(-0.236098 - 0.723126i) q^{22} +(5.38963 + 1.96166i) q^{23} +(0.117569 + 0.463098i) q^{24} +(4.99187 + 0.285056i) q^{25} +(5.36874 + 0.179820i) q^{26} +(-0.873580 - 0.504362i) q^{27} +(-0.569262 + 0.416077i) q^{28} +(2.19146 - 0.386413i) q^{29} +(0.530806 - 0.0599852i) q^{30} +(-3.30786 - 5.72938i) q^{31} +(4.91901 + 2.79345i) q^{32} +(-0.0853830 + 0.0310769i) q^{33} +(1.02965 + 1.31403i) q^{34} +(0.374538 + 0.693682i) q^{35} +(-5.70802 + 1.65437i) q^{36} +0.773573 q^{37} +(2.18677 - 5.76351i) q^{38} -0.641641i q^{39} +(3.84043 - 5.02505i) q^{40} +(-2.78057 + 3.31376i) q^{41} +(0.0519476 + 0.0662949i) q^{42} +(10.6401 - 3.87268i) q^{43} +(-0.434757 + 0.984019i) q^{44} +(0.966717 + 6.57370i) q^{45} +(-3.81820 - 7.15637i) q^{46} +(0.460262 + 2.61027i) q^{47} +(0.313814 - 0.598403i) q^{48} +(3.43785 - 5.95454i) q^{49} +(-4.98369 - 5.01626i) q^{50} +(0.152752 - 0.128174i) q^{51} +(-5.47970 - 5.26158i) q^{52} +(4.14817 + 1.50981i) q^{53} +(0.442761 + 1.35610i) q^{54} +(1.02405 + 0.630840i) q^{55} +(0.992149 + 0.0999921i) q^{56} +(-0.696793 - 0.238012i) q^{57} +(-2.67118 - 1.66385i) q^{58} +(0.583091 - 3.30687i) q^{59} +(-0.615247 - 0.438379i) q^{60} +(-6.49253 - 2.36309i) q^{61} +(-1.93219 + 9.15436i) q^{62} +(-0.802511 + 0.673386i) q^{63} +(-2.53711 - 7.58703i) q^{64} +(-6.65943 + 5.27174i) q^{65} +(0.119211 + 0.0479668i) q^{66} +(-6.98470 + 1.23159i) q^{67} +(0.157972 - 2.35557i) q^{68} +(-0.839063 + 0.484433i) q^{69} +(0.261255 - 1.08383i) q^{70} +(6.72322 - 2.44705i) q^{71} +(7.56966 + 3.65199i) q^{72} +(-7.32925 + 8.73466i) q^{73} +(-0.814041 - 0.730868i) q^{74} +(-0.578915 + 0.615012i) q^{75} +(-7.74650 + 3.99897i) q^{76} +0.189636i q^{77} +(-0.606219 + 0.675207i) q^{78} +(-5.66076 - 4.74994i) q^{79} +(-8.78897 + 1.65950i) q^{80} +(-8.21667 + 2.99062i) q^{81} +(6.05686 - 0.860040i) q^{82} +(-0.764089 - 1.32344i) q^{83} +(0.00796996 - 0.118843i) q^{84} +(-2.58530 - 0.532291i) q^{85} +(-14.8556 - 5.97744i) q^{86} +(-0.187950 + 0.325540i) q^{87} +(1.38720 - 0.624740i) q^{88} +(3.25011 + 3.87334i) q^{89} +(5.19350 - 7.83093i) q^{90} +(-1.25838 - 0.458014i) q^{91} +(-2.74336 + 11.1382i) q^{92} +(1.10058 + 0.194061i) q^{93} +(1.98183 - 3.18168i) q^{94} +(3.25461 + 9.18736i) q^{95} +(-0.895598 + 0.333217i) q^{96} +(2.09122 - 11.8599i) q^{97} +(-9.24351 + 3.01797i) q^{98} +(-0.546659 + 1.50193i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9} - 15 q^{10} + 18 q^{14} - 6 q^{16} - 42 q^{20} + 12 q^{21} + 12 q^{24} - 12 q^{25} + 18 q^{26} - 24 q^{29} - 24 q^{30} + 12 q^{34} - 6 q^{36} - 48 q^{40} - 12 q^{41} - 36 q^{44} - 6 q^{45} - 18 q^{46} - 108 q^{49} - 36 q^{50} + 36 q^{54} - 30 q^{60} - 24 q^{61} + 18 q^{64} - 18 q^{65} - 48 q^{66} - 180 q^{69} - 21 q^{70} - 30 q^{74} - 48 q^{76} + 3 q^{80} - 60 q^{81} + 90 q^{84} - 36 q^{85} + 102 q^{86} - 48 q^{89} - 78 q^{90} + 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.05231 0.944795i −0.744098 0.668071i
\(3\) −0.108582 + 0.129403i −0.0626900 + 0.0747110i −0.796478 0.604667i \(-0.793306\pi\)
0.733788 + 0.679378i \(0.237750\pi\)
\(4\) 0.214726 + 1.98844i 0.107363 + 0.994220i
\(5\) 2.23516 + 0.0637665i 0.999593 + 0.0285172i
\(6\) 0.236522 0.0335848i 0.0965597 0.0137109i
\(7\) 0.176277 + 0.305321i 0.0666265 + 0.115401i 0.897414 0.441189i \(-0.145443\pi\)
−0.830788 + 0.556589i \(0.812110\pi\)
\(8\) 1.65271 2.29533i 0.584321 0.811523i
\(9\) 0.515989 + 2.92632i 0.171996 + 0.975440i
\(10\) −2.29184 2.17887i −0.724744 0.689019i
\(11\) 0.465827 + 0.268946i 0.140452 + 0.0810901i 0.568579 0.822628i \(-0.307493\pi\)
−0.428127 + 0.903718i \(0.640827\pi\)
\(12\) −0.280626 0.188123i −0.0810097 0.0543064i
\(13\) −2.90974 + 2.44156i −0.807018 + 0.677168i −0.949894 0.312572i \(-0.898809\pi\)
0.142876 + 0.989741i \(0.454365\pi\)
\(14\) 0.102967 0.487839i 0.0275191 0.130381i
\(15\) −0.250950 + 0.282313i −0.0647950 + 0.0728929i
\(16\) −3.90779 + 0.853938i −0.976946 + 0.213484i
\(17\) −1.16250 0.204980i −0.281947 0.0497149i 0.0308862 0.999523i \(-0.490167\pi\)
−0.312833 + 0.949808i \(0.601278\pi\)
\(18\) 2.22179 3.56691i 0.523681 0.840729i
\(19\) 1.57208 + 4.06553i 0.360661 + 0.932697i
\(20\) 0.353150 + 4.45817i 0.0789667 + 0.996877i
\(21\) −0.0586501 0.0103416i −0.0127985 0.00225672i
\(22\) −0.236098 0.723126i −0.0503362 0.154171i
\(23\) 5.38963 + 1.96166i 1.12381 + 0.409035i 0.836043 0.548664i \(-0.184863\pi\)
0.287772 + 0.957699i \(0.407086\pi\)
\(24\) 0.117569 + 0.463098i 0.0239986 + 0.0945295i
\(25\) 4.99187 + 0.285056i 0.998374 + 0.0570113i
\(26\) 5.36874 + 0.179820i 1.05290 + 0.0352656i
\(27\) −0.873580 0.504362i −0.168121 0.0970644i
\(28\) −0.569262 + 0.416077i −0.107580 + 0.0786312i
\(29\) 2.19146 0.386413i 0.406944 0.0717552i 0.0335705 0.999436i \(-0.489312\pi\)
0.373373 + 0.927681i \(0.378201\pi\)
\(30\) 0.530806 0.0599852i 0.0969114 0.0109517i
\(31\) −3.30786 5.72938i −0.594110 1.02903i −0.993672 0.112322i \(-0.964171\pi\)
0.399562 0.916706i \(-0.369162\pi\)
\(32\) 4.91901 + 2.79345i 0.869566 + 0.493816i
\(33\) −0.0853830 + 0.0310769i −0.0148633 + 0.00540979i
\(34\) 1.02965 + 1.31403i 0.176583 + 0.225353i
\(35\) 0.374538 + 0.693682i 0.0633085 + 0.117254i
\(36\) −5.70802 + 1.65437i −0.951336 + 0.275728i
\(37\) 0.773573 0.127175 0.0635873 0.997976i \(-0.479746\pi\)
0.0635873 + 0.997976i \(0.479746\pi\)
\(38\) 2.18677 5.76351i 0.354741 0.934965i
\(39\) 0.641641i 0.102745i
\(40\) 3.84043 5.02505i 0.607226 0.794529i
\(41\) −2.78057 + 3.31376i −0.434253 + 0.517522i −0.938144 0.346245i \(-0.887457\pi\)
0.503891 + 0.863767i \(0.331901\pi\)
\(42\) 0.0519476 + 0.0662949i 0.00801569 + 0.0102295i
\(43\) 10.6401 3.87268i 1.62260 0.590578i 0.638724 0.769436i \(-0.279462\pi\)
0.983875 + 0.178858i \(0.0572402\pi\)
\(44\) −0.434757 + 0.984019i −0.0655421 + 0.148346i
\(45\) 0.966717 + 6.57370i 0.144110 + 0.979949i
\(46\) −3.81820 7.15637i −0.562963 1.05515i
\(47\) 0.460262 + 2.61027i 0.0671361 + 0.380748i 0.999800 + 0.0200010i \(0.00636694\pi\)
−0.932664 + 0.360747i \(0.882522\pi\)
\(48\) 0.313814 0.598403i 0.0452951 0.0863720i
\(49\) 3.43785 5.95454i 0.491122 0.850648i
\(50\) −4.98369 5.01626i −0.704800 0.709406i
\(51\) 0.152752 0.128174i 0.0213895 0.0179479i
\(52\) −5.47970 5.26158i −0.759898 0.729650i
\(53\) 4.14817 + 1.50981i 0.569796 + 0.207389i 0.610820 0.791770i \(-0.290840\pi\)
−0.0410244 + 0.999158i \(0.513062\pi\)
\(54\) 0.442761 + 1.35610i 0.0602522 + 0.184542i
\(55\) 1.02405 + 0.630840i 0.138083 + 0.0850625i
\(56\) 0.992149 + 0.0999921i 0.132581 + 0.0133620i
\(57\) −0.696793 0.238012i −0.0922925 0.0315254i
\(58\) −2.67118 1.66385i −0.350743 0.218474i
\(59\) 0.583091 3.30687i 0.0759120 0.430518i −0.923038 0.384708i \(-0.874302\pi\)
0.998950 0.0458100i \(-0.0145869\pi\)
\(60\) −0.615247 0.438379i −0.0794281 0.0565945i
\(61\) −6.49253 2.36309i −0.831283 0.302562i −0.108898 0.994053i \(-0.534732\pi\)
−0.722386 + 0.691491i \(0.756954\pi\)
\(62\) −1.93219 + 9.15436i −0.245388 + 1.16260i
\(63\) −0.802511 + 0.673386i −0.101107 + 0.0848387i
\(64\) −2.53711 7.58703i −0.317138 0.948379i
\(65\) −6.65943 + 5.27174i −0.826000 + 0.653879i
\(66\) 0.119211 + 0.0479668i 0.0146738 + 0.00590431i
\(67\) −6.98470 + 1.23159i −0.853317 + 0.150463i −0.583164 0.812355i \(-0.698185\pi\)
−0.270153 + 0.962817i \(0.587074\pi\)
\(68\) 0.157972 2.35557i 0.0191569 0.285655i
\(69\) −0.839063 + 0.484433i −0.101011 + 0.0583189i
\(70\) 0.261255 1.08383i 0.0312260 0.129543i
\(71\) 6.72322 2.44705i 0.797899 0.290412i 0.0892837 0.996006i \(-0.471542\pi\)
0.708616 + 0.705595i \(0.249320\pi\)
\(72\) 7.56966 + 3.65199i 0.892093 + 0.430391i
\(73\) −7.32925 + 8.73466i −0.857823 + 1.02231i 0.141652 + 0.989917i \(0.454759\pi\)
−0.999475 + 0.0323977i \(0.989686\pi\)
\(74\) −0.814041 0.730868i −0.0946304 0.0849617i
\(75\) −0.578915 + 0.615012i −0.0668474 + 0.0710154i
\(76\) −7.74650 + 3.99897i −0.888585 + 0.458713i
\(77\) 0.189636i 0.0216110i
\(78\) −0.606219 + 0.675207i −0.0686408 + 0.0764521i
\(79\) −5.66076 4.74994i −0.636885 0.534410i 0.266175 0.963925i \(-0.414240\pi\)
−0.903060 + 0.429515i \(0.858685\pi\)
\(80\) −8.78897 + 1.65950i −0.982637 + 0.185538i
\(81\) −8.21667 + 2.99062i −0.912963 + 0.332291i
\(82\) 6.05686 0.860040i 0.668868 0.0949756i
\(83\) −0.764089 1.32344i −0.0838696 0.145266i 0.821039 0.570872i \(-0.193395\pi\)
−0.904909 + 0.425605i \(0.860061\pi\)
\(84\) 0.00796996 0.118843i 0.000869594 0.0129668i
\(85\) −2.58530 0.532291i −0.280415 0.0577350i
\(86\) −14.8556 5.97744i −1.60192 0.644564i
\(87\) −0.187950 + 0.325540i −0.0201504 + 0.0349015i
\(88\) 1.38720 0.624740i 0.147876 0.0665975i
\(89\) 3.25011 + 3.87334i 0.344511 + 0.410573i 0.910281 0.413991i \(-0.135865\pi\)
−0.565770 + 0.824563i \(0.691421\pi\)
\(90\) 5.19350 7.83093i 0.547443 0.825453i
\(91\) −1.25838 0.458014i −0.131914 0.0480129i
\(92\) −2.74336 + 11.1382i −0.286015 + 1.16123i
\(93\) 1.10058 + 0.194061i 0.114124 + 0.0201232i
\(94\) 1.98183 3.18168i 0.204411 0.328165i
\(95\) 3.25461 + 9.18736i 0.333916 + 0.942603i
\(96\) −0.895598 + 0.333217i −0.0914066 + 0.0340088i
\(97\) 2.09122 11.8599i 0.212331 1.20419i −0.673147 0.739508i \(-0.735058\pi\)
0.885478 0.464680i \(-0.153831\pi\)
\(98\) −9.24351 + 3.01797i −0.933736 + 0.304861i
\(99\) −0.546659 + 1.50193i −0.0549413 + 0.150950i
\(100\) 0.505064 + 9.98724i 0.0505064 + 0.998724i
\(101\) −6.10589 + 5.12345i −0.607559 + 0.509803i −0.893865 0.448336i \(-0.852017\pi\)
0.286306 + 0.958138i \(0.407573\pi\)
\(102\) −0.281841 0.00943994i −0.0279064 0.000934694i
\(103\) −8.62565 4.98002i −0.849911 0.490696i 0.0107099 0.999943i \(-0.496591\pi\)
−0.860621 + 0.509246i \(0.829924\pi\)
\(104\) 0.795244 + 10.7140i 0.0779801 + 1.05060i
\(105\) −0.130433 0.0268550i −0.0127289 0.00262078i
\(106\) −2.93872 5.50797i −0.285433 0.534981i
\(107\) −9.83620 + 5.67893i −0.950901 + 0.549003i −0.893361 0.449340i \(-0.851659\pi\)
−0.0575406 + 0.998343i \(0.518326\pi\)
\(108\) 0.815313 1.84536i 0.0784535 0.177570i
\(109\) −1.80107 4.94840i −0.172511 0.473971i 0.823063 0.567950i \(-0.192263\pi\)
−0.995574 + 0.0939794i \(0.970041\pi\)
\(110\) −0.481605 1.63136i −0.0459192 0.155544i
\(111\) −0.0839963 + 0.100103i −0.00797257 + 0.00950134i
\(112\) −0.949579 1.04260i −0.0897268 0.0985164i
\(113\) 15.1869 1.42867 0.714333 0.699806i \(-0.246730\pi\)
0.714333 + 0.699806i \(0.246730\pi\)
\(114\) 0.508372 + 0.908790i 0.0476134 + 0.0851159i
\(115\) 11.9216 + 4.72831i 1.11169 + 0.440917i
\(116\) 1.23892 + 4.27461i 0.115031 + 0.396888i
\(117\) −8.64620 7.25502i −0.799341 0.670727i
\(118\) −3.73791 + 2.92897i −0.344103 + 0.269633i
\(119\) −0.142337 0.391069i −0.0130480 0.0358492i
\(120\) 0.233255 + 1.04259i 0.0212931 + 0.0951754i
\(121\) −5.35534 9.27572i −0.486849 0.843247i
\(122\) 4.59954 + 8.62082i 0.416423 + 0.780492i
\(123\) −0.126890 0.719631i −0.0114413 0.0648869i
\(124\) 10.6823 7.80773i 0.959295 0.701155i
\(125\) 11.1394 + 0.955460i 0.996342 + 0.0854589i
\(126\) 1.48070 + 0.0495946i 0.131912 + 0.00441824i
\(127\) −10.1362 12.0799i −0.899446 1.07192i −0.997055 0.0766927i \(-0.975564\pi\)
0.0976092 0.995225i \(-0.468880\pi\)
\(128\) −4.49836 + 10.3810i −0.397603 + 0.917558i
\(129\) −0.654188 + 1.79737i −0.0575980 + 0.158249i
\(130\) 11.9885 + 0.744272i 1.05146 + 0.0652770i
\(131\) −16.1902 2.85477i −1.41455 0.249423i −0.586439 0.809993i \(-0.699471\pi\)
−0.828107 + 0.560571i \(0.810582\pi\)
\(132\) −0.0801284 0.163106i −0.00697428 0.0141965i
\(133\) −0.964171 + 1.19665i −0.0836042 + 0.103763i
\(134\) 8.51369 + 5.30309i 0.735471 + 0.458117i
\(135\) −1.92043 1.18303i −0.165284 0.101819i
\(136\) −2.39177 + 2.32955i −0.205092 + 0.199757i
\(137\) 7.03395 19.3256i 0.600950 1.65110i −0.148402 0.988927i \(-0.547413\pi\)
0.749353 0.662171i \(-0.230365\pi\)
\(138\) 1.34065 + 0.282967i 0.114123 + 0.0240877i
\(139\) 5.01188 + 5.97293i 0.425102 + 0.506617i 0.935503 0.353320i \(-0.114947\pi\)
−0.510400 + 0.859937i \(0.670503\pi\)
\(140\) −1.29892 + 0.893698i −0.109779 + 0.0755313i
\(141\) −0.387754 0.223870i −0.0326548 0.0188532i
\(142\) −9.38689 3.77700i −0.787731 0.316959i
\(143\) −2.01209 + 0.354785i −0.168259 + 0.0296686i
\(144\) −4.51527 10.9948i −0.376273 0.916235i
\(145\) 4.92290 0.723954i 0.408825 0.0601211i
\(146\) 15.9651 2.26696i 1.32128 0.187615i
\(147\) 0.397246 + 1.09143i 0.0327643 + 0.0900193i
\(148\) 0.166106 + 1.53820i 0.0136538 + 0.126440i
\(149\) 0.955499 + 0.801759i 0.0782775 + 0.0656826i 0.681087 0.732203i \(-0.261508\pi\)
−0.602809 + 0.797885i \(0.705952\pi\)
\(150\) 1.19026 0.100229i 0.0971843 0.00818365i
\(151\) 22.9818 1.87023 0.935117 0.354338i \(-0.115294\pi\)
0.935117 + 0.354338i \(0.115294\pi\)
\(152\) 11.9299 + 3.11069i 0.967646 + 0.252310i
\(153\) 3.50761i 0.283574i
\(154\) 0.179167 0.199556i 0.0144377 0.0160807i
\(155\) −7.02825 13.0170i −0.564523 1.04555i
\(156\) 1.27586 0.137777i 0.102151 0.0110310i
\(157\) −4.71179 12.9455i −0.376041 1.03317i −0.972982 0.230880i \(-0.925839\pi\)
0.596941 0.802285i \(-0.296383\pi\)
\(158\) 1.46917 + 10.3467i 0.116881 + 0.823137i
\(159\) −0.645792 + 0.372848i −0.0512147 + 0.0295688i
\(160\) 10.8166 + 6.55746i 0.855130 + 0.518413i
\(161\) 0.351131 + 1.99136i 0.0276730 + 0.156941i
\(162\) 11.4720 + 4.61599i 0.901328 + 0.362667i
\(163\) −6.76334 + 11.7144i −0.529746 + 0.917546i 0.469652 + 0.882851i \(0.344379\pi\)
−0.999398 + 0.0346948i \(0.988954\pi\)
\(164\) −7.18627 4.81746i −0.561154 0.376180i
\(165\) −0.192826 + 0.0640171i −0.0150115 + 0.00498373i
\(166\) −0.446319 + 2.11458i −0.0346411 + 0.164123i
\(167\) 4.76621 13.0951i 0.368820 1.01333i −0.606991 0.794709i \(-0.707623\pi\)
0.975811 0.218616i \(-0.0701544\pi\)
\(168\) −0.120669 + 0.117530i −0.00930982 + 0.00906763i
\(169\) 0.247942 1.40615i 0.0190725 0.108165i
\(170\) 2.21764 + 3.00271i 0.170085 + 0.230297i
\(171\) −11.0859 + 6.69819i −0.847758 + 0.512224i
\(172\) 9.98529 + 20.3256i 0.761371 + 1.54981i
\(173\) 1.22760 6.96205i 0.0933325 0.529315i −0.901913 0.431918i \(-0.857837\pi\)
0.995246 0.0973973i \(-0.0310517\pi\)
\(174\) 0.505351 0.164995i 0.0383105 0.0125082i
\(175\) 0.792919 + 1.57437i 0.0599390 + 0.119011i
\(176\) −2.05002 0.653194i −0.154526 0.0492363i
\(177\) 0.364607 + 0.434522i 0.0274055 + 0.0326606i
\(178\) 0.239369 7.14665i 0.0179415 0.535664i
\(179\) −8.98666 + 15.5654i −0.671695 + 1.16341i 0.305729 + 0.952119i \(0.401100\pi\)
−0.977423 + 0.211291i \(0.932233\pi\)
\(180\) −12.8638 + 3.33380i −0.958812 + 0.248487i
\(181\) 5.47047 0.964591i 0.406616 0.0716975i 0.0334007 0.999442i \(-0.489366\pi\)
0.373216 + 0.927745i \(0.378255\pi\)
\(182\) 0.891484 + 1.67089i 0.0660812 + 0.123854i
\(183\) 1.01076 0.583565i 0.0747179 0.0431384i
\(184\) 13.4102 9.12893i 0.988610 0.672993i
\(185\) 1.72906 + 0.0493280i 0.127123 + 0.00362667i
\(186\) −0.974802 1.24403i −0.0714760 0.0912168i
\(187\) −0.486395 0.408134i −0.0355687 0.0298457i
\(188\) −5.09154 + 1.47570i −0.371339 + 0.107626i
\(189\) 0.355630i 0.0258683i
\(190\) 5.25530 12.7429i 0.381259 0.924468i
\(191\) 8.81735i 0.638001i −0.947755 0.319001i \(-0.896653\pi\)
0.947755 0.319001i \(-0.103347\pi\)
\(192\) 1.25727 + 0.495507i 0.0907357 + 0.0357602i
\(193\) −14.7524 12.3787i −1.06190 0.891041i −0.0676066 0.997712i \(-0.521536\pi\)
−0.994294 + 0.106671i \(0.965981\pi\)
\(194\) −13.4058 + 10.5045i −0.962478 + 0.754182i
\(195\) 0.0409152 1.43417i 0.00293000 0.102703i
\(196\) 12.5784 + 5.55737i 0.898459 + 0.396955i
\(197\) 18.2159 10.5170i 1.29783 0.749304i 0.317803 0.948157i \(-0.397055\pi\)
0.980029 + 0.198853i \(0.0637217\pi\)
\(198\) 1.99428 1.06402i 0.141727 0.0756169i
\(199\) 17.2506 3.04175i 1.22286 0.215624i 0.475305 0.879821i \(-0.342338\pi\)
0.747557 + 0.664197i \(0.231226\pi\)
\(200\) 8.90440 10.9869i 0.629636 0.776890i
\(201\) 0.599042 1.03757i 0.0422532 0.0731846i
\(202\) 11.2659 + 0.377340i 0.792667 + 0.0265495i
\(203\) 0.504285 + 0.600983i 0.0353938 + 0.0421807i
\(204\) 0.287666 + 0.276215i 0.0201406 + 0.0193389i
\(205\) −6.42633 + 7.22947i −0.448835 + 0.504928i
\(206\) 4.37179 + 13.3900i 0.304597 + 0.932927i
\(207\) −2.95947 + 16.7840i −0.205697 + 1.16657i
\(208\) 9.28571 12.0259i 0.643848 0.833843i
\(209\) −0.361088 + 2.31664i −0.0249769 + 0.160245i
\(210\) 0.111884 + 0.151492i 0.00772071 + 0.0104540i
\(211\) −1.82576 + 10.3544i −0.125691 + 0.712827i 0.855205 + 0.518291i \(0.173431\pi\)
−0.980895 + 0.194537i \(0.937680\pi\)
\(212\) −2.11145 + 8.57259i −0.145015 + 0.588768i
\(213\) −0.413366 + 1.13571i −0.0283233 + 0.0778177i
\(214\) 15.7162 + 3.31718i 1.07434 + 0.226757i
\(215\) 24.0292 7.97757i 1.63878 0.544066i
\(216\) −2.60145 + 1.17159i −0.177006 + 0.0797169i
\(217\) 1.16620 2.01992i 0.0791669 0.137121i
\(218\) −2.77993 + 6.90891i −0.188281 + 0.467930i
\(219\) −0.334467 1.89686i −0.0226012 0.128178i
\(220\) −1.03450 + 2.17172i −0.0697459 + 0.146417i
\(221\) 3.88304 2.24188i 0.261202 0.150805i
\(222\) 0.182967 0.0259803i 0.0122799 0.00174368i
\(223\) 3.62008 + 9.94608i 0.242418 + 0.666039i 0.999913 + 0.0131976i \(0.00420103\pi\)
−0.757495 + 0.652842i \(0.773577\pi\)
\(224\) 0.0142115 + 1.99430i 0.000949547 + 0.133250i
\(225\) 1.74158 + 14.7549i 0.116106 + 0.983660i
\(226\) −15.9814 14.3485i −1.06307 0.954450i
\(227\) 1.80739i 0.119961i 0.998200 + 0.0599803i \(0.0191038\pi\)
−0.998200 + 0.0599803i \(0.980896\pi\)
\(228\) 0.323653 1.43664i 0.0214344 0.0951437i
\(229\) 0.747250 0.0493797 0.0246898 0.999695i \(-0.492140\pi\)
0.0246898 + 0.999695i \(0.492140\pi\)
\(230\) −8.07795 16.2391i −0.532645 1.07077i
\(231\) −0.0245395 0.0205911i −0.00161458 0.00135479i
\(232\) 2.73490 5.66876i 0.179555 0.372172i
\(233\) 4.01918 + 11.0426i 0.263306 + 0.723426i 0.998939 + 0.0460466i \(0.0146623\pi\)
−0.735634 + 0.677380i \(0.763116\pi\)
\(234\) 2.24400 + 15.8034i 0.146695 + 1.03310i
\(235\) 0.862310 + 5.86372i 0.0562509 + 0.382507i
\(236\) 6.70072 + 0.449371i 0.436180 + 0.0292516i
\(237\) 1.22931 0.216761i 0.0798526 0.0140802i
\(238\) −0.219696 + 0.546006i −0.0142408 + 0.0353923i
\(239\) −8.67765 5.01004i −0.561311 0.324073i 0.192361 0.981324i \(-0.438386\pi\)
−0.753671 + 0.657251i \(0.771719\pi\)
\(240\) 0.739581 1.31751i 0.0477398 0.0850451i
\(241\) 11.6615 + 13.8976i 0.751181 + 0.895223i 0.997256 0.0740278i \(-0.0235854\pi\)
−0.246075 + 0.969251i \(0.579141\pi\)
\(242\) −3.12816 + 14.8207i −0.201086 + 0.952707i
\(243\) 1.54020 4.23166i 0.0988038 0.271461i
\(244\) 3.30475 13.4174i 0.211565 0.858962i
\(245\) 8.06385 13.0901i 0.515180 0.836297i
\(246\) −0.546375 + 0.877162i −0.0348356 + 0.0559258i
\(247\) −14.5006 7.99131i −0.922652 0.508475i
\(248\) −18.6178 1.87636i −1.18223 0.119149i
\(249\) 0.254224 + 0.0448265i 0.0161108 + 0.00284077i
\(250\) −10.8195 11.5299i −0.684283 0.729217i
\(251\) −6.31812 + 17.3589i −0.398796 + 1.09568i 0.564075 + 0.825724i \(0.309233\pi\)
−0.962871 + 0.269961i \(0.912989\pi\)
\(252\) −1.51131 1.45115i −0.0952035 0.0914139i
\(253\) 1.98305 + 2.36331i 0.124674 + 0.148580i
\(254\) −0.746529 + 22.2885i −0.0468414 + 1.39850i
\(255\) 0.349597 0.276748i 0.0218926 0.0173307i
\(256\) 14.5416 6.67401i 0.908849 0.417126i
\(257\) 1.52649 + 8.65713i 0.0952196 + 0.540017i 0.994680 + 0.103015i \(0.0328488\pi\)
−0.899460 + 0.437003i \(0.856040\pi\)
\(258\) 2.38655 1.27332i 0.148580 0.0792734i
\(259\) 0.136363 + 0.236188i 0.00847321 + 0.0146760i
\(260\) −11.9125 12.1099i −0.738781 0.751024i
\(261\) 2.26154 + 6.21353i 0.139986 + 0.384608i
\(262\) 14.3400 + 18.3005i 0.885928 + 1.13061i
\(263\) −19.8411 16.6487i −1.22345 1.02660i −0.998637 0.0521999i \(-0.983377\pi\)
−0.224818 0.974401i \(-0.572179\pi\)
\(264\) −0.0697815 + 0.247343i −0.00429475 + 0.0152229i
\(265\) 9.17555 + 3.63918i 0.563650 + 0.223553i
\(266\) 2.14520 0.348308i 0.131531 0.0213562i
\(267\) −0.854127 −0.0522717
\(268\) −3.94874 13.6242i −0.241208 0.832230i
\(269\) −4.22376 + 5.03368i −0.257527 + 0.306909i −0.879281 0.476304i \(-0.841976\pi\)
0.621753 + 0.783213i \(0.286421\pi\)
\(270\) 0.903168 + 3.05933i 0.0549651 + 0.186185i
\(271\) −5.55145 15.2525i −0.337226 0.926522i −0.986178 0.165692i \(-0.947014\pi\)
0.648951 0.760830i \(-0.275208\pi\)
\(272\) 4.71783 0.191684i 0.286061 0.0116226i
\(273\) 0.195906 0.113107i 0.0118568 0.00684553i
\(274\) −25.6606 + 13.6910i −1.55022 + 0.827101i
\(275\) 2.24868 + 1.47533i 0.135601 + 0.0889656i
\(276\) −1.14343 1.56441i −0.0688267 0.0941662i
\(277\) −14.9324 8.62125i −0.897203 0.518000i −0.0209114 0.999781i \(-0.506657\pi\)
−0.876292 + 0.481781i \(0.839990\pi\)
\(278\) 0.369123 11.0206i 0.0221385 0.660971i
\(279\) 15.0592 12.6362i 0.901571 0.756508i
\(280\) 2.21123 + 0.286764i 0.132146 + 0.0171374i
\(281\) 8.80831 24.2006i 0.525460 1.44369i −0.338904 0.940821i \(-0.610056\pi\)
0.864364 0.502867i \(-0.167722\pi\)
\(282\) 0.196528 + 0.601929i 0.0117030 + 0.0358444i
\(283\) −4.11288 + 23.3253i −0.244486 + 1.38655i 0.577199 + 0.816604i \(0.304146\pi\)
−0.821684 + 0.569943i \(0.806965\pi\)
\(284\) 6.30946 + 12.8433i 0.374398 + 0.762108i
\(285\) −1.54227 0.576426i −0.0913560 0.0341445i
\(286\) 2.45254 + 1.52766i 0.145022 + 0.0903326i
\(287\) −1.50191 0.264828i −0.0886551 0.0156323i
\(288\) −5.63636 + 15.8360i −0.332126 + 0.933145i
\(289\) −14.6654 5.33777i −0.862670 0.313986i
\(290\) −5.86442 3.88930i −0.344371 0.228388i
\(291\) 1.30764 + 1.55838i 0.0766551 + 0.0913540i
\(292\) −18.9421 12.6982i −1.10850 0.743107i
\(293\) −7.68269 + 13.3068i −0.448828 + 0.777392i −0.998310 0.0581131i \(-0.981492\pi\)
0.549482 + 0.835505i \(0.314825\pi\)
\(294\) 0.613146 1.52384i 0.0357594 0.0888720i
\(295\) 1.51417 7.35421i 0.0881583 0.428178i
\(296\) 1.27849 1.77561i 0.0743108 0.103205i
\(297\) −0.271292 0.469891i −0.0157419 0.0272658i
\(298\) −0.247986 1.74645i −0.0143655 0.101169i
\(299\) −20.4720 + 7.45118i −1.18392 + 0.430913i
\(300\) −1.34722 1.01908i −0.0777819 0.0588366i
\(301\) 3.05802 + 2.56598i 0.176261 + 0.147901i
\(302\) −24.1841 21.7131i −1.39164 1.24945i
\(303\) 1.34644i 0.0773508i
\(304\) −9.61508 14.5448i −0.551462 0.834200i
\(305\) −14.3612 5.69588i −0.822317 0.326145i
\(306\) −3.31397 + 3.69111i −0.189447 + 0.211006i
\(307\) 2.89483 3.44993i 0.165217 0.196898i −0.677084 0.735906i \(-0.736756\pi\)
0.842300 + 0.539008i \(0.181201\pi\)
\(308\) −0.377080 + 0.0407197i −0.0214861 + 0.00232022i
\(309\) 1.58102 0.575446i 0.0899413 0.0327360i
\(310\) −4.90248 + 20.3382i −0.278442 + 1.15513i
\(311\) 27.8935 16.1043i 1.58170 0.913194i 0.587086 0.809525i \(-0.300275\pi\)
0.994612 0.103669i \(-0.0330582\pi\)
\(312\) −1.47278 1.06045i −0.0833797 0.0600359i
\(313\) −11.1710 + 1.96975i −0.631422 + 0.111337i −0.480194 0.877162i \(-0.659434\pi\)
−0.151228 + 0.988499i \(0.548323\pi\)
\(314\) −7.27259 + 18.0744i −0.410416 + 1.02000i
\(315\) −1.83668 + 1.45395i −0.103485 + 0.0819209i
\(316\) 8.22946 12.2760i 0.462943 0.690579i
\(317\) 6.45464 5.41608i 0.362528 0.304197i −0.443269 0.896389i \(-0.646181\pi\)
0.805798 + 0.592191i \(0.201737\pi\)
\(318\) 1.03184 + 0.217788i 0.0578628 + 0.0122129i
\(319\) 1.12477 + 0.409381i 0.0629748 + 0.0229210i
\(320\) −5.18704 17.1200i −0.289964 0.957038i
\(321\) 0.333164 1.88947i 0.0185954 0.105460i
\(322\) 1.51193 2.42728i 0.0842566 0.135267i
\(323\) −0.994192 5.04842i −0.0553183 0.280902i
\(324\) −7.71100 15.6962i −0.428389 0.872010i
\(325\) −15.2210 + 11.3585i −0.844311 + 0.630058i
\(326\) 18.1849 5.93730i 1.00717 0.328836i
\(327\) 0.835903 + 0.304244i 0.0462256 + 0.0168247i
\(328\) 3.01070 + 11.8590i 0.166238 + 0.654805i
\(329\) −0.715838 + 0.600660i −0.0394654 + 0.0331154i
\(330\) 0.263397 + 0.114815i 0.0144995 + 0.00632036i
\(331\) −13.0871 + 22.6674i −0.719330 + 1.24592i 0.241936 + 0.970292i \(0.422218\pi\)
−0.961266 + 0.275623i \(0.911116\pi\)
\(332\) 2.46751 1.80352i 0.135422 0.0989811i
\(333\) 0.399156 + 2.26372i 0.0218736 + 0.124051i
\(334\) −17.3877 + 9.27700i −0.951412 + 0.507615i
\(335\) −15.6904 + 2.30741i −0.857260 + 0.126067i
\(336\) 0.238023 0.00967081i 0.0129852 0.000527586i
\(337\) −16.5722 + 6.03180i −0.902746 + 0.328573i −0.751353 0.659901i \(-0.770598\pi\)
−0.151394 + 0.988474i \(0.548376\pi\)
\(338\) −1.58944 + 1.24546i −0.0864540 + 0.0677439i
\(339\) −1.64903 + 1.96524i −0.0895631 + 0.106737i
\(340\) 0.503299 5.25500i 0.0272952 0.284993i
\(341\) 3.55854i 0.192706i
\(342\) 17.9942 + 3.42528i 0.973017 + 0.185218i
\(343\) 4.89194 0.264140
\(344\) 8.69590 30.8230i 0.468851 1.66186i
\(345\) −1.90633 + 1.02928i −0.102633 + 0.0554146i
\(346\) −7.86953 + 6.16643i −0.423068 + 0.331509i
\(347\) 6.32576 2.30239i 0.339585 0.123599i −0.166598 0.986025i \(-0.553278\pi\)
0.506183 + 0.862426i \(0.331056\pi\)
\(348\) −0.687673 0.303826i −0.0368632 0.0162868i
\(349\) 2.63674 + 4.56697i 0.141142 + 0.244464i 0.927927 0.372763i \(-0.121589\pi\)
−0.786785 + 0.617227i \(0.788256\pi\)
\(350\) 0.653059 2.40588i 0.0349075 0.128600i
\(351\) 3.77332 0.665339i 0.201405 0.0355132i
\(352\) 1.54012 + 2.62421i 0.0820889 + 0.139871i
\(353\) 24.1899 + 13.9660i 1.28750 + 0.743337i 0.978207 0.207631i \(-0.0665752\pi\)
0.309290 + 0.950968i \(0.399909\pi\)
\(354\) 0.0268531 0.801731i 0.00142723 0.0426115i
\(355\) 15.1835 5.04083i 0.805857 0.267540i
\(356\) −7.00401 + 7.29436i −0.371212 + 0.386600i
\(357\) 0.0660608 + 0.0240442i 0.00349631 + 0.00127255i
\(358\) 24.1629 7.88908i 1.27705 0.416951i
\(359\) 4.12396 + 0.727165i 0.217654 + 0.0383783i 0.281412 0.959587i \(-0.409197\pi\)
−0.0637576 + 0.997965i \(0.520308\pi\)
\(360\) 16.6865 + 8.64547i 0.879457 + 0.455656i
\(361\) −14.0571 + 12.7827i −0.739848 + 0.672774i
\(362\) −6.66798 4.15342i −0.350461 0.218299i
\(363\) 1.78180 + 0.314180i 0.0935203 + 0.0164902i
\(364\) 0.640526 2.60057i 0.0335727 0.136307i
\(365\) −16.9390 + 19.0560i −0.886628 + 0.997436i
\(366\) −1.61499 0.340872i −0.0844169 0.0178177i
\(367\) 4.01358 3.36779i 0.209507 0.175797i −0.531996 0.846747i \(-0.678558\pi\)
0.741503 + 0.670950i \(0.234113\pi\)
\(368\) −22.7366 3.06335i −1.18523 0.159688i
\(369\) −11.1319 6.42699i −0.579502 0.334576i
\(370\) −1.77291 1.68551i −0.0921690 0.0876257i
\(371\) 0.270251 + 1.53267i 0.0140307 + 0.0795723i
\(372\) −0.149557 + 2.23010i −0.00775418 + 0.115625i
\(373\) 8.38038 + 14.5152i 0.433920 + 0.751571i 0.997207 0.0746904i \(-0.0237968\pi\)
−0.563287 + 0.826261i \(0.690464\pi\)
\(374\) 0.126237 + 0.889028i 0.00652756 + 0.0459706i
\(375\) −1.33318 + 1.33773i −0.0688453 + 0.0690803i
\(376\) 6.75213 + 3.25757i 0.348214 + 0.167996i
\(377\) −5.43313 + 6.47495i −0.279820 + 0.333477i
\(378\) −0.335997 + 0.374234i −0.0172818 + 0.0192485i
\(379\) 7.16672 0.368130 0.184065 0.982914i \(-0.441074\pi\)
0.184065 + 0.982914i \(0.441074\pi\)
\(380\) −17.5697 + 8.44436i −0.901304 + 0.433186i
\(381\) 2.66379 0.136470
\(382\) −8.33059 + 9.27861i −0.426230 + 0.474735i
\(383\) 21.4278 25.5367i 1.09491 1.30486i 0.146013 0.989283i \(-0.453356\pi\)
0.948898 0.315582i \(-0.102200\pi\)
\(384\) −0.854890 1.70929i −0.0436259 0.0872269i
\(385\) −0.0120924 + 0.423866i −0.000616286 + 0.0216022i
\(386\) 3.82878 + 26.9643i 0.194880 + 1.37245i
\(387\) 16.8229 + 29.1381i 0.855155 + 1.48117i
\(388\) 24.0317 + 1.61164i 1.22002 + 0.0818186i
\(389\) 1.25719 + 7.12991i 0.0637423 + 0.361501i 0.999949 + 0.0100520i \(0.00319969\pi\)
−0.936207 + 0.351449i \(0.885689\pi\)
\(390\) −1.39805 + 1.47054i −0.0707930 + 0.0744636i
\(391\) −5.86333 3.38519i −0.296521 0.171197i
\(392\) −7.98587 17.7321i −0.403347 0.895608i
\(393\) 2.12739 1.78509i 0.107312 0.0900458i
\(394\) −29.1053 6.14317i −1.46630 0.309489i
\(395\) −12.3498 10.9778i −0.621386 0.552355i
\(396\) −3.10389 0.764495i −0.155976 0.0384173i
\(397\) 1.69283 + 0.298492i 0.0849608 + 0.0149809i 0.215967 0.976401i \(-0.430710\pi\)
−0.131006 + 0.991382i \(0.541821\pi\)
\(398\) −21.0269 13.0974i −1.05398 0.656514i
\(399\) −0.0501588 0.254702i −0.00251108 0.0127510i
\(400\) −19.7506 + 3.14881i −0.987529 + 0.157440i
\(401\) 14.9749 + 2.64047i 0.747809 + 0.131859i 0.534550 0.845137i \(-0.320481\pi\)
0.213259 + 0.976996i \(0.431592\pi\)
\(402\) −1.61067 + 0.525878i −0.0803330 + 0.0262284i
\(403\) 23.6137 + 8.59468i 1.17628 + 0.428132i
\(404\) −11.4988 11.0411i −0.572085 0.549313i
\(405\) −18.5563 + 6.16057i −0.922068 + 0.306121i
\(406\) 0.0371403 1.10887i 0.00184324 0.0550322i
\(407\) 0.360352 + 0.208049i 0.0178620 + 0.0103126i
\(408\) −0.0417476 0.562450i −0.00206682 0.0278454i
\(409\) −7.87743 + 1.38900i −0.389514 + 0.0686818i −0.364976 0.931017i \(-0.618923\pi\)
−0.0245384 + 0.999699i \(0.507812\pi\)
\(410\) 13.5929 1.53610i 0.671305 0.0758627i
\(411\) 1.73703 + 3.00863i 0.0856816 + 0.148405i
\(412\) 8.05033 18.2209i 0.396611 0.897681i
\(413\) 1.11244 0.404897i 0.0547398 0.0199237i
\(414\) 18.9717 14.8659i 0.932408 0.730619i
\(415\) −1.62347 3.00682i −0.0796929 0.147599i
\(416\) −21.1334 + 3.88187i −1.03615 + 0.190324i
\(417\) −1.31712 −0.0644995
\(418\) 2.56873 2.09668i 0.125641 0.102552i
\(419\) 29.5028i 1.44131i −0.693296 0.720653i \(-0.743842\pi\)
0.693296 0.720653i \(-0.256158\pi\)
\(420\) 0.0253923 0.265124i 0.00123902 0.0129367i
\(421\) 15.3524 18.2962i 0.748229 0.891704i −0.248814 0.968551i \(-0.580041\pi\)
0.997043 + 0.0768469i \(0.0244853\pi\)
\(422\) 11.7041 9.17111i 0.569745 0.446443i
\(423\) −7.40101 + 2.69375i −0.359849 + 0.130974i
\(424\) 10.3212 7.02616i 0.501244 0.341221i
\(425\) −5.74461 1.35461i −0.278654 0.0657082i
\(426\) 1.50801 0.804580i 0.0730631 0.0389820i
\(427\) −0.422985 2.39887i −0.0204697 0.116089i
\(428\) −13.4043 18.3393i −0.647921 0.886463i
\(429\) 0.172566 0.298894i 0.00833158 0.0144307i
\(430\) −32.8235 14.3078i −1.58289 0.689984i
\(431\) 11.0099 9.23838i 0.530327 0.444997i −0.337887 0.941187i \(-0.609712\pi\)
0.868214 + 0.496189i \(0.165268\pi\)
\(432\) 3.84446 + 1.22495i 0.184967 + 0.0589356i
\(433\) −24.8805 9.05575i −1.19568 0.435191i −0.333965 0.942586i \(-0.608387\pi\)
−0.861714 + 0.507394i \(0.830609\pi\)
\(434\) −3.13562 + 1.02377i −0.150515 + 0.0491424i
\(435\) −0.440857 + 0.715648i −0.0211375 + 0.0343127i
\(436\) 9.45286 4.64387i 0.452710 0.222401i
\(437\) 0.497733 + 24.9956i 0.0238098 + 1.19570i
\(438\) −1.44018 + 2.31209i −0.0688143 + 0.110476i
\(439\) 5.33260 30.2427i 0.254511 1.44341i −0.542813 0.839854i \(-0.682641\pi\)
0.797324 0.603552i \(-0.206248\pi\)
\(440\) 3.14044 1.30794i 0.149715 0.0623534i
\(441\) 19.1988 + 6.98778i 0.914228 + 0.332752i
\(442\) −6.20429 1.30952i −0.295108 0.0622877i
\(443\) 24.3577 20.4385i 1.15727 0.971064i 0.157404 0.987534i \(-0.449687\pi\)
0.999864 + 0.0164704i \(0.00524292\pi\)
\(444\) −0.217085 0.145527i −0.0103024 0.00690640i
\(445\) 7.01753 + 8.86477i 0.332663 + 0.420230i
\(446\) 5.58755 13.8866i 0.264578 0.657551i
\(447\) −0.207500 + 0.0365879i −0.00981443 + 0.00173055i
\(448\) 1.86925 2.11205i 0.0883137 0.0997852i
\(449\) 21.7050 12.5314i 1.02432 0.591391i 0.108968 0.994045i \(-0.465245\pi\)
0.915352 + 0.402654i \(0.131912\pi\)
\(450\) 12.1077 17.1722i 0.570760 0.809506i
\(451\) −2.18649 + 0.795817i −0.102958 + 0.0374735i
\(452\) 3.26102 + 30.1983i 0.153386 + 1.42041i
\(453\) −2.49542 + 2.97392i −0.117245 + 0.139727i
\(454\) 1.70761 1.90194i 0.0801422 0.0892624i
\(455\) −2.78348 1.10398i −0.130492 0.0517552i
\(456\) −1.69791 + 1.20601i −0.0795121 + 0.0564765i
\(457\) 28.0718i 1.31314i 0.754264 + 0.656571i \(0.227994\pi\)
−0.754264 + 0.656571i \(0.772006\pi\)
\(458\) −0.786341 0.705998i −0.0367433 0.0329891i
\(459\) 0.912151 + 0.765386i 0.0425756 + 0.0357251i
\(460\) −6.84208 + 24.7206i −0.319014 + 1.15261i
\(461\) 8.10603 2.95035i 0.377535 0.137412i −0.146280 0.989243i \(-0.546730\pi\)
0.523816 + 0.851831i \(0.324508\pi\)
\(462\) 0.00636889 + 0.0448531i 0.000296307 + 0.00208675i
\(463\) 19.5043 + 33.7824i 0.906440 + 1.57000i 0.818972 + 0.573834i \(0.194544\pi\)
0.0874686 + 0.996167i \(0.472122\pi\)
\(464\) −8.23378 + 3.38139i −0.382244 + 0.156977i
\(465\) 2.44759 + 0.503937i 0.113504 + 0.0233695i
\(466\) 6.20357 15.4176i 0.287375 0.714206i
\(467\) 5.82760 10.0937i 0.269669 0.467081i −0.699107 0.715017i \(-0.746419\pi\)
0.968776 + 0.247936i \(0.0797523\pi\)
\(468\) 12.5696 18.7503i 0.581031 0.866732i
\(469\) −1.60727 1.91547i −0.0742170 0.0884484i
\(470\) 4.63260 6.98518i 0.213686 0.322202i
\(471\) 2.18681 + 0.795933i 0.100763 + 0.0366747i
\(472\) −6.62670 6.80369i −0.305018 0.313165i
\(473\) 5.99799 + 1.05761i 0.275788 + 0.0486288i
\(474\) −1.49842 0.933349i −0.0688246 0.0428701i
\(475\) 6.68873 + 20.7427i 0.306900 + 0.951742i
\(476\) 0.747053 0.367002i 0.0342411 0.0168215i
\(477\) −2.27778 + 12.9179i −0.104292 + 0.591472i
\(478\) 4.39814 + 13.4707i 0.201166 + 0.616137i
\(479\) −5.89779 + 16.2040i −0.269477 + 0.740382i 0.728963 + 0.684553i \(0.240002\pi\)
−0.998440 + 0.0558292i \(0.982220\pi\)
\(480\) −2.02305 + 0.687684i −0.0923392 + 0.0313884i
\(481\) −2.25090 + 1.88873i −0.102632 + 0.0861186i
\(482\) 0.858862 25.6423i 0.0391201 1.16798i
\(483\) −0.295815 0.170789i −0.0134601 0.00777117i
\(484\) 17.2943 12.6405i 0.786103 0.574568i
\(485\) 5.43047 26.3754i 0.246585 1.19764i
\(486\) −5.61882 + 2.99786i −0.254875 + 0.135986i
\(487\) −26.0280 + 15.0273i −1.17944 + 0.680950i −0.955885 0.293741i \(-0.905100\pi\)
−0.223555 + 0.974691i \(0.571766\pi\)
\(488\) −16.1543 + 10.9970i −0.731273 + 0.497812i
\(489\) −0.781509 2.14718i −0.0353411 0.0970987i
\(490\) −20.8532 + 6.15622i −0.942050 + 0.278109i
\(491\) −12.0290 + 14.3357i −0.542863 + 0.646959i −0.965827 0.259187i \(-0.916545\pi\)
0.422964 + 0.906147i \(0.360990\pi\)
\(492\) 1.40370 0.406837i 0.0632835 0.0183416i
\(493\) −2.62677 −0.118304
\(494\) 7.70904 + 22.1095i 0.346846 + 0.994752i
\(495\) −1.31764 + 3.32220i −0.0592236 + 0.149322i
\(496\) 17.8190 + 19.5645i 0.800095 + 0.878472i
\(497\) 1.93229 + 1.62138i 0.0866750 + 0.0727289i
\(498\) −0.225171 0.287361i −0.0100902 0.0128770i
\(499\) 1.26220 + 3.46788i 0.0565040 + 0.155243i 0.964733 0.263230i \(-0.0847877\pi\)
−0.908229 + 0.418473i \(0.862565\pi\)
\(500\) 0.492048 + 22.3553i 0.0220051 + 0.999758i
\(501\) 1.17702 + 2.03865i 0.0525852 + 0.0910803i
\(502\) 23.0492 12.2977i 1.02874 0.548872i
\(503\) −3.50139 19.8574i −0.156119 0.885397i −0.957755 0.287585i \(-0.907148\pi\)
0.801636 0.597813i \(-0.203963\pi\)
\(504\) 0.219329 + 2.95494i 0.00976970 + 0.131624i
\(505\) −13.9743 + 11.0624i −0.621850 + 0.492269i
\(506\) 0.146051 4.36052i 0.00649276 0.193849i
\(507\) 0.155038 + 0.184768i 0.00688550 + 0.00820582i
\(508\) 21.8436 22.7492i 0.969155 1.00933i
\(509\) −8.80102 + 24.1806i −0.390098 + 1.07179i 0.576858 + 0.816844i \(0.304278\pi\)
−0.966956 + 0.254942i \(0.917944\pi\)
\(510\) −0.629356 0.0390717i −0.0278684 0.00173013i
\(511\) −3.95886 0.698053i −0.175129 0.0308800i
\(512\) −21.6079 6.71566i −0.954942 0.296793i
\(513\) 0.677158 4.34447i 0.0298973 0.191813i
\(514\) 6.57287 10.5522i 0.289917 0.465439i
\(515\) −18.9621 11.6812i −0.835572 0.514734i
\(516\) −3.71443 0.914873i −0.163518 0.0402750i
\(517\) −0.487619 + 1.33972i −0.0214455 + 0.0589209i
\(518\) 0.0796525 0.377379i 0.00349973 0.0165811i
\(519\) 0.767616 + 0.914810i 0.0336946 + 0.0401557i
\(520\) 1.09430 + 23.9983i 0.0479883 + 1.05239i
\(521\) 14.1055 + 8.14382i 0.617974 + 0.356787i 0.776080 0.630635i \(-0.217205\pi\)
−0.158106 + 0.987422i \(0.550539\pi\)
\(522\) 3.49066 8.67527i 0.152782 0.379706i
\(523\) 3.09462 0.545665i 0.135318 0.0238603i −0.105579 0.994411i \(-0.533669\pi\)
0.240897 + 0.970551i \(0.422558\pi\)
\(524\) 2.20009 32.8063i 0.0961113 1.43315i
\(525\) −0.289826 0.0683425i −0.0126490 0.00298271i
\(526\) 5.14948 + 36.2654i 0.224528 + 1.58125i
\(527\) 2.67098 + 7.33844i 0.116350 + 0.319668i
\(528\) 0.307121 0.194353i 0.0133657 0.00845815i
\(529\) 7.58091 + 6.36114i 0.329605 + 0.276571i
\(530\) −6.21727 12.4986i −0.270061 0.542903i
\(531\) 9.97785 0.433002
\(532\) −2.58650 1.66024i −0.112139 0.0719807i
\(533\) 16.4311i 0.711712i
\(534\) 0.898809 + 0.806975i 0.0388953 + 0.0349212i
\(535\) −22.3476 + 12.0661i −0.966171 + 0.521663i
\(536\) −8.71676 + 18.0677i −0.376507 + 0.780404i
\(537\) −1.03842 2.85302i −0.0448109 0.123117i
\(538\) 9.20051 1.30642i 0.396662 0.0563238i
\(539\) 3.20289 1.84919i 0.137958 0.0796503i
\(540\) 1.94003 4.07268i 0.0834854 0.175260i
\(541\) −1.34105 7.60549i −0.0576564 0.326986i 0.942314 0.334731i \(-0.108646\pi\)
−0.999970 + 0.00774564i \(0.997534\pi\)
\(542\) −8.56860 + 21.2954i −0.368053 + 0.914714i
\(543\) −0.469174 + 0.812633i −0.0201342 + 0.0348734i
\(544\) −5.14574 4.25567i −0.220622 0.182461i
\(545\) −3.71014 11.1753i −0.158925 0.478698i
\(546\) −0.313018 0.0660678i −0.0133959 0.00282744i
\(547\) 13.1507 36.1314i 0.562285 1.54487i −0.253992 0.967206i \(-0.581744\pi\)
0.816278 0.577660i \(-0.196034\pi\)
\(548\) 39.9382 + 9.83687i 1.70607 + 0.420210i
\(549\) 3.56508 20.2186i 0.152154 0.862907i
\(550\) −0.972438 3.67705i −0.0414649 0.156790i
\(551\) 5.01613 + 8.30198i 0.213694 + 0.353676i
\(552\) −0.274791 + 2.72656i −0.0116959 + 0.116050i
\(553\) 0.452394 2.56565i 0.0192378 0.109103i
\(554\) 7.56829 + 23.1803i 0.321546 + 0.984838i
\(555\) −0.194128 + 0.218390i −0.00824028 + 0.00927012i
\(556\) −10.8006 + 11.2484i −0.458049 + 0.477037i
\(557\) −10.8639 12.9471i −0.460317 0.548585i 0.485095 0.874461i \(-0.338785\pi\)
−0.945412 + 0.325877i \(0.894341\pi\)
\(558\) −27.7856 0.930648i −1.17626 0.0393975i
\(559\) −21.5046 + 37.2470i −0.909546 + 1.57538i
\(560\) −2.05598 2.39093i −0.0868809 0.101035i
\(561\) 0.105628 0.0186250i 0.00445960 0.000786349i
\(562\) −32.1337 + 17.1446i −1.35548 + 0.723201i
\(563\) −28.0438 + 16.1911i −1.18190 + 0.682372i −0.956454 0.291883i \(-0.905718\pi\)
−0.225449 + 0.974255i \(0.572385\pi\)
\(564\) 0.361891 0.819096i 0.0152384 0.0344902i
\(565\) 33.9452 + 0.968417i 1.42809 + 0.0407416i
\(566\) 26.3657 20.6597i 1.10823 0.868392i
\(567\) −2.36151 1.98154i −0.0991742 0.0832170i
\(568\) 5.49473 19.4763i 0.230554 0.817207i
\(569\) 24.2370i 1.01607i 0.861336 + 0.508035i \(0.169628\pi\)
−0.861336 + 0.508035i \(0.830372\pi\)
\(570\) 1.07834 + 2.06371i 0.0451668 + 0.0864391i
\(571\) 37.6440i 1.57535i 0.616090 + 0.787676i \(0.288716\pi\)
−0.616090 + 0.787676i \(0.711284\pi\)
\(572\) −1.13751 3.92473i −0.0475619 0.164101i
\(573\) 1.14099 + 0.957407i 0.0476657 + 0.0399963i
\(574\) 1.33028 + 1.69768i 0.0555246 + 0.0708599i
\(575\) 26.3451 + 11.3287i 1.09867 + 0.472440i
\(576\) 20.8930 11.3392i 0.870541 0.472467i
\(577\) 33.0145 19.0610i 1.37441 0.793518i 0.382934 0.923776i \(-0.374914\pi\)
0.991480 + 0.130258i \(0.0415805\pi\)
\(578\) 10.3895 + 19.4728i 0.432146 + 0.809961i
\(579\) 3.20370 0.564898i 0.133141 0.0234764i
\(580\) 2.49661 + 9.63344i 0.103666 + 0.400007i
\(581\) 0.269383 0.466585i 0.0111759 0.0193572i
\(582\) 0.0963069 2.87536i 0.00399205 0.119187i
\(583\) 1.52628 + 1.81894i 0.0632119 + 0.0753330i
\(584\) 7.93583 + 31.2589i 0.328387 + 1.29350i
\(585\) −18.8630 16.7675i −0.779889 0.693249i
\(586\) 20.6568 6.74436i 0.853325 0.278607i
\(587\) −2.86570 + 16.2522i −0.118280 + 0.670799i 0.866794 + 0.498667i \(0.166177\pi\)
−0.985074 + 0.172132i \(0.944934\pi\)
\(588\) −2.08494 + 1.02426i −0.0859813 + 0.0422397i
\(589\) 18.0928 22.4553i 0.745499 0.925254i
\(590\) −8.54159 + 6.30835i −0.351652 + 0.259711i
\(591\) −0.616996 + 3.49916i −0.0253798 + 0.143936i
\(592\) −3.02296 + 0.660583i −0.124243 + 0.0271498i
\(593\) 2.47644 6.80396i 0.101695 0.279405i −0.878402 0.477922i \(-0.841390\pi\)
0.980097 + 0.198517i \(0.0636124\pi\)
\(594\) −0.158467 + 0.750787i −0.00650197 + 0.0308052i
\(595\) −0.293209 0.883177i −0.0120204 0.0362067i
\(596\) −1.38908 + 2.07211i −0.0568989 + 0.0848769i
\(597\) −1.47950 + 2.56256i −0.0605518 + 0.104879i
\(598\) 28.5827 + 11.5008i 1.16884 + 0.470303i
\(599\) 1.58315 + 8.97847i 0.0646856 + 0.366850i 0.999918 + 0.0128156i \(0.00407945\pi\)
−0.935232 + 0.354035i \(0.884809\pi\)
\(600\) 0.454878 + 2.34524i 0.0185703 + 0.0957440i
\(601\) 12.0081 6.93289i 0.489822 0.282799i −0.234679 0.972073i \(-0.575404\pi\)
0.724500 + 0.689274i \(0.242071\pi\)
\(602\) −0.793666 5.58941i −0.0323474 0.227808i
\(603\) −7.20806 19.8040i −0.293535 0.806481i
\(604\) 4.93479 + 45.6980i 0.200794 + 1.85942i
\(605\) −11.3785 21.0742i −0.462604 0.856787i
\(606\) −1.27211 + 1.41687i −0.0516758 + 0.0575566i
\(607\) 0.0255150i 0.00103562i 1.00000 0.000517812i \(0.000164825\pi\)
−1.00000 0.000517812i \(0.999835\pi\)
\(608\) −3.62375 + 24.3899i −0.146963 + 0.989142i
\(609\) −0.132525 −0.00537020
\(610\) 9.73099 + 19.5622i 0.393996 + 0.792050i
\(611\) −7.71239 6.47147i −0.312010 0.261808i
\(612\) 6.97467 0.753174i 0.281934 0.0304453i
\(613\) −11.9906 32.9440i −0.484297 1.33059i −0.905776 0.423757i \(-0.860711\pi\)
0.421479 0.906838i \(-0.361511\pi\)
\(614\) −6.30574 + 0.895380i −0.254479 + 0.0361346i
\(615\) −0.237732 1.61658i −0.00958627 0.0651868i
\(616\) 0.435278 + 0.313413i 0.0175378 + 0.0126278i
\(617\) 14.8841 2.62446i 0.599210 0.105657i 0.134188 0.990956i \(-0.457158\pi\)
0.465022 + 0.885299i \(0.346046\pi\)
\(618\) −2.20741 0.888194i −0.0887950 0.0357284i
\(619\) −34.3479 19.8308i −1.38056 0.797066i −0.388333 0.921519i \(-0.626949\pi\)
−0.992225 + 0.124454i \(0.960282\pi\)
\(620\) 24.3744 16.7703i 0.978900 0.673513i
\(621\) −3.71888 4.43199i −0.149234 0.177850i
\(622\) −44.5680 9.40686i −1.78702 0.377181i
\(623\) −0.609690 + 1.67511i −0.0244267 + 0.0671119i
\(624\) 0.547921 + 2.50739i 0.0219344 + 0.100376i
\(625\) 24.8375 + 2.84593i 0.993499 + 0.113837i
\(626\) 13.6164 + 8.48150i 0.544220 + 0.338989i
\(627\) −0.260573 0.298272i −0.0104063 0.0119118i
\(628\) 24.7297 12.1488i 0.986821 0.484791i
\(629\) −0.899278 0.158567i −0.0358565 0.00632248i
\(630\) 3.30645 + 0.205271i 0.131732 + 0.00817820i
\(631\) 3.46482 9.51953i 0.137932 0.378966i −0.851424 0.524478i \(-0.824261\pi\)
0.989357 + 0.145511i \(0.0464828\pi\)
\(632\) −20.2583 + 5.14305i −0.805831 + 0.204580i
\(633\) −1.14165 1.36056i −0.0453765 0.0540776i
\(634\) −11.9094 0.398892i −0.472982 0.0158420i
\(635\) −21.8858 27.6468i −0.868512 1.09713i
\(636\) −0.880055 1.20406i −0.0348964 0.0477441i
\(637\) 4.53511 + 25.7199i 0.179688 + 1.01906i
\(638\) −0.796824 1.49347i −0.0315466 0.0591270i
\(639\) 10.6300 + 18.4117i 0.420515 + 0.728354i
\(640\) −10.7165 + 22.9163i −0.423607 + 0.905846i
\(641\) −8.54858 23.4870i −0.337649 0.927682i −0.986060 0.166392i \(-0.946788\pi\)
0.648411 0.761290i \(-0.275434\pi\)
\(642\) −2.13575 + 1.67354i −0.0842914 + 0.0660493i
\(643\) −33.0725 27.7511i −1.30425 1.09440i −0.989394 0.145260i \(-0.953598\pi\)
−0.314860 0.949138i \(-0.601957\pi\)
\(644\) −3.88431 + 1.12580i −0.153063 + 0.0443627i
\(645\) −1.57683 + 3.97568i −0.0620874 + 0.156542i
\(646\) −3.72352 + 6.25183i −0.146500 + 0.245975i
\(647\) 4.50838 0.177243 0.0886214 0.996065i \(-0.471754\pi\)
0.0886214 + 0.996065i \(0.471754\pi\)
\(648\) −6.71529 + 23.8026i −0.263801 + 0.935055i
\(649\) 1.16099 1.38361i 0.0455728 0.0543115i
\(650\) 26.7488 + 2.42803i 1.04917 + 0.0952352i
\(651\) 0.134755 + 0.370238i 0.00528148 + 0.0145108i
\(652\) −24.7457 10.9331i −0.969118 0.428173i
\(653\) 22.1636 12.7961i 0.867327 0.500752i 0.000868020 1.00000i \(-0.499724\pi\)
0.866459 + 0.499248i \(0.166390\pi\)
\(654\) −0.592184 1.10992i −0.0231562 0.0434012i
\(655\) −36.0057 7.41326i −1.40686 0.289660i
\(656\) 8.03615 15.3239i 0.313759 0.598298i
\(657\) −29.3422 16.9407i −1.14475 0.660921i
\(658\) 1.32079 + 0.0442383i 0.0514896 + 0.00172459i
\(659\) 19.1139 16.0385i 0.744573 0.624771i −0.189489 0.981883i \(-0.560683\pi\)
0.934061 + 0.357112i \(0.116239\pi\)
\(660\) −0.168699 0.369677i −0.00656660 0.0143897i
\(661\) −16.7028 + 45.8904i −0.649662 + 1.78493i −0.0306753 + 0.999529i \(0.509766\pi\)
−0.618986 + 0.785402i \(0.712456\pi\)
\(662\) 35.1878 11.4887i 1.36761 0.446520i
\(663\) −0.131523 + 0.745906i −0.00510794 + 0.0289686i
\(664\) −4.30055 0.433424i −0.166894 0.0168201i
\(665\) −2.23138 + 2.61322i −0.0865292 + 0.101336i
\(666\) 1.71872 2.75927i 0.0665990 0.106919i
\(667\) 12.5692 + 2.21628i 0.486680 + 0.0858148i
\(668\) 27.0621 + 6.66548i 1.04707 + 0.257895i
\(669\) −1.68013 0.611518i −0.0649576 0.0236426i
\(670\) 18.6913 + 12.3961i 0.722107 + 0.478904i
\(671\) −2.38886 2.84693i −0.0922208 0.109904i
\(672\) −0.259612 0.214706i −0.0100147 0.00828248i
\(673\) −13.7919 + 23.8883i −0.531640 + 0.920827i 0.467678 + 0.883899i \(0.345091\pi\)
−0.999318 + 0.0369281i \(0.988243\pi\)
\(674\) 23.1380 + 9.31001i 0.891242 + 0.358608i
\(675\) −4.21702 2.76673i −0.162313 0.106491i
\(676\) 2.84929 + 0.191082i 0.109588 + 0.00734930i
\(677\) 18.5954 + 32.2082i 0.714679 + 1.23786i 0.963083 + 0.269204i \(0.0867608\pi\)
−0.248404 + 0.968657i \(0.579906\pi\)
\(678\) 3.59204 0.510050i 0.137952 0.0195884i
\(679\) 3.98971 1.45213i 0.153111 0.0557278i
\(680\) −5.49453 + 5.05440i −0.210706 + 0.193827i
\(681\) −0.233882 0.196250i −0.00896238 0.00752033i
\(682\) −3.36209 + 3.74470i −0.128741 + 0.143392i
\(683\) 36.9807i 1.41503i 0.706700 + 0.707513i \(0.250183\pi\)
−0.706700 + 0.707513i \(0.749817\pi\)
\(684\) −15.6994 20.6053i −0.600281 0.787864i
\(685\) 16.9543 42.7473i 0.647791 1.63329i
\(686\) −5.14786 4.62188i −0.196546 0.176464i
\(687\) −0.0811380 + 0.0966965i −0.00309561 + 0.00368920i
\(688\) −38.2722 + 24.2196i −1.45911 + 0.923363i
\(689\) −15.7564 + 5.73487i −0.600272 + 0.218481i
\(690\) 2.97851 + 0.717964i 0.113390 + 0.0273324i
\(691\) 7.97564 4.60474i 0.303408 0.175172i −0.340565 0.940221i \(-0.610618\pi\)
0.643973 + 0.765049i \(0.277285\pi\)
\(692\) 14.1072 + 0.946073i 0.536276 + 0.0359643i
\(693\) −0.554936 + 0.0978501i −0.0210803 + 0.00371702i
\(694\) −8.83197 3.55371i −0.335257 0.134897i
\(695\) 10.8215 + 13.6700i 0.410482 + 0.518534i
\(696\) 0.436594 + 0.969431i 0.0165491 + 0.0367462i
\(697\) 3.91167 3.28228i 0.148165 0.124325i
\(698\) 1.54017 7.29706i 0.0582964 0.276198i
\(699\) −1.86536 0.678936i −0.0705545 0.0256797i
\(700\) −2.96028 + 1.91473i −0.111888 + 0.0723700i
\(701\) 1.90882 10.8255i 0.0720952 0.408872i −0.927307 0.374302i \(-0.877882\pi\)
0.999402 0.0345708i \(-0.0110064\pi\)
\(702\) −4.59933 2.86487i −0.173590 0.108128i
\(703\) 1.21612 + 3.14499i 0.0458669 + 0.118615i
\(704\) 0.858646 4.21659i 0.0323614 0.158919i
\(705\) −0.852416 0.525110i −0.0321039 0.0197768i
\(706\) −12.2603 37.5511i −0.461422 1.41325i
\(707\) −2.64063 0.961110i −0.0993111 0.0361463i
\(708\) −0.785729 + 0.818302i −0.0295295 + 0.0307537i
\(709\) −15.2568 + 12.8020i −0.572982 + 0.480789i −0.882634 0.470061i \(-0.844232\pi\)
0.309652 + 0.950850i \(0.399788\pi\)
\(710\) −20.7404 9.04076i −0.778372 0.339294i
\(711\) 10.9790 19.0161i 0.411743 0.713160i
\(712\) 14.2621 1.05860i 0.534494 0.0396726i
\(713\) −6.58901 37.3681i −0.246760 1.39945i
\(714\) −0.0467999 0.0877160i −0.00175144 0.00328269i
\(715\) −4.51995 + 0.664697i −0.169037 + 0.0248583i
\(716\) −32.8804 14.5272i −1.22880 0.542905i
\(717\) 1.59055 0.578914i 0.0594003 0.0216200i
\(718\) −3.65267 4.66150i −0.136317 0.173966i
\(719\) −20.6011 + 24.5514i −0.768290 + 0.915613i −0.998342 0.0575658i \(-0.981666\pi\)
0.230051 + 0.973178i \(0.426111\pi\)
\(720\) −9.39125 24.8631i −0.349991 0.926592i
\(721\) 3.51146i 0.130774i
\(722\) 26.8695 0.170329i 0.999980 0.00633900i
\(723\) −3.06462 −0.113975
\(724\) 3.09268 + 10.6706i 0.114939 + 0.396569i
\(725\) 11.0496 1.30424i 0.410373 0.0484381i
\(726\) −1.57818 2.01405i −0.0585717 0.0747485i
\(727\) 39.7704 14.4752i 1.47500 0.536857i 0.525548 0.850764i \(-0.323860\pi\)
0.949454 + 0.313908i \(0.101638\pi\)
\(728\) −3.13104 + 2.13144i −0.116044 + 0.0789966i
\(729\) −12.7356 22.0588i −0.471690 0.816992i
\(730\) 35.8291 4.04897i 1.32610 0.149859i
\(731\) −13.1629 + 2.32098i −0.486848 + 0.0858444i
\(732\) 1.37742 + 1.88454i 0.0509110 + 0.0696545i
\(733\) −14.9446 8.62829i −0.551993 0.318693i 0.197932 0.980216i \(-0.436577\pi\)
−0.749925 + 0.661522i \(0.769911\pi\)
\(734\) −7.40541 0.248036i −0.273339 0.00915518i
\(735\) 0.818313 + 2.46484i 0.0301839 + 0.0909170i
\(736\) 21.0318 + 24.7051i 0.775243 + 0.910641i
\(737\) −3.58489 1.30479i −0.132051 0.0480627i
\(738\) 5.64203 + 17.2805i 0.207686 + 0.636106i
\(739\) 41.0588 + 7.23978i 1.51037 + 0.266320i 0.866641 0.498932i \(-0.166274\pi\)
0.643732 + 0.765251i \(0.277385\pi\)
\(740\) 0.273187 + 3.44872i 0.0100426 + 0.126778i
\(741\) 2.60861 1.00871i 0.0958297 0.0370560i
\(742\) 1.16367 1.86818i 0.0427197 0.0685831i
\(743\) 8.97006 + 1.58166i 0.329080 + 0.0580256i 0.335747 0.941952i \(-0.391011\pi\)
−0.00666746 + 0.999978i \(0.502122\pi\)
\(744\) 2.26437 2.20546i 0.0830157 0.0808561i
\(745\) 2.08457 + 1.85299i 0.0763726 + 0.0678882i
\(746\) 4.89514 23.1923i 0.179224 0.849131i
\(747\) 3.47855 2.91885i 0.127274 0.106795i
\(748\) 0.707108 1.05480i 0.0258544 0.0385675i
\(749\) −3.46780 2.00213i −0.126711 0.0731564i
\(750\) 2.66681 0.148129i 0.0973782 0.00540889i
\(751\) −8.02258 45.4983i −0.292748 1.66026i −0.676217 0.736702i \(-0.736382\pi\)
0.383469 0.923554i \(-0.374729\pi\)
\(752\) −4.02762 9.80736i −0.146872 0.357637i
\(753\) −1.56026 2.70245i −0.0568591 0.0984829i
\(754\) 11.8349 1.68048i 0.431000 0.0611996i
\(755\) 51.3680 + 1.46547i 1.86947 + 0.0533339i
\(756\) 0.707149 0.0763629i 0.0257188 0.00277729i
\(757\) 1.50549 1.79418i 0.0547181 0.0652105i −0.737991 0.674810i \(-0.764225\pi\)
0.792709 + 0.609600i \(0.208670\pi\)
\(758\) −7.54163 6.77108i −0.273924 0.245937i
\(759\) −0.521145 −0.0189163
\(760\) 26.4670 + 7.71361i 0.960058 + 0.279802i
\(761\) −37.7494 −1.36841 −0.684207 0.729288i \(-0.739851\pi\)
−0.684207 + 0.729288i \(0.739851\pi\)
\(762\) −2.80314 2.51674i −0.101547 0.0911718i
\(763\) 1.19336 1.42220i 0.0432027 0.0514870i
\(764\) 17.5328 1.89331i 0.634313 0.0684976i
\(765\) 0.223668 7.84007i 0.00808673 0.283458i
\(766\) −46.6757 + 6.62770i −1.68646 + 0.239468i
\(767\) 6.37730 + 11.0458i 0.230271 + 0.398841i