# Properties

 Label 380.2.bb.a.219.17 Level $380$ Weight $2$ Character 380.219 Analytic conductor $3.034$ Analytic rank $0$ Dimension $336$ CM no Inner twists $8$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [380,2,Mod(59,380)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(380, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([9, 9, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("380.59");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$380 = 2^{2} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 380.bb (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$3.03431527681$$ Analytic rank: $$0$$ Dimension: $$336$$ Relative dimension: $$56$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

## Embedding invariants

 Embedding label 219.17 Character $$\chi$$ $$=$$ 380.219 Dual form 380.2.bb.a.59.17

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.777543 - 1.18128i) q^{2} +(-1.85226 - 2.20744i) q^{3} +(-0.790854 + 1.83699i) q^{4} +(-0.543418 + 2.16903i) q^{5} +(-1.16739 + 3.90441i) q^{6} +(0.0958109 - 0.165949i) q^{7} +(2.78493 - 0.494121i) q^{8} +(-0.920966 + 5.22306i) q^{9} +O(q^{10})$$ $$q+(-0.777543 - 1.18128i) q^{2} +(-1.85226 - 2.20744i) q^{3} +(-0.790854 + 1.83699i) q^{4} +(-0.543418 + 2.16903i) q^{5} +(-1.16739 + 3.90441i) q^{6} +(0.0958109 - 0.165949i) q^{7} +(2.78493 - 0.494121i) q^{8} +(-0.920966 + 5.22306i) q^{9} +(2.98477 - 1.04458i) q^{10} +(0.219953 - 0.126990i) q^{11} +(5.51991 - 1.65683i) q^{12} +(1.99715 + 1.67581i) q^{13} +(-0.270530 + 0.0158531i) q^{14} +(5.79455 - 2.81804i) q^{15} +(-2.74910 - 2.90559i) q^{16} +(2.07502 - 0.365881i) q^{17} +(6.88599 - 2.97323i) q^{18} +(4.07719 + 1.54161i) q^{19} +(-3.55473 - 2.71364i) q^{20} +(-0.543789 + 0.0958847i) q^{21} +(-0.321034 - 0.161086i) q^{22} +(-4.63707 + 1.68775i) q^{23} +(-6.24915 - 5.23232i) q^{24} +(-4.40939 - 2.35738i) q^{25} +(0.426732 - 3.66221i) q^{26} +(5.74881 - 3.31907i) q^{27} +(0.229076 + 0.307246i) q^{28} +(6.52866 + 1.15118i) q^{29} +(-7.83441 - 4.65384i) q^{30} +(1.47566 - 2.55592i) q^{31} +(-1.29478 + 5.50668i) q^{32} +(-0.687731 - 0.250314i) q^{33} +(-2.04562 - 2.16669i) q^{34} +(0.307884 + 0.297997i) q^{35} +(-8.86638 - 5.82248i) q^{36} +6.57793 q^{37} +(-1.34912 - 6.01497i) q^{38} -7.51261i q^{39} +(-0.441619 + 6.30912i) q^{40} +(-7.06401 - 8.41856i) q^{41} +(0.536086 + 0.567814i) q^{42} +(6.67333 + 2.42889i) q^{43} +(0.0593291 + 0.504483i) q^{44} +(-10.8285 - 4.83591i) q^{45} +(5.59923 + 4.16538i) q^{46} +(-0.936863 + 5.31322i) q^{47} +(-1.32186 + 11.4504i) q^{48} +(3.48164 + 6.03038i) q^{49} +(0.643758 + 7.04170i) q^{50} +(-4.65112 - 3.90276i) q^{51} +(-4.65791 + 2.34344i) q^{52} +(4.80209 - 1.74782i) q^{53} +(-8.39071 - 4.21024i) q^{54} +(0.155918 + 0.546093i) q^{55} +(0.184828 - 0.509500i) q^{56} +(-4.14901 - 11.8556i) q^{57} +(-3.71644 - 8.60727i) q^{58} +(2.04472 + 11.5962i) q^{59} +(0.594093 + 12.8732i) q^{60} +(11.1808 - 4.06946i) q^{61} +(-4.16665 + 0.244166i) q^{62} +(0.778525 + 0.653260i) q^{63} +(7.51169 - 2.75219i) q^{64} +(-4.72017 + 3.42122i) q^{65} +(0.239050 + 1.00703i) q^{66} +(2.04302 + 0.360240i) q^{67} +(-0.968912 + 4.10115i) q^{68} +(12.3147 + 7.10987i) q^{69} +(0.112625 - 0.595403i) q^{70} +(9.44807 + 3.43882i) q^{71} +(0.0159957 + 15.0009i) q^{72} +(2.30448 + 2.74637i) q^{73} +(-5.11462 - 7.77038i) q^{74} +(2.96356 + 14.0999i) q^{75} +(-6.05638 + 6.27059i) q^{76} -0.0486681i q^{77} +(-8.87451 + 5.84138i) q^{78} +(-5.82732 + 4.88970i) q^{79} +(7.79623 - 4.38393i) q^{80} +(-3.02357 - 1.10049i) q^{81} +(-4.45212 + 14.8904i) q^{82} +(1.59925 - 2.76998i) q^{83} +(0.253918 - 1.07477i) q^{84} +(-0.333994 + 4.69960i) q^{85} +(-2.31959 - 9.77165i) q^{86} +(-9.55160 - 16.5439i) q^{87} +(0.549805 - 0.462341i) q^{88} +(-8.40523 + 10.0170i) q^{89} +(2.70705 + 16.5516i) q^{90} +(0.469448 - 0.170865i) q^{91} +(0.566846 - 9.85304i) q^{92} +(-8.37534 + 1.47680i) q^{93} +(7.00486 - 3.02455i) q^{94} +(-5.55941 + 8.00581i) q^{95} +(14.5539 - 7.34166i) q^{96} +(2.46221 + 13.9639i) q^{97} +(4.41645 - 8.80168i) q^{98} +(0.460706 + 1.26578i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9}+O(q^{10})$$ 336 * q - 18 * q^4 - 12 * q^5 - 18 * q^6 - 24 * q^9 $$336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9} - 15 q^{10} + 18 q^{14} - 6 q^{16} - 42 q^{20} + 12 q^{21} + 12 q^{24} - 12 q^{25} + 18 q^{26} - 24 q^{29} - 24 q^{30} + 12 q^{34} - 6 q^{36} - 48 q^{40} - 12 q^{41} - 36 q^{44} - 6 q^{45} - 18 q^{46} - 108 q^{49} - 36 q^{50} + 36 q^{54} - 30 q^{60} - 24 q^{61} + 18 q^{64} - 18 q^{65} - 48 q^{66} - 180 q^{69} - 21 q^{70} - 30 q^{74} - 48 q^{76} + 3 q^{80} - 60 q^{81} + 90 q^{84} - 36 q^{85} + 102 q^{86} - 48 q^{89} - 78 q^{90} + 24 q^{96}+O(q^{100})$$ 336 * q - 18 * q^4 - 12 * q^5 - 18 * q^6 - 24 * q^9 - 15 * q^10 + 18 * q^14 - 6 * q^16 - 42 * q^20 + 12 * q^21 + 12 * q^24 - 12 * q^25 + 18 * q^26 - 24 * q^29 - 24 * q^30 + 12 * q^34 - 6 * q^36 - 48 * q^40 - 12 * q^41 - 36 * q^44 - 6 * q^45 - 18 * q^46 - 108 * q^49 - 36 * q^50 + 36 * q^54 - 30 * q^60 - 24 * q^61 + 18 * q^64 - 18 * q^65 - 48 * q^66 - 180 * q^69 - 21 * q^70 - 30 * q^74 - 48 * q^76 + 3 * q^80 - 60 * q^81 + 90 * q^84 - 36 * q^85 + 102 * q^86 - 48 * q^89 - 78 * q^90 + 24 * q^96

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/380\mathbb{Z}\right)^\times$$.

 $$n$$ $$21$$ $$77$$ $$191$$ $$\chi(n)$$ $$e\left(\frac{17}{18}\right)$$ $$-1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.777543 1.18128i −0.549806 0.835292i
$$3$$ −1.85226 2.20744i −1.06940 1.27446i −0.959859 0.280481i $$-0.909506\pi$$
−0.109542 0.993982i $$-0.534939\pi$$
$$4$$ −0.790854 + 1.83699i −0.395427 + 0.918497i
$$5$$ −0.543418 + 2.16903i −0.243024 + 0.970020i
$$6$$ −1.16739 + 3.90441i −0.476586 + 1.59397i
$$7$$ 0.0958109 0.165949i 0.0362131 0.0627230i −0.847351 0.531034i $$-0.821804\pi$$
0.883564 + 0.468311i $$0.155137\pi$$
$$8$$ 2.78493 0.494121i 0.984622 0.174698i
$$9$$ −0.920966 + 5.22306i −0.306989 + 1.74102i
$$10$$ 2.98477 1.04458i 0.943867 0.330327i
$$11$$ 0.219953 0.126990i 0.0663183 0.0382889i −0.466474 0.884535i $$-0.654476\pi$$
0.532792 + 0.846246i $$0.321143\pi$$
$$12$$ 5.51991 1.65683i 1.59346 0.478286i
$$13$$ 1.99715 + 1.67581i 0.553910 + 0.464786i 0.876263 0.481834i $$-0.160029\pi$$
−0.322352 + 0.946620i $$0.604474\pi$$
$$14$$ −0.270530 + 0.0158531i −0.0723022 + 0.00423691i
$$15$$ 5.79455 2.81804i 1.49615 0.727616i
$$16$$ −2.74910 2.90559i −0.687275 0.726397i
$$17$$ 2.07502 0.365881i 0.503265 0.0887392i 0.0837487 0.996487i $$-0.473311\pi$$
0.419517 + 0.907748i $$0.362200\pi$$
$$18$$ 6.88599 2.97323i 1.62304 0.700797i
$$19$$ 4.07719 + 1.54161i 0.935371 + 0.353669i
$$20$$ −3.55473 2.71364i −0.794863 0.606789i
$$21$$ −0.543789 + 0.0958847i −0.118665 + 0.0209238i
$$22$$ −0.321034 0.161086i −0.0684446 0.0343437i
$$23$$ −4.63707 + 1.68775i −0.966896 + 0.351921i −0.776732 0.629831i $$-0.783124\pi$$
−0.190164 + 0.981752i $$0.560902\pi$$
$$24$$ −6.24915 5.23232i −1.27560 1.06804i
$$25$$ −4.40939 2.35738i −0.881879 0.471477i
$$26$$ 0.426732 3.66221i 0.0836890 0.718219i
$$27$$ 5.74881 3.31907i 1.10636 0.638756i
$$28$$ 0.229076 + 0.307246i 0.0432913 + 0.0580640i
$$29$$ 6.52866 + 1.15118i 1.21234 + 0.213768i 0.743026 0.669263i $$-0.233390\pi$$
0.469315 + 0.883031i $$0.344501\pi$$
$$30$$ −7.83441 4.65384i −1.43036 0.849672i
$$31$$ 1.47566 2.55592i 0.265037 0.459057i −0.702537 0.711648i $$-0.747949\pi$$
0.967573 + 0.252591i $$0.0812826\pi$$
$$32$$ −1.29478 + 5.50668i −0.228886 + 0.973453i
$$33$$ −0.687731 0.250314i −0.119719 0.0435740i
$$34$$ −2.04562 2.16669i −0.350821 0.371584i
$$35$$ 0.307884 + 0.297997i 0.0520419 + 0.0503707i
$$36$$ −8.86638 5.82248i −1.47773 0.970414i
$$37$$ 6.57793 1.08140 0.540702 0.841214i $$-0.318159\pi$$
0.540702 + 0.841214i $$0.318159\pi$$
$$38$$ −1.34912 6.01497i −0.218856 0.975757i
$$39$$ 7.51261i 1.20298i
$$40$$ −0.441619 + 6.30912i −0.0698261 + 0.997559i
$$41$$ −7.06401 8.41856i −1.10321 1.31476i −0.944897 0.327369i $$-0.893838\pi$$
−0.158316 0.987389i $$-0.550606\pi$$
$$42$$ 0.536086 + 0.567814i 0.0827199 + 0.0876156i
$$43$$ 6.67333 + 2.42889i 1.01767 + 0.370403i 0.796375 0.604803i $$-0.206748\pi$$
0.221298 + 0.975206i $$0.428971\pi$$
$$44$$ 0.0593291 + 0.504483i 0.00894420 + 0.0760536i
$$45$$ −10.8285 4.83591i −1.61422 0.720895i
$$46$$ 5.59923 + 4.16538i 0.825562 + 0.614152i
$$47$$ −0.936863 + 5.31322i −0.136656 + 0.775012i 0.837037 + 0.547146i $$0.184286\pi$$
−0.973693 + 0.227866i $$0.926825\pi$$
$$48$$ −1.32186 + 11.4504i −0.190794 + 1.65272i
$$49$$ 3.48164 + 6.03038i 0.497377 + 0.861483i
$$50$$ 0.643758 + 7.04170i 0.0910411 + 0.995847i
$$51$$ −4.65112 3.90276i −0.651288 0.546495i
$$52$$ −4.65791 + 2.34344i −0.645935 + 0.324976i
$$53$$ 4.80209 1.74782i 0.659618 0.240081i 0.00954631 0.999954i $$-0.496961\pi$$
0.650071 + 0.759873i $$0.274739\pi$$
$$54$$ −8.39071 4.21024i −1.14183 0.572941i
$$55$$ 0.155918 + 0.546093i 0.0210240 + 0.0736352i
$$56$$ 0.184828 0.509500i 0.0246987 0.0680848i
$$57$$ −4.14901 11.8556i −0.549549 1.57031i
$$58$$ −3.71644 8.60727i −0.487993 1.13019i
$$59$$ 2.04472 + 11.5962i 0.266200 + 1.50970i 0.765596 + 0.643322i $$0.222444\pi$$
−0.499396 + 0.866374i $$0.666445\pi$$
$$60$$ 0.594093 + 12.8732i 0.0766971 + 1.66193i
$$61$$ 11.1808 4.06946i 1.43155 0.521041i 0.494174 0.869363i $$-0.335470\pi$$
0.937375 + 0.348321i $$0.113248\pi$$
$$62$$ −4.16665 + 0.244166i −0.529165 + 0.0310091i
$$63$$ 0.778525 + 0.653260i 0.0980849 + 0.0823030i
$$64$$ 7.51169 2.75219i 0.938961 0.344023i
$$65$$ −4.72017 + 3.42122i −0.585465 + 0.424350i
$$66$$ 0.239050 + 1.00703i 0.0294250 + 0.123957i
$$67$$ 2.04302 + 0.360240i 0.249595 + 0.0440103i 0.297046 0.954863i $$-0.403999\pi$$
−0.0474508 + 0.998874i $$0.515110\pi$$
$$68$$ −0.968912 + 4.10115i −0.117498 + 0.497338i
$$69$$ 12.3147 + 7.10987i 1.48251 + 0.855928i
$$70$$ 0.112625 0.595403i 0.0134613 0.0711643i
$$71$$ 9.44807 + 3.43882i 1.12128 + 0.408112i 0.835119 0.550069i $$-0.185399\pi$$
0.286160 + 0.958182i $$0.407621\pi$$
$$72$$ 0.0159957 + 15.0009i 0.00188512 + 1.76788i
$$73$$ 2.30448 + 2.74637i 0.269719 + 0.321438i 0.883854 0.467762i $$-0.154940\pi$$
−0.614136 + 0.789200i $$0.710495\pi$$
$$74$$ −5.11462 7.77038i −0.594562 0.903289i
$$75$$ 2.96356 + 14.0999i 0.342203 + 1.62812i
$$76$$ −6.05638 + 6.27059i −0.694715 + 0.719285i
$$77$$ 0.0486681i 0.00554624i
$$78$$ −8.87451 + 5.84138i −1.00484 + 0.661406i
$$79$$ −5.82732 + 4.88970i −0.655625 + 0.550135i −0.908772 0.417293i $$-0.862979\pi$$
0.253147 + 0.967428i $$0.418534\pi$$
$$80$$ 7.79623 4.38393i 0.871644 0.490139i
$$81$$ −3.02357 1.10049i −0.335952 0.122277i
$$82$$ −4.45212 + 14.8904i −0.491654 + 1.64437i
$$83$$ 1.59925 2.76998i 0.175540 0.304045i −0.764808 0.644259i $$-0.777166\pi$$
0.940348 + 0.340214i $$0.110499\pi$$
$$84$$ 0.253918 1.07477i 0.0277047 0.117267i
$$85$$ −0.333994 + 4.69960i −0.0362267 + 0.509743i
$$86$$ −2.31959 9.77165i −0.250128 1.05370i
$$87$$ −9.55160 16.5439i −1.02404 1.77369i
$$88$$ 0.549805 0.462341i 0.0586094 0.0492858i
$$89$$ −8.40523 + 10.0170i −0.890953 + 1.06180i 0.106766 + 0.994284i $$0.465951\pi$$
−0.997718 + 0.0675121i $$0.978494\pi$$
$$90$$ 2.70705 + 16.5516i 0.285349 + 1.74470i
$$91$$ 0.469448 0.170865i 0.0492116 0.0179115i
$$92$$ 0.566846 9.85304i 0.0590978 1.02725i
$$93$$ −8.37534 + 1.47680i −0.868482 + 0.153137i
$$94$$ 7.00486 3.02455i 0.722496 0.311959i
$$95$$ −5.55941 + 8.00581i −0.570384 + 0.821379i
$$96$$ 14.5539 7.34166i 1.48540 0.749305i
$$97$$ 2.46221 + 13.9639i 0.250000 + 1.41782i 0.808589 + 0.588374i $$0.200232\pi$$
−0.558590 + 0.829444i $$0.688657\pi$$
$$98$$ 4.41645 8.80168i 0.446129 0.889104i
$$99$$ 0.460706 + 1.26578i 0.0463027 + 0.127216i
$$100$$ 7.81769 6.23569i 0.781769 0.623569i
$$101$$ −10.1766 8.53922i −1.01261 0.849684i −0.0239326 0.999714i $$-0.507619\pi$$
−0.988682 + 0.150029i $$0.952063\pi$$
$$102$$ −0.993807 + 8.52885i −0.0984015 + 0.844482i
$$103$$ 13.3173 7.68877i 1.31220 0.757597i 0.329736 0.944073i $$-0.393040\pi$$
0.982459 + 0.186476i $$0.0597068\pi$$
$$104$$ 6.38998 + 3.68018i 0.626589 + 0.360871i
$$105$$ 0.0875282 1.23160i 0.00854188 0.120192i
$$106$$ −5.79849 4.31362i −0.563200 0.418976i
$$107$$ −8.80846 5.08557i −0.851546 0.491640i 0.00962624 0.999954i $$-0.496936\pi$$
−0.861172 + 0.508313i $$0.830269\pi$$
$$108$$ 1.55066 + 13.1854i 0.149212 + 1.26877i
$$109$$ 2.76832 7.60589i 0.265157 0.728512i −0.733643 0.679535i $$-0.762182\pi$$
0.998800 0.0489773i $$-0.0155962\pi$$
$$110$$ 0.523857 0.608795i 0.0499478 0.0580463i
$$111$$ −12.1840 14.5203i −1.15646 1.37821i
$$112$$ −0.745575 + 0.177824i −0.0704502 + 0.0168028i
$$113$$ −6.60225 −0.621088 −0.310544 0.950559i $$-0.600511\pi$$
−0.310544 + 0.950559i $$0.600511\pi$$
$$114$$ −10.7788 + 14.1194i −1.00952 + 1.32240i
$$115$$ −1.14092 10.9751i −0.106392 1.02343i
$$116$$ −7.27792 + 11.0827i −0.675738 + 1.02900i
$$117$$ −10.5922 + 8.88787i −0.979245 + 0.821684i
$$118$$ 12.1085 11.4319i 1.11468 1.05239i
$$119$$ 0.138091 0.379403i 0.0126588 0.0347798i
$$120$$ 14.7450 10.7113i 1.34602 0.977801i
$$121$$ −5.46775 + 9.47042i −0.497068 + 0.860947i
$$122$$ −13.5007 10.0434i −1.22230 0.909291i
$$123$$ −5.49905 + 31.1867i −0.495833 + 2.81201i
$$124$$ 3.52818 + 4.73214i 0.316840 + 0.424959i
$$125$$ 7.50938 8.28306i 0.671660 0.740860i
$$126$$ 0.166348 1.42759i 0.0148194 0.127180i
$$127$$ 2.41341 2.87619i 0.214155 0.255220i −0.648263 0.761416i $$-0.724504\pi$$
0.862418 + 0.506196i $$0.168949\pi$$
$$128$$ −9.09177 6.73348i −0.803606 0.595161i
$$129$$ −6.99910 19.2299i −0.616237 1.69310i
$$130$$ 7.71156 + 2.91571i 0.676348 + 0.255725i
$$131$$ −21.2428 + 3.74567i −1.85599 + 0.327261i −0.986122 0.166025i $$-0.946907\pi$$
−0.869867 + 0.493286i $$0.835796\pi$$
$$132$$ 1.00372 1.06540i 0.0873626 0.0927309i
$$133$$ 0.646468 0.528904i 0.0560559 0.0458618i
$$134$$ −1.16299 2.69349i −0.100467 0.232682i
$$135$$ 4.07517 + 14.2730i 0.350735 + 1.22842i
$$136$$ 5.59799 2.04426i 0.480024 0.175294i
$$137$$ −1.62948 4.47695i −0.139215 0.382491i 0.850418 0.526108i $$-0.176349\pi$$
−0.989633 + 0.143616i $$0.954127\pi$$
$$138$$ −1.17641 20.0753i −0.100143 1.70892i
$$139$$ 2.89532 3.45051i 0.245578 0.292668i −0.629149 0.777285i $$-0.716596\pi$$
0.874727 + 0.484617i $$0.161041\pi$$
$$140$$ −0.790910 + 0.329909i −0.0668441 + 0.0278824i
$$141$$ 13.4639 7.77338i 1.13386 0.654637i
$$142$$ −3.28407 13.8347i −0.275593 1.16098i
$$143$$ 0.652090 + 0.114981i 0.0545305 + 0.00961520i
$$144$$ 17.7079 11.6828i 1.47566 0.973563i
$$145$$ −6.04473 + 13.5353i −0.501988 + 1.12404i
$$146$$ 1.45241 4.85766i 0.120202 0.402023i
$$147$$ 6.86277 18.8553i 0.566032 1.55516i
$$148$$ −5.20218 + 12.0836i −0.427616 + 0.993267i
$$149$$ 0.0188513 0.0158181i 0.00154436 0.00129587i −0.642015 0.766692i $$-0.721901\pi$$
0.643559 + 0.765396i $$0.277457\pi$$
$$150$$ 14.3517 14.4641i 1.17181 1.18099i
$$151$$ 1.21023 0.0984867 0.0492434 0.998787i $$-0.484319\pi$$
0.0492434 + 0.998787i $$0.484319\pi$$
$$152$$ 12.1164 + 2.27864i 0.982772 + 0.184822i
$$153$$ 11.1749i 0.903436i
$$154$$ −0.0574907 + 0.0378415i −0.00463273 + 0.00304936i
$$155$$ 4.74197 + 4.58969i 0.380884 + 0.368653i
$$156$$ 13.8006 + 5.94138i 1.10493 + 0.475691i
$$157$$ −6.83282 + 18.7730i −0.545318 + 1.49825i 0.294645 + 0.955607i $$0.404798\pi$$
−0.839964 + 0.542643i $$0.817424\pi$$
$$158$$ 10.3071 + 3.08176i 0.819990 + 0.245171i
$$159$$ −12.7529 7.36289i −1.01137 0.583915i
$$160$$ −11.2406 5.80084i −0.888644 0.458597i
$$161$$ −0.164200 + 0.931224i −0.0129408 + 0.0733908i
$$162$$ 1.05097 + 4.42736i 0.0825717 + 0.347846i
$$163$$ 5.76941 + 9.99291i 0.451895 + 0.782705i 0.998504 0.0546830i $$-0.0174148\pi$$
−0.546609 + 0.837388i $$0.684081\pi$$
$$164$$ 21.0514 6.31870i 1.64384 0.493407i
$$165$$ 0.916664 1.35569i 0.0713622 0.105540i
$$166$$ −4.51561 + 0.264615i −0.350480 + 0.0205381i
$$167$$ −7.10931 19.5327i −0.550135 1.51148i −0.833526 0.552480i $$-0.813682\pi$$
0.283391 0.959004i $$-0.408541\pi$$
$$168$$ −1.46704 + 0.535730i −0.113184 + 0.0413325i
$$169$$ −1.07715 6.10881i −0.0828576 0.469909i
$$170$$ 5.81125 3.25960i 0.445702 0.250000i
$$171$$ −11.8068 + 19.8756i −0.902892 + 1.51993i
$$172$$ −9.73949 + 10.3380i −0.742629 + 0.788263i
$$173$$ −0.948110 5.37700i −0.0720835 0.408806i −0.999403 0.0345363i $$-0.989005\pi$$
0.927320 0.374270i $$-0.122107\pi$$
$$174$$ −12.1162 + 24.1467i −0.918526 + 1.83056i
$$175$$ −0.813674 + 0.505873i −0.0615080 + 0.0382404i
$$176$$ −0.973653 0.289985i −0.0733918 0.0218584i
$$177$$ 21.8105 25.9927i 1.63938 1.95373i
$$178$$ 18.3683 + 2.14033i 1.37676 + 0.160424i
$$179$$ 5.97553 + 10.3499i 0.446632 + 0.773589i 0.998164 0.0605641i $$-0.0192900\pi$$
−0.551532 + 0.834154i $$0.685957\pi$$
$$180$$ 17.4473 16.0674i 1.30045 1.19759i
$$181$$ 1.91519 + 0.337700i 0.142355 + 0.0251010i 0.244371 0.969682i $$-0.421418\pi$$
−0.102017 + 0.994783i $$0.532529\pi$$
$$182$$ −0.566856 0.421696i −0.0420182 0.0312582i
$$183$$ −29.6927 17.1431i −2.19495 1.26725i
$$184$$ −12.0800 + 6.99156i −0.890547 + 0.515424i
$$185$$ −3.57457 + 14.2677i −0.262807 + 1.04898i
$$186$$ 8.25670 + 8.74536i 0.605410 + 0.641241i
$$187$$ 0.409942 0.343983i 0.0299780 0.0251545i
$$188$$ −9.01943 5.92299i −0.657810 0.431979i
$$189$$ 1.27201i 0.0925255i
$$190$$ 13.7798 + 0.342372i 0.999691 + 0.0248383i
$$191$$ 22.4077i 1.62137i 0.585486 + 0.810683i $$0.300904\pi$$
−0.585486 + 0.810683i $$0.699096\pi$$
$$192$$ −19.9889 11.4838i −1.44257 0.828772i
$$193$$ 2.58774 2.17137i 0.186270 0.156299i −0.544884 0.838511i $$-0.683426\pi$$
0.731154 + 0.682212i $$0.238982\pi$$
$$194$$ 14.5808 13.7661i 1.04684 0.988347i
$$195$$ 16.2951 + 4.08249i 1.16692 + 0.292353i
$$196$$ −13.8312 + 1.62661i −0.987946 + 0.116186i
$$197$$ 19.7720 + 11.4154i 1.40870 + 0.813311i 0.995263 0.0972234i $$-0.0309961\pi$$
0.413433 + 0.910534i $$0.364329\pi$$
$$198$$ 1.13702 1.52842i 0.0808048 0.108620i
$$199$$ −17.6314 3.10890i −1.24986 0.220384i −0.490723 0.871316i $$-0.663267\pi$$
−0.759136 + 0.650932i $$0.774378\pi$$
$$200$$ −13.4447 4.38638i −0.950683 0.310164i
$$201$$ −2.98900 5.17710i −0.210828 0.365164i
$$202$$ −2.17445 + 18.6611i −0.152994 + 1.31299i
$$203$$ 0.816554 0.973131i 0.0573109 0.0683004i
$$204$$ 10.8477 5.45758i 0.759491 0.382107i
$$205$$ 22.0988 10.7473i 1.54345 0.750621i
$$206$$ −19.4374 9.75318i −1.35427 0.679536i
$$207$$ −4.54466 25.7740i −0.315876 1.79142i
$$208$$ −0.621157 10.4099i −0.0430695 0.721794i
$$209$$ 1.09256 0.178681i 0.0755738 0.0123596i
$$210$$ −1.52293 + 0.854227i −0.105092 + 0.0589473i
$$211$$ −1.67355 9.49116i −0.115212 0.653398i −0.986645 0.162884i $$-0.947920\pi$$
0.871433 0.490514i $$-0.163191\pi$$
$$212$$ −0.587019 + 10.2037i −0.0403166 + 0.700792i
$$213$$ −9.90930 27.2256i −0.678974 1.86547i
$$214$$ 0.841468 + 14.3595i 0.0575216 + 0.981597i
$$215$$ −8.89476 + 13.1548i −0.606617 + 0.897147i
$$216$$ 14.3700 12.0840i 0.977755 0.822212i
$$217$$ −0.282769 0.489770i −0.0191956 0.0332478i
$$218$$ −11.1372 + 2.64374i −0.754306 + 0.179057i
$$219$$ 1.79395 10.1740i 0.121224 0.687493i
$$220$$ −1.12648 0.145458i −0.0759472 0.00980681i
$$221$$ 4.75727 + 2.74661i 0.320008 + 0.184757i
$$222$$ −7.67902 + 25.6829i −0.515382 + 1.72373i
$$223$$ −1.20429 + 3.30877i −0.0806454 + 0.221572i −0.973462 0.228849i $$-0.926504\pi$$
0.892816 + 0.450421i $$0.148726\pi$$
$$224$$ 0.789777 + 0.742468i 0.0527692 + 0.0496082i
$$225$$ 16.3736 20.8594i 1.09158 1.39063i
$$226$$ 5.13354 + 7.79912i 0.341478 + 0.518790i
$$227$$ 15.8038i 1.04893i 0.851431 + 0.524467i $$0.175735\pi$$
−0.851431 + 0.524467i $$0.824265\pi$$
$$228$$ 25.0599 + 1.75433i 1.65963 + 0.116183i
$$229$$ −16.4726 −1.08854 −0.544268 0.838911i $$-0.683193\pi$$
−0.544268 + 0.838911i $$0.683193\pi$$
$$230$$ −12.0776 + 9.88137i −0.796372 + 0.651558i
$$231$$ −0.107432 + 0.0901458i −0.00706848 + 0.00593116i
$$232$$ 18.7507 0.0199942i 1.23104 0.00131268i
$$233$$ 3.51094 9.64624i 0.230009 0.631946i −0.769972 0.638078i $$-0.779730\pi$$
0.999981 + 0.00613213i $$0.00195193\pi$$
$$234$$ 18.7349 + 5.60162i 1.22474 + 0.366189i
$$235$$ −11.0154 4.91939i −0.718567 0.320905i
$$236$$ −22.9192 5.41475i −1.49191 0.352470i
$$237$$ 21.5874 + 3.80644i 1.40225 + 0.247255i
$$238$$ −0.555554 + 0.131877i −0.0360112 + 0.00854834i
$$239$$ 18.9539 10.9430i 1.22603 0.707846i 0.259829 0.965655i $$-0.416334\pi$$
0.966196 + 0.257809i $$0.0830004\pi$$
$$240$$ −24.1179 9.08949i −1.55680 0.586724i
$$241$$ 14.3132 17.0578i 0.921993 1.09879i −0.0728483 0.997343i $$-0.523209\pi$$
0.994841 0.101445i $$-0.0323467\pi$$
$$242$$ 15.4386 0.904705i 0.992433 0.0581566i
$$243$$ −3.63997 10.0007i −0.233504 0.641548i
$$244$$ −1.36676 + 23.7573i −0.0874980 + 1.52091i
$$245$$ −14.9721 + 4.27477i −0.956530 + 0.273105i
$$246$$ 41.1160 17.7530i 2.62146 1.13189i
$$247$$ 5.55932 + 9.91141i 0.353731 + 0.630648i
$$248$$ 2.84668 7.84722i 0.180764 0.498299i
$$249$$ −9.07678 + 1.60048i −0.575217 + 0.101426i
$$250$$ −15.6235 2.43026i −0.988117 0.153703i
$$251$$ 0.238781 + 0.656046i 0.0150717 + 0.0414092i 0.947000 0.321232i $$-0.104097\pi$$
−0.931929 + 0.362642i $$0.881875\pi$$
$$252$$ −1.81573 + 0.913513i −0.114381 + 0.0575459i
$$253$$ −0.805609 + 0.960087i −0.0506482 + 0.0603602i
$$254$$ −5.27411 0.614555i −0.330927 0.0385606i
$$255$$ 10.9927 7.96760i 0.688390 0.498951i
$$256$$ −0.884894 + 15.9755i −0.0553059 + 0.998469i
$$257$$ 4.39595 24.9307i 0.274212 1.55513i −0.467243 0.884129i $$-0.654753\pi$$
0.741454 0.671003i $$-0.234136\pi$$
$$258$$ −17.2738 + 23.2200i −1.07542 + 1.44561i
$$259$$ 0.630237 1.09160i 0.0391610 0.0678289i
$$260$$ −2.55179 11.3766i −0.158256 0.705548i
$$261$$ −12.0253 + 33.0393i −0.744350 + 2.04508i
$$262$$ 20.9419 + 22.1813i 1.29379 + 1.37036i
$$263$$ −2.76507 + 2.32017i −0.170502 + 0.143068i −0.724046 0.689752i $$-0.757719\pi$$
0.553544 + 0.832820i $$0.313275\pi$$
$$264$$ −2.03897 0.357284i −0.125490 0.0219893i
$$265$$ 1.18153 + 11.3657i 0.0725806 + 0.698188i
$$266$$ −1.12744 0.352415i −0.0691279 0.0216080i
$$267$$ 37.6805 2.30601
$$268$$ −2.27749 + 3.46812i −0.139120 + 0.211849i
$$269$$ −0.966795 1.15218i −0.0589465 0.0702497i 0.735765 0.677236i $$-0.236823\pi$$
−0.794712 + 0.606987i $$0.792378\pi$$
$$270$$ 13.6918 15.9118i 0.833257 0.968360i
$$271$$ 5.94257 16.3271i 0.360985 0.991799i −0.617696 0.786417i $$-0.711934\pi$$
0.978682 0.205382i $$-0.0658438\pi$$
$$272$$ −6.76753 5.02330i −0.410342 0.304582i
$$273$$ −1.24671 0.719791i −0.0754545 0.0435637i
$$274$$ −4.02155 + 5.40589i −0.242951 + 0.326582i
$$275$$ −1.26922 + 0.0414349i −0.0765370 + 0.00249862i
$$276$$ −22.7999 + 16.9991i −1.37239 + 1.02323i
$$277$$ −12.7706 + 7.37314i −0.767314 + 0.443009i −0.831916 0.554902i $$-0.812756\pi$$
0.0646017 + 0.997911i $$0.479422\pi$$
$$278$$ −6.32726 0.737270i −0.379484 0.0442185i
$$279$$ 11.9907 + 10.0614i 0.717864 + 0.602359i
$$280$$ 1.00468 + 0.677769i 0.0600413 + 0.0405044i
$$281$$ 0.243968 + 0.670298i 0.0145539 + 0.0399866i 0.946757 0.321949i $$-0.104338\pi$$
−0.932203 + 0.361936i $$0.882116\pi$$
$$282$$ −19.6513 9.86052i −1.17022 0.587185i
$$283$$ −0.0957935 0.543272i −0.00569433 0.0322942i 0.981828 0.189772i $$-0.0607749\pi$$
−0.987523 + 0.157478i $$0.949664\pi$$
$$284$$ −13.7891 + 14.6365i −0.818234 + 0.868514i
$$285$$ 27.9698 2.55678i 1.65679 0.151451i
$$286$$ −0.371203 0.859705i −0.0219497 0.0508354i
$$287$$ −2.07386 + 0.365678i −0.122416 + 0.0215853i
$$288$$ −27.5693 11.8342i −1.62454 0.697334i
$$289$$ −11.8030 + 4.29592i −0.694291 + 0.252701i
$$290$$ 20.6890 3.38373i 1.21490 0.198700i
$$291$$ 26.2637 31.2999i 1.53961 1.83483i
$$292$$ −6.86757 + 2.06134i −0.401894 + 0.120631i
$$293$$ −1.26930 2.19849i −0.0741532 0.128437i 0.826565 0.562842i $$-0.190292\pi$$
−0.900718 + 0.434405i $$0.856959\pi$$
$$294$$ −27.6095 + 6.55395i −1.61022 + 0.382234i
$$295$$ −26.2636 1.86652i −1.52913 0.108673i
$$296$$ 18.3191 3.25029i 1.06477 0.188919i
$$297$$ 0.842978 1.46008i 0.0489145 0.0847224i
$$298$$ −0.0333433 0.00996943i −0.00193153 0.000577513i
$$299$$ −12.0893 4.40014i −0.699141 0.254467i
$$300$$ −28.2452 5.70694i −1.63074 0.329490i
$$301$$ 1.04245 0.874721i 0.0600859 0.0504181i
$$302$$ −0.941002 1.42962i −0.0541486 0.0822652i
$$303$$ 38.2811i 2.19919i
$$304$$ −6.72932 16.0847i −0.385953 0.922518i
$$305$$ 2.75096 + 26.4628i 0.157520 + 1.51526i
$$306$$ 13.2007 8.68896i 0.754634 0.496715i
$$307$$ −10.4012 12.3957i −0.593630 0.707461i 0.382669 0.923885i $$-0.375005\pi$$
−0.976299 + 0.216425i $$0.930560\pi$$
$$308$$ 0.0894030 + 0.0384893i 0.00509421 + 0.00219313i
$$309$$ −41.6396 15.1556i −2.36879 0.862170i
$$310$$ 1.73463 9.17028i 0.0985205 0.520837i
$$311$$ 22.3213 + 12.8872i 1.26572 + 0.730766i 0.974176 0.225790i $$-0.0724962\pi$$
0.291549 + 0.956556i $$0.405829\pi$$
$$312$$ −3.71214 20.9221i −0.210159 1.18448i
$$313$$ −24.7407 4.36245i −1.39843 0.246580i −0.576930 0.816793i $$-0.695750\pi$$
−0.821497 + 0.570213i $$0.806861\pi$$
$$314$$ 27.4890 6.52534i 1.55130 0.368246i
$$315$$ −1.84001 + 1.33365i −0.103673 + 0.0751427i
$$316$$ −4.37380 14.5718i −0.246046 0.819728i
$$317$$ −8.87066 7.44337i −0.498226 0.418061i 0.358738 0.933438i $$-0.383207\pi$$
−0.856963 + 0.515377i $$0.827652\pi$$
$$318$$ 1.21828 + 20.7897i 0.0683177 + 1.16583i
$$319$$ 1.58218 0.575868i 0.0885853 0.0322424i
$$320$$ 1.88759 + 17.7887i 0.105519 + 0.994417i
$$321$$ 5.08948 + 28.8639i 0.284067 + 1.61103i
$$322$$ 1.22771 0.530100i 0.0684177 0.0295413i
$$323$$ 9.02427 + 1.70709i 0.502124 + 0.0949851i
$$324$$ 4.41279 4.68395i 0.245155 0.260220i
$$325$$ −4.85570 12.0973i −0.269346 0.671040i
$$326$$ 7.31848 14.5852i 0.405333 0.807800i
$$327$$ −21.9172 + 7.97719i −1.21202 + 0.441140i
$$328$$ −23.8326 19.9546i −1.31593 1.10181i
$$329$$ 0.791963 + 0.664536i 0.0436624 + 0.0366371i
$$330$$ −2.31419 0.0287350i −0.127392 0.00158181i
$$331$$ 6.55680 + 11.3567i 0.360394 + 0.624221i 0.988026 0.154290i $$-0.0493088\pi$$
−0.627631 + 0.778511i $$0.715976\pi$$
$$332$$ 3.82367 + 5.12846i 0.209851 + 0.281461i
$$333$$ −6.05805 + 34.3569i −0.331979 + 1.88275i
$$334$$ −17.5458 + 23.5856i −0.960064 + 1.29055i
$$335$$ −1.89159 + 4.23562i −0.103348 + 0.231417i
$$336$$ 1.77353 + 1.31643i 0.0967541 + 0.0718172i
$$337$$ 5.07189 + 1.84602i 0.276284 + 0.100559i 0.476446 0.879204i $$-0.341925\pi$$
−0.200162 + 0.979763i $$0.564147\pi$$
$$338$$ −6.37870 + 6.02228i −0.346956 + 0.327569i
$$339$$ 12.2291 + 14.5740i 0.664192 + 0.791554i
$$340$$ −8.36900 4.33024i −0.453873 0.234840i
$$341$$ 0.749576i 0.0405918i
$$342$$ 32.6590 1.50693i 1.76600 0.0814853i
$$343$$ 2.67567 0.144473
$$344$$ 19.7849 + 3.46687i 1.06673 + 0.186921i
$$345$$ −22.1135 + 22.8472i −1.19055 + 1.23005i
$$346$$ −5.61456 + 5.30084i −0.301841 + 0.284975i
$$347$$ 23.3819 + 8.51031i 1.25521 + 0.456858i 0.882158 0.470954i $$-0.156090\pi$$
0.373048 + 0.927812i $$0.378313\pi$$
$$348$$ 37.9449 4.46247i 2.03406 0.239213i
$$349$$ −4.38247 + 7.59066i −0.234588 + 0.406319i −0.959153 0.282888i $$-0.908708\pi$$
0.724565 + 0.689207i $$0.242041\pi$$
$$350$$ 1.23025 + 0.567841i 0.0657594 + 0.0303524i
$$351$$ 17.0434 + 3.00521i 0.909708 + 0.160406i
$$352$$ 0.414503 + 1.37563i 0.0220931 + 0.0733215i
$$353$$ −22.9267 + 13.2368i −1.22027 + 0.704522i −0.964975 0.262342i $$-0.915505\pi$$
−0.255293 + 0.966864i $$0.582172\pi$$
$$354$$ −47.6634 5.55387i −2.53328 0.295185i
$$355$$ −12.5932 + 18.6244i −0.668375 + 0.988482i
$$356$$ −11.7538 23.3623i −0.622950 1.23820i
$$357$$ −1.09329 + 0.397925i −0.0578630 + 0.0210604i
$$358$$ 7.57994 15.1063i 0.400612 0.798392i
$$359$$ −4.23581 + 0.746887i −0.223557 + 0.0394192i −0.284305 0.958734i $$-0.591763\pi$$
0.0607473 + 0.998153i $$0.480652\pi$$
$$360$$ −32.5462 8.11709i −1.71533 0.427808i
$$361$$ 14.2469 + 12.5708i 0.749837 + 0.661623i
$$362$$ −1.09022 2.52495i −0.0573009 0.132709i
$$363$$ 31.0330 5.47196i 1.62881 0.287203i
$$364$$ −0.0573865 + 0.997504i −0.00300787 + 0.0522834i
$$365$$ −7.20925 + 3.50605i −0.377350 + 0.183515i
$$366$$ 2.83653 + 48.4050i 0.148268 + 2.53017i
$$367$$ 5.83396 + 4.89527i 0.304530 + 0.255531i 0.782227 0.622994i $$-0.214084\pi$$
−0.477697 + 0.878525i $$0.658528\pi$$
$$368$$ 17.6517 + 8.83361i 0.920158 + 0.460484i
$$369$$ 50.4763 29.1425i 2.62769 1.51710i
$$370$$ 19.6336 6.87120i 1.02070 0.357217i
$$371$$ 0.170043 0.964364i 0.00882821 0.0500673i
$$372$$ 3.91080 16.5534i 0.202765 0.858253i
$$373$$ 6.70564 11.6145i 0.347205 0.601376i −0.638547 0.769583i $$-0.720464\pi$$
0.985752 + 0.168207i $$0.0537976\pi$$
$$374$$ −0.725088 0.216796i −0.0374934 0.0112103i
$$375$$ −32.1936 1.23410i −1.66247 0.0637289i
$$376$$ 0.0162718 + 15.2599i 0.000839156 + 0.786968i
$$377$$ 11.1096 + 13.2399i 0.572171 + 0.681887i
$$378$$ −1.50261 + 0.989046i −0.0772858 + 0.0508710i
$$379$$ 12.9096 0.663121 0.331560 0.943434i $$-0.392425\pi$$
0.331560 + 0.943434i $$0.392425\pi$$
$$380$$ −10.3099 16.5440i −0.528889 0.848691i
$$381$$ −10.8192 −0.554287
$$382$$ 26.4698 17.4230i 1.35431 0.891436i
$$383$$ −12.4196 14.8011i −0.634612 0.756301i 0.348897 0.937161i $$-0.386556\pi$$
−0.983509 + 0.180860i $$0.942112\pi$$
$$384$$ 1.97659 + 32.5416i 0.100867 + 1.66063i
$$385$$ 0.105563 + 0.0264471i 0.00537997 + 0.00134787i
$$386$$ −4.57709 1.36852i −0.232968 0.0696557i
$$387$$ −18.8322 + 32.6183i −0.957292 + 1.65808i
$$388$$ −27.5988 6.52033i −1.40112 0.331019i
$$389$$ 1.76945 10.0350i 0.0897145 0.508796i −0.906525 0.422152i $$-0.861275\pi$$
0.996239 0.0866438i $$-0.0276142\pi$$
$$390$$ −7.84756 22.4234i −0.397377 1.13545i
$$391$$ −9.00447 + 5.19874i −0.455376 + 0.262911i
$$392$$ 12.6759 + 15.0738i 0.640228 + 0.761344i
$$393$$ 47.6154 + 39.9541i 2.40188 + 2.01542i
$$394$$ −1.88881 32.2322i −0.0951568 1.62384i
$$395$$ −7.43925 15.2968i −0.374309 0.769665i
$$396$$ −2.68958 0.154732i −0.135157 0.00777557i
$$397$$ −13.6668 + 2.40983i −0.685917 + 0.120946i −0.505737 0.862688i $$-0.668779\pi$$
−0.180181 + 0.983634i $$0.557668\pi$$
$$398$$ 10.0367 + 23.2450i 0.503095 + 1.16517i
$$399$$ −2.36495 0.447369i −0.118395 0.0223965i
$$400$$ 5.27228 + 19.2926i 0.263614 + 0.964628i
$$401$$ 19.1441 3.37562i 0.956011 0.168571i 0.326184 0.945306i $$-0.394237\pi$$
0.629827 + 0.776736i $$0.283126\pi$$
$$402$$ −3.79154 + 7.55627i −0.189105 + 0.376872i
$$403$$ 7.23035 2.63163i 0.360170 0.131091i
$$404$$ 23.7347 11.9412i 1.18085 0.594096i
$$405$$ 4.03006 5.96019i 0.200255 0.296164i
$$406$$ −1.78445 0.207929i −0.0885607 0.0103194i
$$407$$ 1.44683 0.835330i 0.0717169 0.0414058i
$$408$$ −14.8815 8.57069i −0.736744 0.424313i
$$409$$ −4.27875 0.754459i −0.211571 0.0373056i 0.0668582 0.997762i $$-0.478702\pi$$
−0.278429 + 0.960457i $$0.589814\pi$$
$$410$$ −29.8783 17.7485i −1.47558 0.876535i
$$411$$ −6.86436 + 11.8894i −0.338594 + 0.586462i
$$412$$ 3.59216 + 30.5446i 0.176973 + 1.50482i
$$413$$ 2.12029 + 0.771722i 0.104333 + 0.0379740i
$$414$$ −26.9127 + 25.4089i −1.32269 + 1.24878i
$$415$$ 5.13911 + 4.97408i 0.252269 + 0.244168i
$$416$$ −11.8140 + 8.82788i −0.579230 + 0.432822i
$$417$$ −12.9796 −0.635616
$$418$$ −1.06058 1.15169i −0.0518748 0.0563308i
$$419$$ 28.8611i 1.40996i −0.709229 0.704978i $$-0.750957\pi$$
0.709229 0.704978i $$-0.249043\pi$$
$$420$$ 2.19322 + 1.13481i 0.107018 + 0.0553728i
$$421$$ −2.74345 3.26952i −0.133708 0.159347i 0.695036 0.718975i $$-0.255388\pi$$
−0.828744 + 0.559628i $$0.810944\pi$$
$$422$$ −9.91048 + 9.35671i −0.482434 + 0.455478i
$$423$$ −26.8884 9.78658i −1.30736 0.475840i
$$424$$ 12.5099 7.24036i 0.607532 0.351623i
$$425$$ −10.0121 3.27829i −0.485657 0.159021i
$$426$$ −24.4562 + 32.8747i −1.18491 + 1.59279i
$$427$$ 0.395914 2.24534i 0.0191596 0.108660i
$$428$$ 16.3084 12.1592i 0.788295 0.587735i
$$429$$ −0.954025 1.65242i −0.0460608 0.0797796i
$$430$$ 22.4555 + 0.278827i 1.08290 + 0.0134463i
$$431$$ −8.33990 6.99800i −0.401719 0.337082i 0.419439 0.907784i $$-0.362227\pi$$
−0.821158 + 0.570702i $$0.806671\pi$$
$$432$$ −25.4479 7.57920i −1.22436 0.364654i
$$433$$ −6.90980 + 2.51496i −0.332064 + 0.120861i −0.502671 0.864478i $$-0.667649\pi$$
0.170607 + 0.985339i $$0.445427\pi$$
$$434$$ −0.358692 + 0.714847i −0.0172178 + 0.0343138i
$$435$$ 41.0747 11.7275i 1.96938 0.562290i
$$436$$ 11.7826 + 11.1005i 0.564287 + 0.531619i
$$437$$ −21.5080 0.267242i −1.02887 0.0127839i
$$438$$ −13.4132 + 5.79154i −0.640907 + 0.276731i
$$439$$ −4.74163 26.8911i −0.226306 1.28344i −0.860173 0.510002i $$-0.829645\pi$$
0.633868 0.773442i $$-0.281466\pi$$
$$440$$ 0.704058 + 1.44379i 0.0335647 + 0.0688300i
$$441$$ −34.7035 + 12.6310i −1.65255 + 0.601478i
$$442$$ −0.454460 7.75528i −0.0216164 0.368881i
$$443$$ 5.94567 + 4.98901i 0.282487 + 0.237035i 0.773011 0.634393i $$-0.218750\pi$$
−0.490523 + 0.871428i $$0.663194\pi$$
$$444$$ 36.3096 10.8985i 1.72318 0.517220i
$$445$$ −17.1596 23.6746i −0.813441 1.12228i
$$446$$ 4.84498 1.15010i 0.229416 0.0544588i
$$447$$ −0.0698349 0.0123138i −0.00330308 0.000582422i
$$448$$ 0.262978 1.51025i 0.0124245 0.0713526i
$$449$$ 20.0039 + 11.5493i 0.944042 + 0.545043i 0.891225 0.453561i $$-0.149847\pi$$
0.0528169 + 0.998604i $$0.483180\pi$$
$$450$$ −37.3721 3.12278i −1.76174 0.147209i
$$451$$ −2.62282 0.954628i −0.123504 0.0449517i
$$452$$ 5.22142 12.1283i 0.245595 0.570468i
$$453$$ −2.24165 2.67149i −0.105322 0.125518i
$$454$$ 18.6687 12.2881i 0.876167 0.576710i
$$455$$ 0.115505 + 1.11110i 0.00541496 + 0.0520892i
$$456$$ −17.4128 30.9669i −0.815429 1.45016i
$$457$$ 31.7508i 1.48524i −0.669713 0.742620i $$-0.733583\pi$$
0.669713 0.742620i $$-0.266417\pi$$
$$458$$ 12.8081 + 19.4587i 0.598484 + 0.909247i
$$459$$ 10.7145 8.99051i 0.500109 0.419641i
$$460$$ 21.0635 + 6.58383i 0.982091 + 0.306973i
$$461$$ −3.26610 1.18876i −0.152117 0.0553662i 0.264839 0.964293i $$-0.414681\pi$$
−0.416957 + 0.908926i $$0.636903\pi$$
$$462$$ 0.190020 + 0.0568148i 0.00884055 + 0.00264326i
$$463$$ 18.3179 31.7276i 0.851307 1.47451i −0.0287227 0.999587i $$-0.509144\pi$$
0.880029 0.474919i $$-0.157523\pi$$
$$464$$ −14.6031 22.1343i −0.677931 1.02756i
$$465$$ 1.34809 18.9689i 0.0625163 0.879661i
$$466$$ −14.1248 + 3.35295i −0.654320 + 0.155322i
$$467$$ −12.5471 21.7322i −0.580610 1.00565i −0.995407 0.0957321i $$-0.969481\pi$$
0.414797 0.909914i $$-0.363853\pi$$
$$468$$ −7.95013 26.4867i −0.367495 1.22435i
$$469$$ 0.255526 0.304523i 0.0117991 0.0140616i
$$470$$ 2.75378 + 16.8374i 0.127023 + 0.776649i
$$471$$ 54.0964 19.6895i 2.49263 0.907243i
$$472$$ 11.4243 + 31.2843i 0.525848 + 1.43998i
$$473$$ 1.77626 0.313203i 0.0816726 0.0144011i
$$474$$ −12.2887 28.4605i −0.564437 1.30723i
$$475$$ −14.3438 16.4090i −0.658137 0.752898i
$$476$$ 0.587751 + 0.553726i 0.0269395 + 0.0253800i
$$477$$ 4.70639 + 26.6913i 0.215491 + 1.22211i
$$478$$ −27.6643 13.8812i −1.26533 0.634912i
$$479$$ −0.294696 0.809670i −0.0134650 0.0369948i 0.932778 0.360451i $$-0.117377\pi$$
−0.946243 + 0.323456i $$0.895155\pi$$
$$480$$ 8.01544 + 35.5575i 0.365853 + 1.62297i
$$481$$ 13.1371 + 11.0233i 0.599001 + 0.502621i
$$482$$ −31.2792 3.64474i −1.42473 0.166013i
$$483$$ 2.35976 1.36241i 0.107373 0.0619917i
$$484$$ −13.0729 17.5339i −0.594223 0.796997i
$$485$$ −31.6261 2.24762i −1.43607 0.102059i
$$486$$ −8.98346 + 12.0758i −0.407498 + 0.547771i
$$487$$ −0.0141149 0.00814923i −0.000639606 0.000369277i 0.499680 0.866210i $$-0.333451\pi$$
−0.500320 + 0.865841i $$0.666784\pi$$
$$488$$ 29.1268 16.8578i 1.31851 0.763118i
$$489$$ 11.3723 31.2450i 0.514272 1.41295i
$$490$$ 16.6911 + 14.3624i 0.754028 + 0.648828i
$$491$$ 21.8209 + 26.0051i 0.984762 + 1.17359i 0.984817 + 0.173594i $$0.0555381\pi$$
−5.49353e−5 1.00000i $$0.500017\pi$$
$$492$$ −52.9408 34.7658i −2.38676 1.56736i
$$493$$ 13.9683 0.629099
$$494$$ 7.38555 14.2737i 0.332292 0.642203i
$$495$$ −2.99587 + 0.311438i −0.134654 + 0.0139981i
$$496$$ −11.4832 + 2.73882i −0.515611 + 0.122976i
$$497$$ 1.47590 1.23843i 0.0662031 0.0555510i
$$498$$ 8.94820 + 9.47779i 0.400979 + 0.424710i
$$499$$ −2.40577 + 6.60979i −0.107697 + 0.295895i −0.981821 0.189807i $$-0.939214\pi$$
0.874125 + 0.485702i $$0.161436\pi$$
$$500$$ 9.27712 + 20.3454i 0.414886 + 0.909874i
$$501$$ −29.9488 + 51.8729i −1.33802 + 2.31751i
$$502$$ 0.589312 0.792171i 0.0263023 0.0353563i
$$503$$ −1.76407 + 10.0045i −0.0786560 + 0.446080i 0.919890 + 0.392176i $$0.128278\pi$$
−0.998546 + 0.0539040i $$0.982833\pi$$
$$504$$ 2.49093 + 1.43460i 0.110955 + 0.0639021i
$$505$$ 24.0520 17.4331i 1.07030 0.775762i
$$506$$ 1.76053 + 0.205142i 0.0782651 + 0.00911968i
$$507$$ −11.4897 + 13.6928i −0.510273 + 0.608120i
$$508$$ 3.37489 + 6.70806i 0.149736 + 0.297622i
$$509$$ 0.0483110 + 0.132733i 0.00214135 + 0.00588330i 0.940759 0.339077i $$-0.110115\pi$$
−0.938617 + 0.344960i $$0.887892\pi$$
$$510$$ −17.9593 6.79033i −0.795251 0.300681i
$$511$$ 0.676552 0.119294i 0.0299289 0.00527728i
$$512$$ 19.5596 11.3763i 0.864422 0.502768i
$$513$$ 28.5557 4.67009i 1.26076 0.206190i
$$514$$ −32.8682 + 14.1918i −1.44975 + 0.625974i
$$515$$ 9.44029 + 33.0639i 0.415989 + 1.45697i
$$516$$ 40.8605 + 2.35071i 1.79878 + 0.103484i
$$517$$ 0.468659 + 1.28763i 0.0206116 + 0.0566299i
$$518$$ −1.77953 + 0.104280i −0.0781879 + 0.00458181i
$$519$$ −10.1132 + 12.0525i −0.443922 + 0.529046i
$$520$$ −11.4549 + 11.8602i −0.502329 + 0.520104i
$$521$$ 10.5164 6.07163i 0.460731 0.266003i −0.251621 0.967826i $$-0.580964\pi$$
0.712351 + 0.701823i $$0.247630\pi$$
$$522$$ 48.3790 11.4842i 2.11749 0.502650i
$$523$$ 12.8118 + 2.25907i 0.560223 + 0.0987824i 0.446587 0.894740i $$-0.352639\pi$$
0.113636 + 0.993522i $$0.463750\pi$$
$$524$$ 9.91914 41.9851i 0.433320 1.83413i
$$525$$ 2.62382 + 0.859126i 0.114513 + 0.0374953i
$$526$$ 4.89073 + 1.46230i 0.213246 + 0.0637591i
$$527$$ 2.12686 5.84349i 0.0926474 0.254547i
$$528$$ 1.16333 + 2.68640i 0.0506276 + 0.116911i
$$529$$ 1.03487 0.868356i 0.0449942 0.0377546i
$$530$$ 12.5074 10.2330i 0.543286 0.444494i
$$531$$ −62.4507 −2.71013
$$532$$ 0.460332 + 1.60584i 0.0199579 + 0.0696222i
$$533$$ 28.6511i 1.24101i
$$534$$ −29.2982 44.5113i −1.26786 1.92619i
$$535$$ 15.8174 16.3422i 0.683847 0.706536i
$$536$$ 5.86768 0.00625680i 0.253445 0.000270253i
$$537$$ 11.7786 32.3613i 0.508282 1.39649i
$$538$$ −0.609326 + 2.03793i −0.0262699 + 0.0878613i
$$539$$ 1.53159 + 0.884266i 0.0659704 + 0.0380880i
$$540$$ −29.4423 3.80178i −1.26699 0.163603i
$$541$$ 6.57080 37.2649i 0.282501 1.60214i −0.431577 0.902076i $$-0.642043\pi$$
0.714078 0.700066i $$-0.246846\pi$$
$$542$$ −23.9075 + 5.67515i −1.02691 + 0.243769i
$$543$$ −2.80198 4.85316i −0.120244 0.208269i
$$544$$ −0.671889 + 11.9002i −0.0288070 + 0.510216i
$$545$$ 14.9931 + 10.1378i 0.642232 + 0.434254i
$$546$$ 0.119098 + 2.03239i 0.00509692 + 0.0869782i
$$547$$ 9.91750 + 27.2481i 0.424042 + 1.16504i 0.949374 + 0.314148i $$0.101719\pi$$
−0.525333 + 0.850897i $$0.676059\pi$$
$$548$$ 9.51281 + 0.547273i 0.406367 + 0.0233783i
$$549$$ 10.9579 + 62.1456i 0.467674 + 2.65231i
$$550$$ 1.03582 + 1.46709i 0.0441676 + 0.0625570i
$$551$$ 24.8439 + 14.7582i 1.05838 + 0.628720i
$$552$$ 37.8086 + 13.7156i 1.60924 + 0.583774i
$$553$$ 0.253122 + 1.43553i 0.0107639 + 0.0610449i
$$554$$ 18.6395 + 9.35280i 0.791916 + 0.397363i
$$555$$ 38.1161 18.5369i 1.61794 0.786847i
$$556$$ 4.04879 + 8.04753i 0.171707 + 0.341291i
$$557$$ 0.188721 0.224908i 0.00799635 0.00952968i −0.762031 0.647540i $$-0.775798\pi$$
0.770028 + 0.638010i $$0.220242\pi$$
$$558$$ 2.56205 21.9875i 0.108460 0.930807i
$$559$$ 9.25729 + 16.0341i 0.391541 + 0.678170i
$$560$$ 0.0194524 1.71381i 0.000822015 0.0724216i
$$561$$ −1.51864 0.267777i −0.0641170 0.0113056i
$$562$$ 0.602115 0.809381i 0.0253987 0.0341417i
$$563$$ −8.23177 4.75261i −0.346928 0.200299i 0.316404 0.948625i $$-0.397525\pi$$
−0.663331 + 0.748326i $$0.730858\pi$$
$$564$$ 3.63169 + 30.8807i 0.152922 + 1.30031i
$$565$$ 3.58779 14.3205i 0.150939 0.602468i
$$566$$ −0.567274 + 0.535576i −0.0238443 + 0.0225119i
$$567$$ −0.472316 + 0.396320i −0.0198354 + 0.0166439i
$$568$$ 28.0114 + 4.90838i 1.17533 + 0.205951i
$$569$$ 35.3359i 1.48136i 0.671860 + 0.740678i $$0.265496\pi$$
−0.671860 + 0.740678i $$0.734504\pi$$
$$570$$ −24.7680 31.0522i −1.03742 1.30063i
$$571$$ 22.5979i 0.945693i 0.881145 + 0.472846i $$0.156773\pi$$
−0.881145 + 0.472846i $$0.843227\pi$$
$$572$$ −0.726927 + 1.10695i −0.0303944 + 0.0462840i
$$573$$ 49.4636 41.5049i 2.06637 1.73389i
$$574$$ 2.04449 + 2.16549i 0.0853352 + 0.0903857i
$$575$$ 24.4253 + 3.48937i 1.01861 + 0.145517i
$$576$$ 7.45682 + 41.7687i 0.310701 + 1.74036i
$$577$$ −17.8228 10.2900i −0.741973 0.428378i 0.0808134 0.996729i $$-0.474248\pi$$
−0.822786 + 0.568351i $$0.807582\pi$$
$$578$$ 14.2520 + 10.6023i 0.592805 + 0.441000i
$$579$$ −9.58634 1.69033i −0.398395 0.0702477i
$$580$$ −20.0837 21.8086i −0.833932 0.905552i
$$581$$ −0.306451 0.530789i −0.0127137 0.0220208i
$$582$$ −57.3952 6.68786i −2.37911 0.277221i
$$583$$ 0.834278 0.994254i 0.0345523 0.0411778i
$$584$$ 7.77485 + 6.50976i 0.321726 + 0.269376i
$$585$$ −13.5221 27.8045i −0.559070 1.14958i
$$586$$ −1.61010 + 3.20882i −0.0665127 + 0.132555i
$$587$$ 1.22130 + 6.92636i 0.0504086 + 0.285881i 0.999583 0.0288686i $$-0.00919043\pi$$
−0.949175 + 0.314750i $$0.898079\pi$$
$$588$$ 29.2097 + 27.5187i 1.20459 + 1.13485i
$$589$$ 9.95677 8.14608i 0.410262 0.335653i
$$590$$ 18.2162 + 32.4761i 0.749950 + 1.33702i
$$591$$ −11.4242 64.7896i −0.469927 2.66509i
$$592$$ −18.0834 19.1127i −0.743222 0.785529i
$$593$$ −9.24887 25.4111i −0.379806 1.04351i −0.971437 0.237298i $$-0.923738\pi$$
0.591631 0.806209i $$-0.298484\pi$$
$$594$$ −2.38022 + 0.139481i −0.0976615 + 0.00572297i
$$595$$ 0.747896 + 0.505699i 0.0306607 + 0.0207317i
$$596$$ 0.0141492 + 0.0471395i 0.000579573 + 0.00193091i
$$597$$ 25.7953 + 44.6787i 1.05573 + 1.82858i
$$598$$ 4.20213 + 17.7021i 0.171838 + 0.723895i
$$599$$ −7.08750 + 40.1952i −0.289587 + 1.64233i 0.398835 + 0.917023i $$0.369414\pi$$
−0.688423 + 0.725310i $$0.741697\pi$$
$$600$$ 15.2204 + 37.8030i 0.621370 + 1.54330i
$$601$$ 0.850544 + 0.491062i 0.0346944 + 0.0200308i 0.517247 0.855836i $$-0.326957\pi$$
−0.482552 + 0.875867i $$0.660290\pi$$
$$602$$ −1.84384 0.551296i −0.0751494 0.0224692i
$$603$$ −3.76311 + 10.3391i −0.153246 + 0.421039i
$$604$$ −0.957111 + 2.22318i −0.0389443 + 0.0904598i
$$605$$ −17.5704 17.0061i −0.714336 0.691397i
$$606$$ 45.2208 29.7652i 1.83697 1.20913i
$$607$$ 37.2092i 1.51027i −0.655567 0.755137i $$-0.727570\pi$$
0.655567 0.755137i $$-0.272430\pi$$
$$608$$ −13.7682 + 20.4557i −0.558373 + 0.829590i
$$609$$ −3.66059 −0.148335
$$610$$ 29.1211 23.8257i 1.17908 0.964673i
$$611$$ −10.7750 + 9.04129i −0.435910 + 0.365772i
$$612$$ −20.5282 8.83771i −0.829804 0.357243i
$$613$$ −4.30413 + 11.8255i −0.173842 + 0.477628i −0.995761 0.0919768i $$-0.970681\pi$$
0.821919 + 0.569605i $$0.192904\pi$$
$$614$$ −6.55542 + 21.9250i −0.264555 + 0.884820i
$$615$$ −64.6566 28.8750i −2.60721 1.16435i
$$616$$ −0.0240479 0.135537i −0.000968918 0.00546095i
$$617$$ −13.0886 2.30787i −0.526927 0.0929115i −0.0961449 0.995367i $$-0.530651\pi$$
−0.430782 + 0.902456i $$0.641762\pi$$
$$618$$ 14.4736 + 60.9722i 0.582212 + 2.45266i
$$619$$ −3.50644 + 2.02445i −0.140936 + 0.0813694i −0.568810 0.822469i $$-0.692596\pi$$
0.427874 + 0.903838i $$0.359263\pi$$
$$620$$ −12.1814 + 5.08120i −0.489218 + 0.204066i
$$621$$ −21.0558 + 25.0934i −0.844941 + 1.00696i
$$622$$ −2.13234 36.3881i −0.0854992 1.45903i
$$623$$ 0.856996 + 2.35458i 0.0343348 + 0.0943342i
$$624$$ −21.8286 + 20.6529i −0.873842 + 0.826779i
$$625$$ 13.8855 + 20.7893i 0.555420 + 0.831570i
$$626$$ 14.0837 + 32.6177i 0.562897 + 1.30367i
$$627$$ −2.41812 2.08079i −0.0965706 0.0830986i
$$628$$ −29.0822 27.3986i −1.16050 1.09332i
$$629$$ 13.6493 2.40674i 0.544233 0.0959630i
$$630$$ 3.00610 + 1.13659i 0.119766 + 0.0452830i
$$631$$ −0.233424 0.641327i −0.00929246 0.0255308i 0.934960 0.354754i $$-0.115435\pi$$
−0.944252 + 0.329223i $$0.893213\pi$$
$$632$$ −13.8126 + 16.4969i −0.549435 + 0.656211i
$$633$$ −17.8513 + 21.2743i −0.709524 + 0.845578i
$$634$$ −1.89540 + 16.2663i −0.0752758 + 0.646017i
$$635$$ 4.92705 + 6.79773i 0.195524 + 0.269760i
$$636$$ 23.6113 17.6040i 0.936248 0.698046i
$$637$$ −3.15240 + 17.8781i −0.124903 + 0.708358i
$$638$$ −1.91048 1.42124i −0.0756366 0.0562676i
$$639$$ −26.6625 + 46.1808i −1.05475 + 1.82688i
$$640$$ 19.5458 16.0612i 0.772614 0.634876i
$$641$$ 5.28242 14.5133i 0.208643 0.573242i −0.790592 0.612343i $$-0.790227\pi$$
0.999235 + 0.0391011i $$0.0124494\pi$$
$$642$$ 30.1391 28.4550i 1.18950 1.12303i
$$643$$ −21.0675 + 17.6777i −0.830821 + 0.697141i −0.955479 0.295058i $$-0.904661\pi$$
0.124659 + 0.992200i $$0.460216\pi$$
$$644$$ −1.58080 1.03810i −0.0622921 0.0409067i
$$645$$ 45.5137 4.73140i 1.79210 0.186299i
$$646$$ −5.00020 11.9875i −0.196730 0.471644i
$$647$$ 15.3177 0.602202 0.301101 0.953592i $$-0.402646\pi$$
0.301101 + 0.953592i $$0.402646\pi$$
$$648$$ −8.96420 1.57078i −0.352147 0.0617059i
$$649$$ 1.92234 + 2.29096i 0.0754585 + 0.0899279i
$$650$$ −10.5149 + 15.1422i −0.412427 + 0.593924i
$$651$$ −0.557375 + 1.53138i −0.0218453 + 0.0600193i
$$652$$ −22.9197 + 2.69544i −0.897604 + 0.105562i
$$653$$ 21.1784 + 12.2274i 0.828777 + 0.478494i 0.853434 0.521202i $$-0.174516\pi$$
−0.0246570 + 0.999696i $$0.507849\pi$$
$$654$$ 26.4648 + 19.6877i 1.03486 + 0.769851i
$$655$$ 3.41923 48.1117i 0.133600 1.87988i
$$656$$ −5.04120 + 43.6686i −0.196826 + 1.70497i
$$657$$ −16.4668 + 9.50710i −0.642431 + 0.370907i
$$658$$ 0.169219 1.45224i 0.00659684 0.0566141i
$$659$$ −21.7171 18.2228i −0.845977 0.709859i 0.112923 0.993604i $$-0.463979\pi$$
−0.958900 + 0.283745i $$0.908423\pi$$
$$660$$ 1.76544 + 2.75606i 0.0687197 + 0.107279i
$$661$$ −9.40873 25.8503i −0.365957 1.00546i −0.976884 0.213772i $$-0.931425\pi$$
0.610927 0.791687i $$-0.290797\pi$$
$$662$$ 8.31728 16.5758i 0.323260 0.644235i
$$663$$ −2.74872 15.5888i −0.106752 0.605418i
$$664$$ 3.08509 8.50443i 0.119725 0.330036i
$$665$$ 0.795907 + 1.68962i 0.0308639 + 0.0655208i
$$666$$ 45.2956 19.5577i 1.75517 0.757845i
$$667$$ −32.2167 + 5.68068i −1.24744 + 0.219957i
$$668$$ 41.5039 + 2.38772i 1.60583 + 0.0923837i
$$669$$ 9.53455 3.47029i 0.368627 0.134169i
$$670$$ 6.47425 1.05888i 0.250122 0.0409080i
$$671$$ 1.94246 2.31493i 0.0749878 0.0893670i
$$672$$ 0.176079 3.11862i 0.00679238 0.120304i
$$673$$ −10.0526 17.4115i −0.387497 0.671165i 0.604615 0.796518i $$-0.293327\pi$$
−0.992112 + 0.125353i $$0.959994\pi$$
$$674$$ −1.76295 7.42669i −0.0679062 0.286066i
$$675$$ −33.1731 + 1.08296i −1.27683 + 0.0416833i
$$676$$ 12.0737 + 2.85246i 0.464374 + 0.109710i
$$677$$ −13.4615 + 23.3160i −0.517369 + 0.896109i 0.482428 + 0.875936i $$0.339755\pi$$
−0.999797 + 0.0201729i $$0.993578\pi$$
$$678$$ 7.70743 25.7779i 0.296002 0.989996i
$$679$$ 2.55321 + 0.929291i 0.0979830 + 0.0356629i
$$680$$ 1.39202 + 13.2531i 0.0533816 + 0.508233i
$$681$$ 34.8858 29.2727i 1.33683 1.12173i
$$682$$ −0.885460 + 0.582828i −0.0339060 + 0.0223176i
$$683$$ 39.9412i 1.52831i −0.645034 0.764154i $$-0.723157\pi$$
0.645034 0.764154i $$-0.276843\pi$$
$$684$$ −27.1739 37.4078i −1.03902 1.43032i
$$685$$ 10.5961 1.10153i 0.404857 0.0420872i
$$686$$ −2.08045 3.16072i −0.0794319 0.120677i
$$687$$ 30.5114 + 36.3621i 1.16408 + 1.38730i
$$688$$ −11.2883 26.0672i −0.430362 0.993803i
$$689$$ 12.5195 + 4.55673i 0.476955 + 0.173597i
$$690$$ 44.1833 + 8.35762i 1.68203 + 0.318169i
$$691$$ 32.0313 + 18.4933i 1.21853 + 0.703517i 0.964603 0.263707i $$-0.0849453\pi$$
0.253924 + 0.967224i $$0.418279\pi$$
$$692$$ 10.6273 + 2.51075i 0.403991 + 0.0954443i
$$693$$ 0.254196 + 0.0448216i 0.00965611 + 0.00170263i
$$694$$ −8.12735 34.2377i −0.308510 1.29965i
$$695$$ 5.91089 + 8.15511i 0.224213 + 0.309341i
$$696$$ −34.7752 41.3539i −1.31815 1.56751i
$$697$$ −17.7381 14.8840i −0.671879 0.563774i
$$698$$ 12.3743 0.725132i 0.468373 0.0274467i
$$699$$ −27.7966 + 10.1171i −1.05136 + 0.382665i
$$700$$ −0.285789 1.89479i −0.0108018 0.0716162i
$$701$$ −3.84939 21.8310i −0.145389 0.824544i −0.967054 0.254572i $$-0.918065\pi$$
0.821664 0.569972i $$-0.193046\pi$$
$$702$$ −9.70196 22.4697i −0.366177 0.848064i
$$703$$ 26.8194 + 10.1406i 1.01151 + 0.382459i
$$704$$ 1.30272 1.55926i 0.0490980 0.0587668i
$$705$$ 9.54418 + 33.4278i 0.359455 + 1.25896i
$$706$$ 33.4629 + 16.7908i 1.25939 + 0.631930i
$$707$$ −2.39211 + 0.870658i −0.0899647 + 0.0327445i
$$708$$ 30.4996 + 60.6222i 1.14625 + 2.27832i
$$709$$ −13.7969 11.5770i −0.518154 0.434783i 0.345833 0.938296i $$-0.387596\pi$$
−0.863988 + 0.503513i $$0.832041\pi$$
$$710$$ 31.7924 + 0.394763i 1.19315 + 0.0148152i
$$711$$ −20.1724 34.9397i −0.756526 1.31034i
$$712$$ −18.4584 + 32.0498i −0.691758 + 1.20112i
$$713$$ −2.52898 + 14.3425i −0.0947109 + 0.537132i
$$714$$ 1.32014 + 0.982079i 0.0494050 + 0.0367534i
$$715$$ −0.603755 + 1.35192i −0.0225792 + 0.0505589i
$$716$$ −23.7385 + 2.79174i −0.887150 + 0.104332i
$$717$$ −59.2635 21.5702i −2.21324 0.805553i
$$718$$ 4.17581 + 4.42295i 0.155840 + 0.165063i
$$719$$ 11.8451 + 14.1164i 0.441746 + 0.526453i 0.940273 0.340422i $$-0.110570\pi$$
−0.498526 + 0.866874i $$0.666125\pi$$
$$720$$ 15.7175 + 44.7576i 0.585756 + 1.66802i
$$721$$ 2.94667i 0.109740i
$$722$$ 3.77212 26.6040i 0.140384 0.990097i
$$723$$ −64.1656 −2.38635
$$724$$ −2.13499 + 3.25112i −0.0793462 + 0.120827i
$$725$$ −26.0736 20.4665i −0.968351 0.760108i
$$726$$ −30.5934 32.4041i −1.13543 1.20263i
$$727$$ −23.1678 8.43240i −0.859247 0.312740i −0.125443 0.992101i $$-0.540035\pi$$
−0.733805 + 0.679360i $$0.762257\pi$$
$$728$$ 1.22295 0.707812i 0.0453257 0.0262333i
$$729$$ −20.1602 + 34.9186i −0.746676 + 1.29328i
$$730$$ 9.74714 + 5.79005i 0.360758 + 0.214300i
$$731$$ 14.7360 + 2.59835i 0.545029 + 0.0961033i
$$732$$ 54.9744 40.9877i 2.03191 1.51495i
$$733$$ −27.5618 + 15.9128i −1.01802 + 0.587754i −0.913530 0.406772i $$-0.866654\pi$$
−0.104490 + 0.994526i $$0.533321\pi$$
$$734$$ 1.24654 10.6978i 0.0460107 0.394864i
$$735$$ 37.1684 + 25.1319i 1.37098 + 0.927004i
$$736$$ −3.28997 27.7201i −0.121270 1.02178i
$$737$$ 0.495115 0.180207i 0.0182378 0.00663802i
$$738$$ −73.6730 36.9672i −2.71194 1.36078i
$$739$$ −18.4313 + 3.24994i −0.678008 + 0.119551i −0.502039 0.864845i $$-0.667417\pi$$
−0.175968 + 0.984396i $$0.556306\pi$$
$$740$$ −23.3828 17.8501i −0.859568 0.656184i
$$741$$ 11.5815 30.6303i 0.425457 1.12523i
$$742$$ −1.27140 + 0.548965i −0.0466746 + 0.0201531i
$$743$$ −22.5077 + 3.96871i −0.825727 + 0.145598i −0.570515 0.821287i $$-0.693256\pi$$
−0.255212 + 0.966885i $$0.582145\pi$$
$$744$$ −22.5950 + 8.25121i −0.828374 + 0.302504i
$$745$$ 0.0240658 + 0.0494849i 0.000881704 + 0.00181299i
$$746$$ −18.9339 + 1.10953i −0.693220 + 0.0406227i
$$747$$ 12.9949 + 10.9040i 0.475459 + 0.398958i
$$748$$ 0.307690 + 1.02510i 0.0112502 + 0.0374814i
$$749$$ −1.68789 + 0.974506i −0.0616743 + 0.0356077i
$$750$$ 23.5741 + 38.9893i 0.860805 + 1.42369i
$$751$$ 3.41796 19.3842i 0.124723 0.707341i −0.856749 0.515734i $$-0.827519\pi$$
0.981472 0.191606i $$-0.0613697\pi$$
$$752$$ 18.0136 11.8844i 0.656887 0.433380i
$$753$$ 1.00589 1.74226i 0.0366568 0.0634915i
$$754$$ 7.00184 23.4181i 0.254992 0.852836i
$$755$$ −0.657659 + 2.62502i −0.0239347 + 0.0955341i
$$756$$ 2.33668 + 1.00598i 0.0849844 + 0.0365871i
$$757$$ 2.12976 + 2.53815i 0.0774075 + 0.0922506i 0.803358 0.595496i $$-0.203044\pi$$
−0.725951 + 0.687747i $$0.758600\pi$$
$$758$$ −10.0378 15.2499i −0.364588 0.553900i
$$759$$ 3.61153 0.131090
$$760$$ −11.5267 + 25.0426i −0.418119 + 0.908392i
$$761$$ −44.5713 −1.61571 −0.807854 0.589383i $$-0.799371\pi$$
−0.807854 + 0.589383i $$0.799371\pi$$
$$762$$ 8.41243 + 12.7806i 0.304750 + 0.462992i
$$763$$ −0.996958 1.18813i −0.0360923 0.0430131i
$$764$$ −41.1629 17.7212i −1.48922 0.641131i
$$765$$ −24.2387 6.07264i −0.876352 0.219557i
$$766$$ −7.82750 + 26.1796i −0.282819 + 0.945906i
$$767$$ −15.3494 + 26.5859i −0.554234 + 0.959962i
$$768$$ 36.9040