Properties

 Label 380.2.bb.a.219.13 Level $380$ Weight $2$ Character 380.219 Analytic conductor $3.034$ Analytic rank $0$ Dimension $336$ CM no Inner twists $8$

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [380,2,Mod(59,380)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(380, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([9, 9, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("380.59");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$380 = 2^{2} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 380.bb (of order $$18$$, degree $$6$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$3.03431527681$$ Analytic rank: $$0$$ Dimension: $$336$$ Relative dimension: $$56$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

 Embedding label 219.13 Character $$\chi$$ $$=$$ 380.219 Dual form 380.2.bb.a.59.13

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-1.04981 + 0.947574i) q^{2} +(0.664457 + 0.791869i) q^{3} +(0.204208 - 1.98955i) q^{4} +(-0.681915 + 2.12955i) q^{5} +(-1.44791 - 0.201691i) q^{6} +(1.98367 - 3.43582i) q^{7} +(1.67086 + 2.28215i) q^{8} +(0.335391 - 1.90210i) q^{9} +O(q^{10})$$ $$q+(-1.04981 + 0.947574i) q^{2} +(0.664457 + 0.791869i) q^{3} +(0.204208 - 1.98955i) q^{4} +(-0.681915 + 2.12955i) q^{5} +(-1.44791 - 0.201691i) q^{6} +(1.98367 - 3.43582i) q^{7} +(1.67086 + 2.28215i) q^{8} +(0.335391 - 1.90210i) q^{9} +(-1.30203 - 2.88179i) q^{10} +(3.95947 - 2.28600i) q^{11} +(1.71115 - 1.16026i) q^{12} +(1.59714 + 1.34016i) q^{13} +(1.17321 + 5.48664i) q^{14} +(-2.13943 + 0.875008i) q^{15} +(-3.91660 - 0.812561i) q^{16} +(3.02148 - 0.532768i) q^{17} +(1.45028 + 2.31465i) q^{18} +(-2.31915 + 3.69074i) q^{19} +(4.09759 + 1.79157i) q^{20} +(4.03878 - 0.712147i) q^{21} +(-1.99054 + 6.15176i) q^{22} +(-4.89694 + 1.78234i) q^{23} +(-0.696948 + 2.83950i) q^{24} +(-4.06998 - 2.90435i) q^{25} +(-2.94660 + 0.106493i) q^{26} +(4.41473 - 2.54884i) q^{27} +(-6.43065 - 4.64823i) q^{28} +(8.07431 + 1.42372i) q^{29} +(1.41686 - 2.94586i) q^{30} +(-0.128751 + 0.223003i) q^{31} +(4.88165 - 2.85823i) q^{32} +(4.44111 + 1.61643i) q^{33} +(-2.66715 + 3.42238i) q^{34} +(5.96406 + 6.56727i) q^{35} +(-3.71582 - 1.05570i) q^{36} -4.87597 q^{37} +(-1.06258 - 6.07214i) q^{38} +2.15520i q^{39} +(-5.99935 + 2.00196i) q^{40} +(3.49860 + 4.16946i) q^{41} +(-3.56515 + 4.57467i) q^{42} +(-3.50528 - 1.27582i) q^{43} +(-3.73955 - 8.34437i) q^{44} +(3.82191 + 2.01130i) q^{45} +(3.45196 - 6.51133i) q^{46} +(-1.32983 + 7.54185i) q^{47} +(-1.95897 - 3.64135i) q^{48} +(-4.36990 - 7.56889i) q^{49} +(7.02480 - 0.807591i) q^{50} +(2.42953 + 2.03861i) q^{51} +(2.99246 - 2.90391i) q^{52} +(-5.94655 + 2.16437i) q^{53} +(-2.21941 + 6.85908i) q^{54} +(2.16813 + 9.99075i) q^{55} +(11.1555 - 1.21375i) q^{56} +(-4.46356 + 0.615877i) q^{57} +(-9.82559 + 6.15637i) q^{58} +(-0.0505433 - 0.286645i) q^{59} +(1.30398 + 4.43518i) q^{60} +(12.9746 - 4.72236i) q^{61} +(-0.0761478 - 0.356113i) q^{62} +(-5.86996 - 4.92548i) q^{63} +(-2.41643 + 7.62633i) q^{64} +(-3.94305 + 2.48732i) q^{65} +(-6.19402 + 2.51133i) q^{66} +(6.61416 + 1.16625i) q^{67} +(-0.442959 - 6.12017i) q^{68} +(-4.66519 - 2.69345i) q^{69} +(-12.4841 - 1.24301i) q^{70} +(-4.32369 - 1.57370i) q^{71} +(4.90127 - 2.41273i) q^{72} +(-4.91224 - 5.85418i) q^{73} +(5.11885 - 4.62035i) q^{74} +(-0.404465 - 5.15271i) q^{75} +(6.86931 + 5.36773i) q^{76} -18.1387i q^{77} +(-2.04221 - 2.26256i) q^{78} +(-1.37594 + 1.15455i) q^{79} +(4.40118 - 7.78650i) q^{80} +(-0.493133 - 0.179486i) q^{81} +(-7.62374 - 1.06197i) q^{82} +(3.10221 - 5.37319i) q^{83} +(-0.592099 - 8.18078i) q^{84} +(-0.925836 + 6.79770i) q^{85} +(4.88882 - 1.98214i) q^{86} +(4.23764 + 7.33980i) q^{87} +(11.8327 + 5.21651i) q^{88} +(0.410842 - 0.489623i) q^{89} +(-5.91814 + 1.51005i) q^{90} +(7.77274 - 2.82905i) q^{91} +(2.54606 + 10.1067i) q^{92} +(-0.262139 + 0.0462222i) q^{93} +(-5.75039 - 9.17763i) q^{94} +(-6.27816 - 7.45552i) q^{95} +(5.50699 + 1.96646i) q^{96} +(-3.18700 - 18.0744i) q^{97} +(11.7597 + 3.80510i) q^{98} +(-3.02022 - 8.29800i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9}+O(q^{10})$$ 336 * q - 18 * q^4 - 12 * q^5 - 18 * q^6 - 24 * q^9 $$336 q - 18 q^{4} - 12 q^{5} - 18 q^{6} - 24 q^{9} - 15 q^{10} + 18 q^{14} - 6 q^{16} - 42 q^{20} + 12 q^{21} + 12 q^{24} - 12 q^{25} + 18 q^{26} - 24 q^{29} - 24 q^{30} + 12 q^{34} - 6 q^{36} - 48 q^{40} - 12 q^{41} - 36 q^{44} - 6 q^{45} - 18 q^{46} - 108 q^{49} - 36 q^{50} + 36 q^{54} - 30 q^{60} - 24 q^{61} + 18 q^{64} - 18 q^{65} - 48 q^{66} - 180 q^{69} - 21 q^{70} - 30 q^{74} - 48 q^{76} + 3 q^{80} - 60 q^{81} + 90 q^{84} - 36 q^{85} + 102 q^{86} - 48 q^{89} - 78 q^{90} + 24 q^{96}+O(q^{100})$$ 336 * q - 18 * q^4 - 12 * q^5 - 18 * q^6 - 24 * q^9 - 15 * q^10 + 18 * q^14 - 6 * q^16 - 42 * q^20 + 12 * q^21 + 12 * q^24 - 12 * q^25 + 18 * q^26 - 24 * q^29 - 24 * q^30 + 12 * q^34 - 6 * q^36 - 48 * q^40 - 12 * q^41 - 36 * q^44 - 6 * q^45 - 18 * q^46 - 108 * q^49 - 36 * q^50 + 36 * q^54 - 30 * q^60 - 24 * q^61 + 18 * q^64 - 18 * q^65 - 48 * q^66 - 180 * q^69 - 21 * q^70 - 30 * q^74 - 48 * q^76 + 3 * q^80 - 60 * q^81 + 90 * q^84 - 36 * q^85 + 102 * q^86 - 48 * q^89 - 78 * q^90 + 24 * q^96

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/380\mathbb{Z}\right)^\times$$.

 $$n$$ $$21$$ $$77$$ $$191$$ $$\chi(n)$$ $$e\left(\frac{17}{18}\right)$$ $$-1$$ $$-1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.04981 + 0.947574i −0.742329 + 0.670036i
$$3$$ 0.664457 + 0.791869i 0.383624 + 0.457186i 0.922955 0.384908i $$-0.125767\pi$$
−0.539330 + 0.842094i $$0.681323\pi$$
$$4$$ 0.204208 1.98955i 0.102104 0.994774i
$$5$$ −0.681915 + 2.12955i −0.304962 + 0.952365i
$$6$$ −1.44791 0.201691i −0.591106 0.0823400i
$$7$$ 1.98367 3.43582i 0.749757 1.29862i −0.198182 0.980165i $$-0.563504\pi$$
0.947939 0.318452i $$-0.103163\pi$$
$$8$$ 1.67086 + 2.28215i 0.590740 + 0.806862i
$$9$$ 0.335391 1.90210i 0.111797 0.634032i
$$10$$ −1.30203 2.88179i −0.411736 0.911303i
$$11$$ 3.95947 2.28600i 1.19382 0.689255i 0.234653 0.972079i $$-0.424605\pi$$
0.959172 + 0.282824i $$0.0912712\pi$$
$$12$$ 1.71115 1.16026i 0.493966 0.334939i
$$13$$ 1.59714 + 1.34016i 0.442967 + 0.371693i 0.836818 0.547481i $$-0.184413\pi$$
−0.393851 + 0.919174i $$0.628858\pi$$
$$14$$ 1.17321 + 5.48664i 0.313554 + 1.46637i
$$15$$ −2.13943 + 0.875008i −0.552398 + 0.225926i
$$16$$ −3.91660 0.812561i −0.979150 0.203140i
$$17$$ 3.02148 0.532768i 0.732817 0.129215i 0.205227 0.978714i $$-0.434207\pi$$
0.527590 + 0.849499i $$0.323096\pi$$
$$18$$ 1.45028 + 2.31465i 0.341834 + 0.545568i
$$19$$ −2.31915 + 3.69074i −0.532049 + 0.846714i
$$20$$ 4.09759 + 1.79157i 0.916250 + 0.400608i
$$21$$ 4.03878 0.712147i 0.881335 0.155403i
$$22$$ −1.99054 + 6.15176i −0.424385 + 1.31156i
$$23$$ −4.89694 + 1.78234i −1.02108 + 0.371644i −0.797679 0.603082i $$-0.793939\pi$$
−0.223404 + 0.974726i $$0.571717\pi$$
$$24$$ −0.696948 + 2.83950i −0.142264 + 0.579610i
$$25$$ −4.06998 2.90435i −0.813997 0.580870i
$$26$$ −2.94660 + 0.106493i −0.577875 + 0.0208851i
$$27$$ 4.41473 2.54884i 0.849615 0.490525i
$$28$$ −6.43065 4.64823i −1.21528 0.878433i
$$29$$ 8.07431 + 1.42372i 1.49936 + 0.264378i 0.862286 0.506422i $$-0.169032\pi$$
0.637077 + 0.770800i $$0.280143\pi$$
$$30$$ 1.41686 2.94586i 0.258683 0.537838i
$$31$$ −0.128751 + 0.223003i −0.0231244 + 0.0400526i −0.877356 0.479840i $$-0.840695\pi$$
0.854232 + 0.519893i $$0.174028\pi$$
$$32$$ 4.88165 2.85823i 0.862962 0.505269i
$$33$$ 4.44111 + 1.61643i 0.773098 + 0.281385i
$$34$$ −2.66715 + 3.42238i −0.457412 + 0.586934i
$$35$$ 5.96406 + 6.56727i 1.00811 + 1.11007i
$$36$$ −3.71582 1.05570i −0.619304 0.175950i
$$37$$ −4.87597 −0.801605 −0.400803 0.916164i $$-0.631269\pi$$
−0.400803 + 0.916164i $$0.631269\pi$$
$$38$$ −1.06258 6.07214i −0.172373 0.985032i
$$39$$ 2.15520i 0.345109i
$$40$$ −5.99935 + 2.00196i −0.948580 + 0.316537i
$$41$$ 3.49860 + 4.16946i 0.546389 + 0.651161i 0.966607 0.256262i $$-0.0824910\pi$$
−0.420218 + 0.907423i $$0.638047\pi$$
$$42$$ −3.56515 + 4.57467i −0.550114 + 0.705886i
$$43$$ −3.50528 1.27582i −0.534550 0.194560i 0.0606186 0.998161i $$-0.480693\pi$$
−0.595169 + 0.803601i $$0.702915\pi$$
$$44$$ −3.73955 8.34437i −0.563759 1.25796i
$$45$$ 3.82191 + 2.01130i 0.569736 + 0.299827i
$$46$$ 3.45196 6.51133i 0.508964 0.960044i
$$47$$ −1.32983 + 7.54185i −0.193976 + 1.10009i 0.719894 + 0.694084i $$0.244190\pi$$
−0.913870 + 0.406007i $$0.866921\pi$$
$$48$$ −1.95897 3.64135i −0.282753 0.525583i
$$49$$ −4.36990 7.56889i −0.624272 1.08127i
$$50$$ 7.02480 0.807591i 0.993457 0.114211i
$$51$$ 2.42953 + 2.03861i 0.340202 + 0.285463i
$$52$$ 2.99246 2.90391i 0.414979 0.402700i
$$53$$ −5.94655 + 2.16437i −0.816822 + 0.297299i −0.716439 0.697650i $$-0.754229\pi$$
−0.100383 + 0.994949i $$0.532007\pi$$
$$54$$ −2.21941 + 6.85908i −0.302024 + 0.933403i
$$55$$ 2.16813 + 9.99075i 0.292351 + 1.34715i
$$56$$ 11.1555 1.21375i 1.49072 0.162194i
$$57$$ −4.46356 + 0.615877i −0.591212 + 0.0815748i
$$58$$ −9.82559 + 6.15637i −1.29016 + 0.808371i
$$59$$ −0.0505433 0.286645i −0.00658017 0.0373180i 0.981341 0.192276i $$-0.0615869\pi$$
−0.987921 + 0.154958i $$0.950476\pi$$
$$60$$ 1.30398 + 4.43518i 0.168343 + 0.572579i
$$61$$ 12.9746 4.72236i 1.66122 0.604636i 0.670670 0.741756i $$-0.266007\pi$$
0.990555 + 0.137119i $$0.0437844\pi$$
$$62$$ −0.0761478 0.356113i −0.00967078 0.0452263i
$$63$$ −5.86996 4.92548i −0.739545 0.620552i
$$64$$ −2.41643 + 7.62633i −0.302053 + 0.953291i
$$65$$ −3.94305 + 2.48732i −0.489076 + 0.308514i
$$66$$ −6.19402 + 2.51133i −0.762431 + 0.309124i
$$67$$ 6.61416 + 1.16625i 0.808048 + 0.142481i 0.562386 0.826875i $$-0.309884\pi$$
0.245662 + 0.969356i $$0.420995\pi$$
$$68$$ −0.442959 6.12017i −0.0537167 0.742180i
$$69$$ −4.66519 2.69345i −0.561623 0.324253i
$$70$$ −12.4841 1.24301i −1.49214 0.148568i
$$71$$ −4.32369 1.57370i −0.513128 0.186763i 0.0724613 0.997371i $$-0.476915\pi$$
−0.585589 + 0.810608i $$0.699137\pi$$
$$72$$ 4.90127 2.41273i 0.577620 0.284343i
$$73$$ −4.91224 5.85418i −0.574934 0.685180i 0.397701 0.917515i $$-0.369808\pi$$
−0.972636 + 0.232335i $$0.925364\pi$$
$$74$$ 5.11885 4.62035i 0.595055 0.537104i
$$75$$ −0.404465 5.15271i −0.0467035 0.594984i
$$76$$ 6.86931 + 5.36773i 0.787964 + 0.615721i
$$77$$ 18.1387i 2.06710i
$$78$$ −2.04221 2.26256i −0.231235 0.256184i
$$79$$ −1.37594 + 1.15455i −0.154805 + 0.129897i −0.716901 0.697175i $$-0.754440\pi$$
0.562095 + 0.827073i $$0.309995\pi$$
$$80$$ 4.40118 7.78650i 0.492067 0.870557i
$$81$$ −0.493133 0.179486i −0.0547925 0.0199429i
$$82$$ −7.62374 1.06197i −0.841901 0.117275i
$$83$$ 3.10221 5.37319i 0.340512 0.589784i −0.644016 0.765012i $$-0.722733\pi$$
0.984528 + 0.175228i $$0.0560664\pi$$
$$84$$ −0.592099 8.18078i −0.0646033 0.892596i
$$85$$ −0.925836 + 6.79770i −0.100421 + 0.737314i
$$86$$ 4.88882 1.98214i 0.527174 0.213740i
$$87$$ 4.23764 + 7.33980i 0.454322 + 0.786909i
$$88$$ 11.8327 + 5.21651i 1.26137 + 0.556082i
$$89$$ 0.410842 0.489623i 0.0435492 0.0518999i −0.743830 0.668369i $$-0.766993\pi$$
0.787379 + 0.616469i $$0.211437\pi$$
$$90$$ −5.91814 + 1.51005i −0.623826 + 0.159173i
$$91$$ 7.77274 2.82905i 0.814805 0.296565i
$$92$$ 2.54606 + 10.1067i 0.265445 + 1.05369i
$$93$$ −0.262139 + 0.0462222i −0.0271825 + 0.00479302i
$$94$$ −5.75039 9.17763i −0.593107 0.946600i
$$95$$ −6.27816 7.45552i −0.644125 0.764920i
$$96$$ 5.50699 + 1.96646i 0.562055 + 0.200701i
$$97$$ −3.18700 18.0744i −0.323591 1.83517i −0.519398 0.854532i $$-0.673844\pi$$
0.195807 0.980642i $$-0.437267\pi$$
$$98$$ 11.7597 + 3.80510i 1.18791 + 0.384374i
$$99$$ −3.02022 8.29800i −0.303544 0.833980i
$$100$$ −6.60946 + 7.50433i −0.660946 + 0.750433i
$$101$$ −3.59331 3.01515i −0.357548 0.300018i 0.446265 0.894901i $$-0.352754\pi$$
−0.803812 + 0.594883i $$0.797198\pi$$
$$102$$ −4.48228 + 0.161995i −0.443812 + 0.0160399i
$$103$$ −7.45958 + 4.30679i −0.735014 + 0.424361i −0.820254 0.572000i $$-0.806168\pi$$
0.0852396 + 0.996360i $$0.472834\pi$$
$$104$$ −0.389843 + 5.88414i −0.0382273 + 0.576987i
$$105$$ −1.23756 + 9.08642i −0.120773 + 0.886744i
$$106$$ 4.19186 7.90698i 0.407150 0.767994i
$$107$$ −10.1060 5.83472i −0.976986 0.564063i −0.0756275 0.997136i $$-0.524096\pi$$
−0.901359 + 0.433073i $$0.857429\pi$$
$$108$$ −4.16953 9.30380i −0.401213 0.895259i
$$109$$ −6.34238 + 17.4255i −0.607490 + 1.66906i 0.128203 + 0.991748i $$0.459079\pi$$
−0.735692 + 0.677316i $$0.763143\pi$$
$$110$$ −11.7431 8.43394i −1.11966 0.804145i
$$111$$ −3.23988 3.86113i −0.307515 0.366483i
$$112$$ −10.5611 + 11.8449i −0.997926 + 1.11924i
$$113$$ −0.0574513 −0.00540456 −0.00270228 0.999996i $$-0.500860\pi$$
−0.00270228 + 0.999996i $$0.500860\pi$$
$$114$$ 4.10230 4.87610i 0.384216 0.456689i
$$115$$ −0.456287 11.6437i −0.0425490 1.08578i
$$116$$ 4.48139 15.7735i 0.416087 1.46453i
$$117$$ 3.08478 2.58844i 0.285188 0.239301i
$$118$$ 0.324678 + 0.253030i 0.0298891 + 0.0232933i
$$119$$ 4.16313 11.4381i 0.381633 1.04853i
$$120$$ −5.57160 3.42048i −0.508615 0.312246i
$$121$$ 4.95160 8.57642i 0.450145 0.779675i
$$122$$ −9.14607 + 17.2520i −0.828047 + 1.56192i
$$123$$ −0.977003 + 5.54086i −0.0880934 + 0.499603i
$$124$$ 0.417384 + 0.301695i 0.0374822 + 0.0270930i
$$125$$ 8.96035 6.68672i 0.801438 0.598078i
$$126$$ 10.8296 0.391395i 0.964778 0.0348682i
$$127$$ 4.64726 5.53839i 0.412378 0.491453i −0.519375 0.854547i $$-0.673835\pi$$
0.931753 + 0.363094i $$0.118279\pi$$
$$128$$ −4.68972 10.2959i −0.414516 0.910042i
$$129$$ −1.31883 3.62345i −0.116116 0.319027i
$$130$$ 1.78255 6.34755i 0.156340 0.556717i
$$131$$ −20.4129 + 3.59935i −1.78349 + 0.314477i −0.965430 0.260662i $$-0.916059\pi$$
−0.818056 + 0.575139i $$0.804948\pi$$
$$132$$ 4.12288 8.50571i 0.358850 0.740327i
$$133$$ 8.08029 + 15.2894i 0.700650 + 1.32576i
$$134$$ −8.04873 + 5.04305i −0.695304 + 0.435654i
$$135$$ 2.41742 + 11.1395i 0.208059 + 0.958734i
$$136$$ 6.26434 + 6.00529i 0.537163 + 0.514949i
$$137$$ 6.83556 + 18.7805i 0.584001 + 1.60453i 0.781279 + 0.624182i $$0.214568\pi$$
−0.197278 + 0.980348i $$0.563210\pi$$
$$138$$ 7.44981 1.59300i 0.634170 0.135605i
$$139$$ 0.375344 0.447318i 0.0318363 0.0379410i −0.749891 0.661561i $$-0.769894\pi$$
0.781728 + 0.623620i $$0.214339\pi$$
$$140$$ 14.2838 10.5247i 1.20720 0.889499i
$$141$$ −6.85577 + 3.95818i −0.577360 + 0.333339i
$$142$$ 6.03026 2.44494i 0.506048 0.205174i
$$143$$ 9.38743 + 1.65526i 0.785016 + 0.138420i
$$144$$ −2.85916 + 7.17723i −0.238264 + 0.598102i
$$145$$ −8.53789 + 16.2238i −0.709033 + 1.34731i
$$146$$ 10.7042 + 1.49107i 0.885886 + 0.123402i
$$147$$ 3.08996 8.48960i 0.254856 0.700210i
$$148$$ −0.995711 + 9.70098i −0.0818469 + 0.797416i
$$149$$ −11.6884 + 9.80770i −0.957548 + 0.803478i −0.980553 0.196257i $$-0.937121\pi$$
0.0230042 + 0.999735i $$0.492677\pi$$
$$150$$ 5.30718 + 5.02611i 0.433330 + 0.410380i
$$151$$ −5.24500 −0.426832 −0.213416 0.976961i $$-0.568459\pi$$
−0.213416 + 0.976961i $$0.568459\pi$$
$$152$$ −12.2978 + 0.874078i −0.997484 + 0.0708971i
$$153$$ 5.92583i 0.479075i
$$154$$ 17.1878 + 19.0422i 1.38503 + 1.53446i
$$155$$ −0.387100 0.426251i −0.0310926 0.0342373i
$$156$$ 4.28788 + 0.440109i 0.343305 + 0.0352369i
$$157$$ 3.05158 8.38416i 0.243543 0.669129i −0.756345 0.654173i $$-0.773017\pi$$
0.999888 0.0149560i $$-0.00476082\pi$$
$$158$$ 0.350456 2.51587i 0.0278807 0.200152i
$$159$$ −5.66513 3.27076i −0.449274 0.259388i
$$160$$ 2.75788 + 12.3448i 0.218029 + 0.975942i
$$161$$ −3.59012 + 20.3606i −0.282941 + 1.60464i
$$162$$ 0.687772 0.278854i 0.0540365 0.0219088i
$$163$$ 4.03953 + 6.99668i 0.316401 + 0.548022i 0.979734 0.200302i $$-0.0641922\pi$$
−0.663333 + 0.748324i $$0.730859\pi$$
$$164$$ 9.00979 6.10919i 0.703546 0.477047i
$$165$$ −6.47074 + 8.35531i −0.503746 + 0.650460i
$$166$$ 1.83475 + 8.58040i 0.142405 + 0.665968i
$$167$$ 2.06631 + 5.67714i 0.159896 + 0.439310i 0.993608 0.112890i $$-0.0360107\pi$$
−0.833712 + 0.552200i $$0.813789\pi$$
$$168$$ 8.37348 + 8.02721i 0.646028 + 0.619313i
$$169$$ −1.50260 8.52166i −0.115584 0.655512i
$$170$$ −5.46937 8.01360i −0.419482 0.614615i
$$171$$ 6.24232 + 5.64908i 0.477362 + 0.431996i
$$172$$ −3.25410 + 6.71339i −0.248123 + 0.511891i
$$173$$ 2.77551 + 15.7407i 0.211018 + 1.19674i 0.887684 + 0.460453i $$0.152313\pi$$
−0.676666 + 0.736290i $$0.736576\pi$$
$$174$$ −11.4037 3.68993i −0.864514 0.279733i
$$175$$ −18.0523 + 8.22245i −1.36463 + 0.621559i
$$176$$ −17.3652 + 5.73604i −1.30895 + 0.432370i
$$177$$ 0.193402 0.230487i 0.0145370 0.0173245i
$$178$$ 0.0326469 + 0.903315i 0.00244699 + 0.0677063i
$$179$$ 7.75350 + 13.4294i 0.579523 + 1.00376i 0.995534 + 0.0944043i $$0.0300946\pi$$
−0.416010 + 0.909360i $$0.636572\pi$$
$$180$$ 4.78204 7.19314i 0.356432 0.536145i
$$181$$ −18.9443 3.34039i −1.40812 0.248289i −0.582643 0.812728i $$-0.697981\pi$$
−0.825475 + 0.564439i $$0.809092\pi$$
$$182$$ −5.47918 + 10.3352i −0.406144 + 0.766097i
$$183$$ 12.3605 + 7.13636i 0.913718 + 0.527535i
$$184$$ −12.2497 8.19751i −0.903059 0.604328i
$$185$$ 3.32500 10.3836i 0.244459 0.763420i
$$186$$ 0.231398 0.296921i 0.0169669 0.0217713i
$$187$$ 10.7455 9.01659i 0.785792 0.659358i
$$188$$ 14.7333 + 4.18586i 1.07454 + 0.305286i
$$189$$ 20.2243i 1.47110i
$$190$$ 13.6555 + 1.87787i 0.990677 + 0.136235i
$$191$$ 0.422809i 0.0305934i −0.999883 0.0152967i $$-0.995131\pi$$
0.999883 0.0152967i $$-0.00486928\pi$$
$$192$$ −7.64467 + 3.15387i −0.551706 + 0.227611i
$$193$$ 4.65164 3.90319i 0.334832 0.280957i −0.459833 0.888005i $$-0.652091\pi$$
0.794665 + 0.607048i $$0.207646\pi$$
$$194$$ 20.4726 + 15.9548i 1.46984 + 1.14549i
$$195$$ −4.58962 1.46967i −0.328669 0.105245i
$$196$$ −15.9510 + 7.14850i −1.13936 + 0.510607i
$$197$$ −8.04555 4.64510i −0.573222 0.330950i 0.185213 0.982698i $$-0.440702\pi$$
−0.758435 + 0.651748i $$0.774036\pi$$
$$198$$ 11.0336 + 5.84945i 0.784126 + 0.415702i
$$199$$ 13.8858 + 2.44844i 0.984336 + 0.173565i 0.642576 0.766222i $$-0.277866\pi$$
0.341760 + 0.939787i $$0.388977\pi$$
$$200$$ −0.172224 14.1411i −0.0121780 0.999926i
$$201$$ 3.47130 + 6.01247i 0.244847 + 0.424087i
$$202$$ 6.62937 0.239593i 0.466441 0.0168577i
$$203$$ 20.9084 24.9177i 1.46748 1.74888i
$$204$$ 4.55205 4.41736i 0.318707 0.309277i
$$205$$ −11.2648 + 4.60722i −0.786770 + 0.321782i
$$206$$ 3.75015 11.5898i 0.261285 0.807501i
$$207$$ 1.74780 + 9.91224i 0.121480 + 0.688948i
$$208$$ −5.16639 6.54664i −0.358225 0.453928i
$$209$$ −0.745561 + 19.9149i −0.0515715 + 1.37755i
$$210$$ −7.31086 10.7117i −0.504497 0.739178i
$$211$$ −2.65099 15.0345i −0.182501 1.03502i −0.929124 0.369769i $$-0.879437\pi$$
0.746622 0.665248i $$-0.231674\pi$$
$$212$$ 3.09178 + 12.2729i 0.212345 + 0.842909i
$$213$$ −1.62675 4.46945i −0.111463 0.306242i
$$214$$ 16.1382 3.45085i 1.10319 0.235896i
$$215$$ 5.10723 6.59468i 0.348310 0.449753i
$$216$$ 13.1933 + 5.81630i 0.897687 + 0.395749i
$$217$$ 0.510799 + 0.884731i 0.0346753 + 0.0600594i
$$218$$ −9.85369 24.3034i −0.667376 1.64603i
$$219$$ 1.37177 7.77970i 0.0926958 0.525704i
$$220$$ 20.3198 2.27342i 1.36996 0.153274i
$$221$$ 5.53972 + 3.19836i 0.372642 + 0.215145i
$$222$$ 7.05997 + 0.983440i 0.473834 + 0.0660042i
$$223$$ −6.03784 + 16.5888i −0.404324 + 1.11087i 0.555805 + 0.831313i $$0.312410\pi$$
−0.960129 + 0.279558i $$0.909812\pi$$
$$224$$ −0.136773 22.4423i −0.00913855 1.49949i
$$225$$ −6.88939 + 6.76741i −0.459293 + 0.451161i
$$226$$ 0.0603130 0.0544393i 0.00401196 0.00362125i
$$227$$ 11.4524i 0.760124i −0.924961 0.380062i $$-0.875903\pi$$
0.924961 0.380062i $$-0.124097\pi$$
$$228$$ 0.313824 + 9.00622i 0.0207835 + 0.596452i
$$229$$ −1.48570 −0.0981780 −0.0490890 0.998794i $$-0.515632\pi$$
−0.0490890 + 0.998794i $$0.515632\pi$$
$$230$$ 11.5123 + 11.7913i 0.759097 + 0.777496i
$$231$$ 14.3635 12.0524i 0.945047 0.792989i
$$232$$ 10.2419 + 20.8056i 0.672416 + 1.36596i
$$233$$ 1.91800 5.26965i 0.125652 0.345227i −0.860877 0.508814i $$-0.830084\pi$$
0.986529 + 0.163587i $$0.0523065\pi$$
$$234$$ −0.785701 + 5.64043i −0.0513629 + 0.368726i
$$235$$ −15.1539 7.97485i −0.988533 0.520222i
$$236$$ −0.580615 + 0.0420232i −0.0377948 + 0.00273547i
$$237$$ −1.82851 0.322415i −0.118774 0.0209431i
$$238$$ 6.46794 + 15.9527i 0.419255 + 1.03406i
$$239$$ −21.7366 + 12.5496i −1.40603 + 0.811769i −0.995002 0.0998560i $$-0.968162\pi$$
−0.411023 + 0.911625i $$0.634828\pi$$
$$240$$ 9.09029 1.68864i 0.586775 0.109001i
$$241$$ 2.71066 3.23043i 0.174609 0.208090i −0.671641 0.740876i $$-0.734410\pi$$
0.846250 + 0.532786i $$0.178855\pi$$
$$242$$ 2.92855 + 13.6956i 0.188254 + 0.880388i
$$243$$ −5.41607 14.8805i −0.347441 0.954587i
$$244$$ −6.74585 26.7779i −0.431859 1.71428i
$$245$$ 19.0983 4.14459i 1.22014 0.264788i
$$246$$ −4.22471 6.74264i −0.269357 0.429895i
$$247$$ −8.65018 + 2.78660i −0.550398 + 0.177307i
$$248$$ −0.724053 + 0.0787789i −0.0459774 + 0.00500246i
$$249$$ 6.31614 1.11371i 0.400269 0.0705783i
$$250$$ −3.07051 + 15.5104i −0.194196 + 0.980963i
$$251$$ 2.14945 + 5.90557i 0.135672 + 0.372756i 0.988860 0.148847i $$-0.0475563\pi$$
−0.853188 + 0.521603i $$0.825334\pi$$
$$252$$ −10.9982 + 10.6727i −0.692819 + 0.672319i
$$253$$ −15.3149 + 18.2515i −0.962837 + 1.14746i
$$254$$ 0.369287 + 10.2179i 0.0231711 + 0.641128i
$$255$$ −5.99807 + 3.78364i −0.375614 + 0.236941i
$$256$$ 14.6795 + 6.36495i 0.917468 + 0.397809i
$$257$$ 3.78461 21.4636i 0.236077 1.33886i −0.604256 0.796790i $$-0.706530\pi$$
0.840333 0.542070i $$-0.182359\pi$$
$$258$$ 4.81801 + 2.55425i 0.299956 + 0.159021i
$$259$$ −9.67233 + 16.7530i −0.601009 + 1.04098i
$$260$$ 4.14343 + 8.35282i 0.256965 + 0.518020i
$$261$$ 5.41611 14.8806i 0.335249 0.921088i
$$262$$ 18.0191 23.1214i 1.11322 1.42844i
$$263$$ −18.5204 + 15.5405i −1.14202 + 0.958267i −0.999503 0.0315254i $$-0.989964\pi$$
−0.142515 + 0.989793i $$0.545519\pi$$
$$264$$ 3.73155 + 12.8361i 0.229661 + 0.790009i
$$265$$ −0.554088 14.1394i −0.0340374 0.868577i
$$266$$ −22.9706 8.39430i −1.40842 0.514688i
$$267$$ 0.660704 0.0404344
$$268$$ 3.67098 12.9210i 0.224241 0.789277i
$$269$$ 15.2264 + 18.1461i 0.928370 + 1.10639i 0.994091 + 0.108550i $$0.0346208\pi$$
−0.0657210 + 0.997838i $$0.520935\pi$$
$$270$$ −13.0933 9.40367i −0.796834 0.572289i
$$271$$ −0.387915 + 1.06579i −0.0235641 + 0.0647419i −0.950917 0.309446i $$-0.899856\pi$$
0.927353 + 0.374188i $$0.122079\pi$$
$$272$$ −12.2668 0.368497i −0.743786 0.0223434i
$$273$$ 7.40489 + 4.27522i 0.448164 + 0.258748i
$$274$$ −24.9720 13.2388i −1.50861 0.799787i
$$275$$ −22.7543 2.19570i −1.37214 0.132406i
$$276$$ −6.31141 + 8.73159i −0.379902 + 0.525580i
$$277$$ −20.3177 + 11.7304i −1.22077 + 0.704814i −0.965083 0.261944i $$-0.915636\pi$$
−0.255691 + 0.966759i $$0.582303\pi$$
$$278$$ 0.0298261 + 0.825266i 0.00178885 + 0.0494962i
$$279$$ 0.380992 + 0.319690i 0.0228094 + 0.0191394i
$$280$$ −5.02237 + 24.5839i −0.300144 + 1.46917i
$$281$$ 0.855721 + 2.35107i 0.0510480 + 0.140253i 0.962596 0.270940i $$-0.0873344\pi$$
−0.911548 + 0.411193i $$0.865112\pi$$
$$282$$ 3.44660 10.6517i 0.205242 0.634299i
$$283$$ −0.826243 4.68586i −0.0491151 0.278545i 0.950352 0.311176i $$-0.100723\pi$$
−0.999467 + 0.0326302i $$0.989612\pi$$
$$284$$ −4.01387 + 8.28083i −0.238180 + 0.491377i
$$285$$ 1.73223 9.92535i 0.102608 0.587927i
$$286$$ −11.4235 + 7.15758i −0.675486 + 0.423236i
$$287$$ 21.2656 3.74970i 1.25527 0.221338i
$$288$$ −3.79937 10.2440i −0.223880 0.603633i
$$289$$ −7.12928 + 2.59484i −0.419369 + 0.152638i
$$290$$ −6.41010 25.1222i −0.376414 1.47523i
$$291$$ 12.1949 14.5333i 0.714879 0.851959i
$$292$$ −12.6503 + 8.57767i −0.740302 + 0.501970i
$$293$$ −1.26210 2.18602i −0.0737325 0.127708i 0.826802 0.562493i $$-0.190158\pi$$
−0.900534 + 0.434785i $$0.856824\pi$$
$$294$$ 4.80064 + 11.8404i 0.279979 + 0.690549i
$$295$$ 0.644892 + 0.0878332i 0.0375471 + 0.00511385i
$$296$$ −8.14709 11.1277i −0.473540 0.646785i
$$297$$ 11.6533 20.1841i 0.676194 1.17120i
$$298$$ 2.97706 21.3718i 0.172456 1.23804i
$$299$$ −10.2097 3.71603i −0.590443 0.214904i
$$300$$ −10.3342 0.247520i −0.596643 0.0142906i
$$301$$ −11.3368 + 9.51271i −0.653443 + 0.548303i
$$302$$ 5.50626 4.97003i 0.316850 0.285993i
$$303$$ 4.84887i 0.278560i
$$304$$ 12.0821 12.5707i 0.692957 0.720979i
$$305$$ 1.20895 + 30.8503i 0.0692240 + 1.76648i
$$306$$ 5.61517 + 6.22101i 0.320998 + 0.355631i
$$307$$ 12.8740 + 15.3426i 0.734758 + 0.875651i 0.995975 0.0896294i $$-0.0285683\pi$$
−0.261217 + 0.965280i $$0.584124\pi$$
$$308$$ −36.0878 3.70406i −2.05629 0.211058i
$$309$$ −8.36698 3.04533i −0.475981 0.173243i
$$310$$ 0.810286 + 0.0806779i 0.0460212 + 0.00458220i
$$311$$ −12.0659 6.96627i −0.684196 0.395021i 0.117238 0.993104i $$-0.462596\pi$$
−0.801434 + 0.598083i $$0.795929\pi$$
$$312$$ −4.91850 + 3.60105i −0.278455 + 0.203869i
$$313$$ 2.34444 + 0.413387i 0.132515 + 0.0233660i 0.239512 0.970893i $$-0.423012\pi$$
−0.106997 + 0.994259i $$0.534124\pi$$
$$314$$ 4.74102 + 11.6934i 0.267551 + 0.659896i
$$315$$ 14.4919 9.14162i 0.816525 0.515072i
$$316$$ 2.01606 + 2.97327i 0.113412 + 0.167259i
$$317$$ −8.65458 7.26205i −0.486090 0.407878i 0.366533 0.930405i $$-0.380545\pi$$
−0.852622 + 0.522528i $$0.824989\pi$$
$$318$$ 9.04660 1.93444i 0.507308 0.108478i
$$319$$ 35.2246 12.8207i 1.97220 0.717822i
$$320$$ −14.5929 10.3464i −0.815766 0.578382i
$$321$$ −2.09469 11.8796i −0.116914 0.663053i
$$322$$ −15.5242 24.7767i −0.865130 1.38075i
$$323$$ −5.04095 + 12.3871i −0.280486 + 0.689235i
$$324$$ −0.457797 + 0.944459i −0.0254332 + 0.0524699i
$$325$$ −2.60804 10.0931i −0.144668 0.559863i
$$326$$ −10.8706 3.51744i −0.602068 0.194813i
$$327$$ −18.0130 + 6.55619i −0.996120 + 0.362558i
$$328$$ −3.66967 + 14.9509i −0.202624 + 0.825527i
$$329$$ 23.2745 + 19.5296i 1.28316 + 1.07670i
$$330$$ −1.12422 14.9030i −0.0618860 0.820383i
$$331$$ 14.6407 + 25.3585i 0.804727 + 1.39383i 0.916475 + 0.400092i $$0.131022\pi$$
−0.111748 + 0.993737i $$0.535645\pi$$
$$332$$ −10.0567 7.26924i −0.551934 0.398951i
$$333$$ −1.63536 + 9.27458i −0.0896171 + 0.508244i
$$334$$ −7.54874 4.00194i −0.413049 0.218977i
$$335$$ −6.99389 + 13.2899i −0.382117 + 0.726105i
$$336$$ −16.3970 0.492566i −0.894527 0.0268717i
$$337$$ −15.5806 5.67086i −0.848727 0.308911i −0.119206 0.992870i $$-0.538035\pi$$
−0.729521 + 0.683958i $$0.760257\pi$$
$$338$$ 9.65235 + 7.52231i 0.525018 + 0.409160i
$$339$$ −0.0381739 0.0454939i −0.00207332 0.00247089i
$$340$$ 13.3353 + 3.23014i 0.723207 + 0.175179i
$$341$$ 1.17730i 0.0637544i
$$342$$ −11.9062 0.0154106i −0.643813 0.000833311i
$$343$$ −6.90241 −0.372695
$$344$$ −2.94524 10.1313i −0.158797 0.546243i
$$345$$ 8.91710 8.09806i 0.480080 0.435985i
$$346$$ −17.8292 13.8948i −0.958506 0.746987i
$$347$$ 10.6119 + 3.86241i 0.569675 + 0.207345i 0.610767 0.791811i $$-0.290861\pi$$
−0.0410915 + 0.999155i $$0.513084\pi$$
$$348$$ 15.4682 6.93214i 0.829185 0.371601i
$$349$$ 13.5944 23.5462i 0.727691 1.26040i −0.230165 0.973152i $$-0.573927\pi$$
0.957857 0.287247i $$-0.0927400\pi$$
$$350$$ 11.1602 25.7379i 0.596535 1.37575i
$$351$$ 10.4668 + 1.84558i 0.558676 + 0.0985097i
$$352$$ 12.7948 22.4765i 0.681967 1.19800i
$$353$$ 5.58477 3.22437i 0.297247 0.171616i −0.343958 0.938985i $$-0.611768\pi$$
0.641206 + 0.767369i $$0.278435\pi$$
$$354$$ 0.0153683 + 0.425230i 0.000816817 + 0.0226007i
$$355$$ 6.29966 8.13440i 0.334351 0.431729i
$$356$$ −0.890230 0.917374i −0.0471821 0.0486207i
$$357$$ 11.8237 4.30347i 0.625776 0.227764i
$$358$$ −20.8651 6.75138i −1.10275 0.356821i
$$359$$ 21.8079 3.84532i 1.15098 0.202948i 0.434574 0.900636i $$-0.356899\pi$$
0.716402 + 0.697688i $$0.245788\pi$$
$$360$$ 1.79579 + 12.0828i 0.0946464 + 0.636818i
$$361$$ −8.24311 17.1187i −0.433848 0.900986i
$$362$$ 23.0532 14.4443i 1.21165 0.759177i
$$363$$ 10.0815 1.77765i 0.529143 0.0933022i
$$364$$ −4.04127 16.0420i −0.211820 0.840827i
$$365$$ 15.8165 6.46882i 0.827874 0.338593i
$$366$$ −19.7385 + 4.22069i −1.03175 + 0.220619i
$$367$$ −16.5138 13.8568i −0.862016 0.723317i 0.100386 0.994949i $$-0.467992\pi$$
−0.962401 + 0.271631i $$0.912437\pi$$
$$368$$ 20.6276 3.00165i 1.07529 0.156472i
$$369$$ 9.10412 5.25627i 0.473942 0.273630i
$$370$$ 6.34864 + 14.0515i 0.330050 + 0.730505i
$$371$$ −4.35963 + 24.7247i −0.226341 + 1.28364i
$$372$$ 0.0384305 + 0.530977i 0.00199253 + 0.0275299i
$$373$$ 14.6160 25.3156i 0.756787 1.31079i −0.187695 0.982227i $$-0.560102\pi$$
0.944481 0.328565i $$-0.106565\pi$$
$$374$$ −2.73692 + 19.6479i −0.141523 + 1.01597i
$$375$$ 11.2488 + 2.65238i 0.580884 + 0.136969i
$$376$$ −19.4336 + 9.56653i −1.00221 + 0.493356i
$$377$$ 10.9878 + 13.0947i 0.565900 + 0.674414i
$$378$$ 19.1640 + 21.2317i 0.985689 + 1.09204i
$$379$$ −7.88618 −0.405086 −0.202543 0.979273i $$-0.564921\pi$$
−0.202543 + 0.979273i $$0.564921\pi$$
$$380$$ −16.1152 + 10.9682i −0.826690 + 0.562658i
$$381$$ 7.47359 0.382884
$$382$$ 0.400643 + 0.443870i 0.0204987 + 0.0227104i
$$383$$ −3.42713 4.08430i −0.175118 0.208698i 0.671345 0.741145i $$-0.265717\pi$$
−0.846463 + 0.532447i $$0.821272\pi$$
$$384$$ 5.03693 10.5549i 0.257040 0.538625i
$$385$$ 38.6273 + 12.3691i 1.96863 + 0.630386i
$$386$$ −1.18478 + 8.50538i −0.0603039 + 0.432912i
$$387$$ −3.60237 + 6.23949i −0.183119 + 0.317171i
$$388$$ −36.6106 + 2.64976i −1.85862 + 0.134521i
$$389$$ 4.33138 24.5645i 0.219610 1.24547i −0.653116 0.757258i $$-0.726539\pi$$
0.872726 0.488211i $$-0.162350\pi$$
$$390$$ 6.21085 2.80613i 0.314499 0.142094i
$$391$$ −13.8464 + 7.99424i −0.700244 + 0.404286i
$$392$$ 9.97185 22.6194i 0.503654 1.14245i
$$393$$ −16.4137 13.7728i −0.827963 0.694744i
$$394$$ 12.8479 2.74728i 0.647267 0.138406i
$$395$$ −1.52040 3.71744i −0.0764997 0.187045i
$$396$$ −17.1260 + 4.31437i −0.860615 + 0.216805i
$$397$$ −2.57500 + 0.454043i −0.129236 + 0.0227877i −0.237892 0.971292i $$-0.576456\pi$$
0.108656 + 0.994079i $$0.465345\pi$$
$$398$$ −16.8975 + 10.5874i −0.846996 + 0.530698i
$$399$$ −6.73819 + 16.5577i −0.337331 + 0.828920i
$$400$$ 13.5805 + 14.6823i 0.679026 + 0.734114i
$$401$$ 4.45669 0.785835i 0.222557 0.0392427i −0.0612577 0.998122i $$-0.519511\pi$$
0.283814 + 0.958879i $$0.408400\pi$$
$$402$$ −9.34147 3.02265i −0.465910 0.150756i
$$403$$ −0.504493 + 0.183621i −0.0251306 + 0.00914679i
$$404$$ −6.73256 + 6.53335i −0.334957 + 0.325046i
$$405$$ 0.718499 0.927758i 0.0357025 0.0461007i
$$406$$ 1.66145 + 45.9712i 0.0824565 + 2.28151i
$$407$$ −19.3063 + 11.1465i −0.956976 + 0.552511i
$$408$$ −0.593019 + 8.95079i −0.0293588 + 0.443130i
$$409$$ −17.8969 3.15570i −0.884944 0.156040i −0.287338 0.957829i $$-0.592770\pi$$
−0.597606 + 0.801790i $$0.703881\pi$$
$$410$$ 7.46027 15.5110i 0.368437 0.766032i
$$411$$ −10.3298 + 17.8917i −0.509531 + 0.882534i
$$412$$ 7.04526 + 15.7207i 0.347095 + 0.774501i
$$413$$ −1.08512 0.394952i −0.0533954 0.0194343i
$$414$$ −11.2274 8.74981i −0.551798 0.430030i
$$415$$ 9.32703 + 10.2704i 0.457846 + 0.504153i
$$416$$ 11.6272 + 1.97720i 0.570069 + 0.0969400i
$$417$$ 0.603618 0.0295593
$$418$$ −18.0882 21.6134i −0.884722 1.05715i
$$419$$ 1.56858i 0.0766301i −0.999266 0.0383151i $$-0.987801\pi$$
0.999266 0.0383151i $$-0.0121990\pi$$
$$420$$ 17.8252 + 4.31769i 0.869778 + 0.210682i
$$421$$ 8.20836 + 9.78234i 0.400051 + 0.476762i 0.928035 0.372492i $$-0.121497\pi$$
−0.527985 + 0.849254i $$0.677052\pi$$
$$422$$ 17.0293 + 13.2714i 0.828974 + 0.646040i
$$423$$ 13.8993 + 5.05894i 0.675808 + 0.245974i
$$424$$ −14.8753 9.95457i −0.722408 0.483437i
$$425$$ −13.8447 6.60707i −0.671567 0.320490i
$$426$$ 5.94292 + 3.15062i 0.287935 + 0.152648i
$$427$$ 9.51212 53.9459i 0.460324 2.61063i
$$428$$ −13.6722 + 18.9149i −0.660869 + 0.914288i
$$429$$ 4.92680 + 8.53346i 0.237868 + 0.411999i
$$430$$ 0.887321 + 11.7626i 0.0427904 + 0.567245i
$$431$$ −21.4377 17.9884i −1.03262 0.866469i −0.0414579 0.999140i $$-0.513200\pi$$
−0.991160 + 0.132671i $$0.957645\pi$$
$$432$$ −19.3618 + 6.39556i −0.931545 + 0.307707i
$$433$$ −7.43239 + 2.70517i −0.357178 + 0.130002i −0.514375 0.857565i $$-0.671976\pi$$
0.157198 + 0.987567i $$0.449754\pi$$
$$434$$ −1.37459 0.444780i −0.0659825 0.0213501i
$$435$$ −18.5202 + 4.01914i −0.887975 + 0.192703i
$$436$$ 33.3738 + 16.1769i 1.59831 + 0.774732i
$$437$$ 4.77857 22.2068i 0.228590 1.06230i
$$438$$ 5.93174 + 9.46708i 0.283430 + 0.452354i
$$439$$ 5.70310 + 32.3439i 0.272194 + 1.54369i 0.747735 + 0.663997i $$0.231141\pi$$
−0.475541 + 0.879693i $$0.657748\pi$$
$$440$$ −19.1778 + 21.6412i −0.914264 + 1.03170i
$$441$$ −15.8624 + 5.77344i −0.755352 + 0.274926i
$$442$$ −8.84634 + 1.89162i −0.420778 + 0.0899752i
$$443$$ −27.1882 22.8136i −1.29175 1.08391i −0.991508 0.130043i $$-0.958489\pi$$
−0.300241 0.953864i $$-0.597067\pi$$
$$444$$ −8.34352 + 5.65741i −0.395966 + 0.268489i
$$445$$ 0.762517 + 1.20879i 0.0361468 + 0.0573022i
$$446$$ −9.38055 23.1365i −0.444182 1.09554i
$$447$$ −15.5328 2.73886i −0.734678 0.129544i
$$448$$ 21.4093 + 23.4305i 1.01149 + 1.10699i
$$449$$ −17.0572 9.84799i −0.804980 0.464755i 0.0402295 0.999190i $$-0.487191\pi$$
−0.845210 + 0.534435i $$0.820524\pi$$
$$450$$ 0.819938 13.6327i 0.0386523 0.642652i
$$451$$ 23.3840 + 8.51107i 1.10111 + 0.400771i
$$452$$ −0.0117320 + 0.114302i −0.000551826 + 0.00537632i
$$453$$ −3.48508 4.15335i −0.163743 0.195142i
$$454$$ 10.8520 + 12.0229i 0.509310 + 0.564262i
$$455$$ 0.724249 + 18.4816i 0.0339533 + 0.866432i
$$456$$ −8.86352 9.15746i −0.415072 0.428838i
$$457$$ 7.37551i 0.345012i 0.985008 + 0.172506i $$0.0551864\pi$$
−0.985008 + 0.172506i $$0.944814\pi$$
$$458$$ 1.55971 1.40781i 0.0728803 0.0657828i
$$459$$ 11.9811 10.0533i 0.559228 0.469248i
$$460$$ −23.2589 1.46993i −1.08445 0.0685356i
$$461$$ −6.47105 2.35527i −0.301387 0.109696i 0.186900 0.982379i $$-0.440156\pi$$
−0.488287 + 0.872683i $$0.662378\pi$$
$$462$$ −3.65841 + 26.2632i −0.170205 + 1.22187i
$$463$$ 2.35608 4.08086i 0.109497 0.189654i −0.806070 0.591820i $$-0.798409\pi$$
0.915566 + 0.402167i $$0.131743\pi$$
$$464$$ −30.4670 12.1370i −1.41439 0.563447i
$$465$$ 0.0803241 0.589758i 0.00372494 0.0273494i
$$466$$ 2.97985 + 7.34959i 0.138039 + 0.340463i
$$467$$ 13.1780 + 22.8250i 0.609807 + 1.05622i 0.991272 + 0.131833i $$0.0420862\pi$$
−0.381465 + 0.924383i $$0.624580\pi$$
$$468$$ −4.51988 6.66589i −0.208932 0.308131i
$$469$$ 17.1274 20.4116i 0.790868 0.942519i
$$470$$ 23.4655 5.98738i 1.08238 0.276177i
$$471$$ 8.66680 3.15446i 0.399345 0.145350i
$$472$$ 0.569717 0.594292i 0.0262233 0.0273545i
$$473$$ −16.7956 + 2.96151i −0.772261 + 0.136170i
$$474$$ 2.22510 1.39417i 0.102202 0.0640364i
$$475$$ 20.1581 8.28563i 0.924916 0.380171i
$$476$$ −21.9065 10.6185i −1.00408 0.486697i
$$477$$ 2.12242 + 12.0368i 0.0971789 + 0.551129i
$$478$$ 10.9276 33.7718i 0.499818 1.54469i
$$479$$ −6.46310 17.7572i −0.295307 0.811348i −0.995268 0.0971677i $$-0.969022\pi$$
0.699961 0.714181i $$-0.253201\pi$$
$$480$$ −7.94298 + 10.3865i −0.362546 + 0.474075i
$$481$$ −7.78761 6.53458i −0.355085 0.297951i
$$482$$ 0.215398 + 5.95989i 0.00981109 + 0.271466i
$$483$$ −18.5084 + 10.6858i −0.842161 + 0.486222i
$$484$$ −16.0520 11.6028i −0.729638 0.527400i
$$485$$ 40.6636 + 5.53831i 1.84644 + 0.251482i
$$486$$ 19.7863 + 10.4896i 0.897523 + 0.475819i
$$487$$ 29.3650 + 16.9539i 1.33065 + 0.768253i 0.985400 0.170256i $$-0.0544595\pi$$
0.345254 + 0.938509i $$0.387793\pi$$
$$488$$ 32.4559 + 21.7195i 1.46921 + 0.983197i
$$489$$ −2.85636 + 7.84778i −0.129169 + 0.354889i
$$490$$ −16.1223 + 22.4480i −0.728330 + 1.01410i
$$491$$ 23.7768 + 28.3361i 1.07303 + 1.27879i 0.958414 + 0.285380i $$0.0921198\pi$$
0.114618 + 0.993410i $$0.463436\pi$$
$$492$$ 10.8243 + 3.07528i 0.487997 + 0.138644i
$$493$$ 25.1549 1.13292
$$494$$ 6.44055 11.1221i 0.289774 0.500406i
$$495$$ 19.7306 0.773191i 0.886823 0.0347524i
$$496$$ 0.685470 0.768796i 0.0307785 0.0345200i
$$497$$ −13.9837 + 11.7337i −0.627256 + 0.526330i
$$498$$ −5.57544 + 7.15420i −0.249841 + 0.320587i
$$499$$ 14.0038 38.4750i 0.626894 1.72238i −0.0625524 0.998042i $$-0.519924\pi$$
0.689447 0.724336i $$-0.257854\pi$$
$$500$$ −11.4738 19.1925i −0.513123 0.858315i
$$501$$ −3.12258 + 5.40846i −0.139506 + 0.241632i
$$502$$ −7.85248 4.16297i −0.350473 0.185802i
$$503$$ −1.93511 + 10.9746i −0.0862825 + 0.489332i 0.910790 + 0.412870i $$0.135474\pi$$
−0.997072 + 0.0764623i $$0.975638\pi$$
$$504$$ 1.43279 21.6259i 0.0638214 0.963296i
$$505$$ 8.87124 5.59607i 0.394765 0.249022i
$$506$$ −1.21697 33.6726i −0.0541008 1.49693i
$$507$$ 5.74963 6.85214i 0.255350 0.304314i
$$508$$ −10.0699 10.3769i −0.446779 0.460402i
$$509$$ 9.13289 + 25.0924i 0.404808 + 1.11220i 0.959883 + 0.280401i $$0.0904675\pi$$
−0.555075 + 0.831801i $$0.687310\pi$$
$$510$$ 2.71156 9.65572i 0.120070 0.427562i
$$511$$ −29.8582 + 5.26480i −1.32085 + 0.232901i
$$512$$ −21.4420 + 7.22790i −0.947609 + 0.319431i
$$513$$ −0.831285 + 22.2047i −0.0367021 + 0.980364i
$$514$$ 16.3652 + 26.1189i 0.721838 + 1.15205i
$$515$$ −4.08473 18.8224i −0.179995 0.829415i
$$516$$ −7.47834 + 1.88394i −0.329216 + 0.0829356i
$$517$$ 11.9752 + 32.9017i 0.526671 + 1.44702i
$$518$$ −5.72055 26.7527i −0.251347 1.17545i
$$519$$ −10.6204 + 12.6569i −0.466182 + 0.555574i
$$520$$ −12.2647 4.84268i −0.537844 0.212365i
$$521$$ −24.2785 + 14.0172i −1.06366 + 0.614105i −0.926443 0.376436i $$-0.877150\pi$$
−0.137218 + 0.990541i $$0.543816\pi$$
$$522$$ 8.41461 + 20.7540i 0.368297 + 0.908378i
$$523$$ 11.0297 + 1.94483i 0.482294 + 0.0850414i 0.409509 0.912306i $$-0.365700\pi$$
0.0727853 + 0.997348i $$0.476811\pi$$
$$524$$ 2.99260 + 41.3475i 0.130733 + 1.80627i
$$525$$ −18.5061 8.83161i −0.807672 0.385443i
$$526$$ 4.71720 33.8640i 0.205680 1.47654i
$$527$$ −0.270210 + 0.742395i −0.0117705 + 0.0323392i
$$528$$ −16.0806 9.93959i −0.699818 0.432565i
$$529$$ 3.18427 2.67192i 0.138446 0.116170i
$$530$$ 13.9798 + 14.3187i 0.607245 + 0.621964i
$$531$$ −0.562179 −0.0243965
$$532$$ 32.0690 12.9539i 1.39037 0.561623i
$$533$$ 11.3479i 0.491532i
$$534$$ −0.693614 + 0.626066i −0.0300156 + 0.0270925i
$$535$$ 19.3168 17.5425i 0.835138 0.758429i
$$536$$ 8.38979 + 17.0432i 0.362384 + 0.736152i
$$537$$ −5.48250 + 15.0630i −0.236587 + 0.650018i
$$538$$ −33.1796 4.62186i −1.43048 0.199263i
$$539$$ −34.6050 19.9792i −1.49054 0.860565i
$$540$$ 22.6562 2.53481i 0.974967 0.109081i
$$541$$ 2.40757 13.6540i 0.103509 0.587031i −0.888296 0.459272i $$-0.848110\pi$$
0.991805 0.127759i $$-0.0407785\pi$$
$$542$$ −0.602674 1.48645i −0.0258871 0.0638486i
$$543$$ −9.94251 17.2209i −0.426674 0.739021i
$$544$$ 13.2270 11.2369i 0.567104 0.481777i
$$545$$ −32.7836 25.3892i −1.40430 1.08755i
$$546$$ −11.8248 + 2.52851i −0.506056 + 0.108210i
$$547$$ −0.202171 0.555462i −0.00864423 0.0237498i 0.935295 0.353868i $$-0.115134\pi$$
−0.943940 + 0.330118i $$0.892911\pi$$
$$548$$ 38.7606 9.76454i 1.65577 0.417120i
$$549$$ −4.63083 26.2627i −0.197639 1.12087i
$$550$$ 25.9683 19.2563i 1.10729 0.821092i
$$551$$ −23.9801 + 26.4984i −1.02159 + 1.12887i
$$552$$ −1.64804 15.1470i −0.0701452 0.644701i
$$553$$ 1.23742 + 7.01774i 0.0526203 + 0.298425i
$$554$$ 10.2143 31.5673i 0.433965 1.34117i
$$555$$ 10.4318 4.26652i 0.442806 0.181104i
$$556$$ −0.813312 0.838111i −0.0344921 0.0355438i
$$557$$ −9.63929 + 11.4877i −0.408430 + 0.486748i −0.930571 0.366111i $$-0.880689\pi$$
0.522141 + 0.852859i $$0.325133\pi$$
$$558$$ −0.702900 + 0.0254036i −0.0297561 + 0.00107542i
$$559$$ −3.88862 6.73529i −0.164471 0.284873i
$$560$$ −18.0225 30.5675i −0.761590 1.29171i
$$561$$ 14.2799 + 2.51793i 0.602898 + 0.106307i
$$562$$ −3.12616 1.65732i −0.131869 0.0699100i
$$563$$ 10.0719 + 5.81500i 0.424479 + 0.245073i 0.696992 0.717079i $$-0.254521\pi$$
−0.272513 + 0.962152i $$0.587855\pi$$
$$564$$ 6.47499 + 14.4482i 0.272646 + 0.608378i
$$565$$ 0.0391769 0.122346i 0.00164819 0.00514711i
$$566$$ 5.30760 + 4.13634i 0.223095 + 0.173863i
$$567$$ −1.59489 + 1.33827i −0.0669793 + 0.0562023i
$$568$$ −3.63289 12.4968i −0.152433 0.524352i
$$569$$ 34.7145i 1.45531i 0.685945 + 0.727654i $$0.259389\pi$$
−0.685945 + 0.727654i $$0.740611\pi$$
$$570$$ 7.58649 + 12.0612i 0.317763 + 0.505186i
$$571$$ 17.7069i 0.741009i −0.928831 0.370505i $$-0.879185\pi$$
0.928831 0.370505i $$-0.120815\pi$$
$$572$$ 5.21020 18.3387i 0.217849 0.766781i
$$573$$ 0.334810 0.280939i 0.0139869 0.0117364i
$$574$$ −18.7717 + 24.0872i −0.783517 + 1.00538i
$$575$$ 25.1070 + 6.96833i 1.04703 + 0.290599i
$$576$$ 13.6956 + 7.15408i 0.570649 + 0.298087i
$$577$$ 32.1774 + 18.5777i 1.33956 + 0.773398i 0.986743 0.162293i $$-0.0518890\pi$$
0.352822 + 0.935691i $$0.385222\pi$$
$$578$$ 5.02559 9.47961i 0.209037 0.394300i
$$579$$ 6.18163 + 1.08999i 0.256900 + 0.0452983i
$$580$$ 30.5346 + 20.2996i 1.26788 + 0.842893i
$$581$$ −12.3075 21.3173i −0.510602 0.884389i
$$582$$ 0.969048 + 26.8128i 0.0401683 + 1.11143i
$$583$$ −18.5975 + 22.1636i −0.770228 + 0.917922i
$$584$$ 5.15244 20.9920i 0.213209 0.868656i
$$585$$ 3.40865 + 8.33429i 0.140930 + 0.344581i
$$586$$ 3.39638 + 1.09897i 0.140303 + 0.0453982i
$$587$$ 2.19964 + 12.4748i 0.0907889 + 0.514889i 0.995957 + 0.0898349i $$0.0286339\pi$$
−0.905168 + 0.425054i $$0.860255\pi$$
$$588$$ −16.2595 7.88126i −0.670529 0.325018i
$$589$$ −0.524454 0.992364i −0.0216098 0.0408896i
$$590$$ −0.760243 + 0.518874i −0.0312987 + 0.0213617i
$$591$$ −1.66761 9.45750i −0.0685964 0.389029i
$$592$$ 19.0972 + 3.96203i 0.784892 + 0.162838i
$$593$$ −1.55303 4.26691i −0.0637752 0.175221i 0.903712 0.428141i $$-0.140831\pi$$
−0.967487 + 0.252920i $$0.918609\pi$$
$$594$$ 6.89218 + 32.2319i 0.282789 + 1.32249i
$$595$$ 21.5191 + 16.6654i 0.882198 + 0.683215i
$$596$$ 17.1260 + 25.2574i 0.701510 + 1.03458i
$$597$$ 7.28766 + 12.6226i 0.298264 + 0.516608i
$$598$$ 14.2395 5.77333i 0.582296 0.236089i
$$599$$ 0.980322 5.55968i 0.0400549 0.227162i −0.958209 0.286071i $$-0.907651\pi$$
0.998263 + 0.0589082i $$0.0187619\pi$$
$$600$$ 11.0835 9.53252i 0.452480 0.389164i
$$601$$ −33.5942 19.3956i −1.37034 0.791164i −0.379366 0.925247i $$-0.623858\pi$$
−0.990970 + 0.134083i $$0.957191\pi$$
$$602$$ 2.88751 20.7290i 0.117686 0.844851i
$$603$$ 4.43666 12.1896i 0.180675 0.496400i
$$604$$ −1.07107 + 10.4352i −0.0435812 + 0.424601i
$$605$$ 14.8874 + 16.3931i 0.605257 + 0.666473i
$$606$$ 4.59466 + 5.09039i 0.186645 + 0.206783i
$$607$$ 4.10304i 0.166537i −0.996527 0.0832686i $$-0.973464\pi$$
0.996527 0.0832686i $$-0.0265359\pi$$
$$608$$ −0.772285 + 24.6456i −0.0313203 + 0.999509i
$$609$$ 33.6243 1.36253
$$610$$ −30.5021 31.2414i −1.23499 1.26493i
$$611$$ −12.2312 + 10.2632i −0.494822 + 0.415205i
$$612$$ −11.7897 1.21010i −0.476572 0.0489154i
$$613$$ 10.9979 30.2165i 0.444202 1.22043i −0.492502 0.870312i $$-0.663917\pi$$
0.936704 0.350123i $$-0.113860\pi$$
$$614$$ −28.0536 3.90781i −1.13215 0.157706i
$$615$$ −11.1333 5.85898i −0.448939 0.236257i
$$616$$ 41.3952 30.3073i 1.66786 1.22112i
$$617$$ 24.8937 + 4.38943i 1.00218 + 0.176712i 0.650580 0.759438i $$-0.274526\pi$$
0.351602 + 0.936150i $$0.385637\pi$$
$$618$$ 11.6694 4.73131i 0.469413 0.190321i
$$619$$ 14.5190 8.38253i 0.583567 0.336922i −0.178983 0.983852i $$-0.557281\pi$$
0.762550 + 0.646930i $$0.223947\pi$$
$$620$$ −0.927096 + 0.683110i −0.0372331 + 0.0274343i
$$621$$ −17.0757 + 20.3501i −0.685226 + 0.816621i
$$622$$ 19.2680 4.12009i 0.772576 0.165201i
$$623$$ −0.867279 2.38283i −0.0347468 0.0954660i
$$624$$ 1.75123 8.44107i 0.0701055 0.337913i
$$625$$ 8.12952 + 23.6413i 0.325181 + 0.945652i
$$626$$ −2.85293 + 1.78755i −0.114026 + 0.0714448i
$$627$$ −16.2654 + 12.6422i −0.649578 + 0.504882i
$$628$$ −16.0575 7.78338i −0.640765 0.310591i
$$629$$ −14.7327 + 2.59777i −0.587430 + 0.103580i
$$630$$ −6.55138 + 23.3291i −0.261013 + 0.929453i
$$631$$ −6.84502 18.8065i −0.272496 0.748677i −0.998160 0.0606280i $$-0.980690\pi$$
0.725664 0.688049i $$-0.241533\pi$$
$$632$$ −4.93387 1.21101i −0.196259 0.0481713i
$$633$$ 10.1439 12.0890i 0.403183 0.480495i
$$634$$ 15.9670 0.577066i 0.634131 0.0229182i
$$635$$ 8.62526 + 13.6733i 0.342283 + 0.542609i
$$636$$ −7.66420 + 10.6031i −0.303905 + 0.420441i
$$637$$ 3.16418 17.9449i 0.125369 0.711005i
$$638$$ −24.8306 + 46.8373i −0.983054 + 1.85431i
$$639$$ −4.44345 + 7.69628i −0.175780 + 0.304460i
$$640$$ 25.1237 2.96603i 0.993103 0.117242i
$$641$$ 9.77899 26.8676i 0.386247 1.06120i −0.582430 0.812881i $$-0.697898\pi$$
0.968677 0.248324i $$-0.0798797\pi$$
$$642$$ 13.4558 + 10.4864i 0.531058 + 0.413867i
$$643$$ 2.49978 2.09757i 0.0985819 0.0827200i −0.592165 0.805817i $$-0.701726\pi$$
0.690747 + 0.723097i $$0.257282\pi$$
$$644$$ 39.7752 + 11.3005i 1.56736 + 0.445302i
$$645$$ 8.61565 0.337626i 0.339241 0.0132940i
$$646$$ −6.44561 17.7807i −0.253599 0.699574i
$$647$$ −3.62076 −0.142347 −0.0711733 0.997464i $$-0.522674\pi$$
−0.0711733 + 0.997464i $$0.522674\pi$$
$$648$$ −0.414344 1.42530i −0.0162770 0.0559911i
$$649$$ −0.855396 1.01942i −0.0335772 0.0400158i
$$650$$ 12.3019 + 8.12451i 0.482520 + 0.318670i
$$651$$ −0.361186 + 0.992352i −0.0141560 + 0.0388933i
$$652$$ 14.7451 6.60807i 0.577464 0.258792i
$$653$$ −28.0083 16.1706i −1.09605 0.632805i −0.160870 0.986976i $$-0.551430\pi$$
−0.935181 + 0.354170i $$0.884763\pi$$
$$654$$ 12.6978 23.9514i 0.496522 0.936574i
$$655$$ 6.25489 45.9248i 0.244399 1.79443i
$$656$$ −10.3147 19.1729i −0.402719 0.748578i
$$657$$ −12.7827 + 7.38012i −0.498702 + 0.287926i
$$658$$ −42.9396 + 1.55189i −1.67396 + 0.0604988i
$$659$$ 27.5520 + 23.1188i 1.07327 + 0.900582i 0.995345 0.0963770i $$-0.0307254\pi$$
0.0779270 + 0.996959i $$0.475170\pi$$
$$660$$ 15.3019 + 14.5801i 0.595626 + 0.567528i
$$661$$ 16.7489 + 46.0171i 0.651455 + 1.78986i 0.612299 + 0.790626i $$0.290245\pi$$
0.0391562 + 0.999233i $$0.487533\pi$$
$$662$$ −39.3990 12.7485i −1.53129 0.495483i
$$663$$ 1.14822 + 6.51191i 0.0445933 + 0.252901i
$$664$$ 17.4458 1.89815i 0.677028 0.0736625i
$$665$$ −38.0696 + 6.78132i −1.47628 + 0.262968i
$$666$$ −7.07153 11.2862i −0.274016 0.437331i
$$667$$ −42.0770 + 7.41931i −1.62923 + 0.287277i
$$668$$ 11.7169 2.95171i 0.453340 0.114205i
$$669$$ −17.1481 + 6.24139i −0.662983 + 0.241306i
$$670$$ −5.25089 20.5791i −0.202860 0.795041i
$$671$$ 40.5771 48.3579i 1.56646 1.86684i
$$672$$ 17.6805 15.0202i 0.682038 0.579418i
$$673$$ 7.23324 + 12.5283i 0.278821 + 0.482932i 0.971092 0.238705i $$-0.0767230\pi$$
−0.692271 + 0.721638i $$0.743390\pi$$
$$674$$ 21.7302 8.81040i 0.837016 0.339364i
$$675$$ −25.3706 2.44816i −0.976515 0.0942296i
$$676$$ −17.2611 + 1.24930i −0.663888 + 0.0480502i
$$677$$ −18.0848 + 31.3239i −0.695057 + 1.20387i 0.275104 + 0.961414i $$0.411288\pi$$
−0.970161 + 0.242460i $$0.922046\pi$$
$$678$$ 0.0831842 + 0.0115874i 0.00319467 + 0.000445012i
$$679$$ −68.4222 24.9037i −2.62580 0.955715i
$$680$$ −17.0603 + 9.24514i −0.654234 + 0.354535i
$$681$$ 9.06882 7.60964i 0.347518 0.291602i
$$682$$ −1.11558 1.23594i −0.0427177 0.0473267i
$$683$$ 35.2724i 1.34966i −0.737973 0.674830i $$-0.764217\pi$$
0.737973 0.674830i $$-0.235783\pi$$
$$684$$ 12.5139 11.2658i 0.478479 0.430759i
$$685$$ −44.6554 + 1.74993i −1.70620 + 0.0668615i
$$686$$ 7.24623 6.54054i 0.276662 0.249719i
$$687$$ −0.987186 1.17648i −0.0376635 0.0448856i
$$688$$ 12.6921 + 7.84512i 0.483882 + 0.299092i
$$689$$ −12.3981 4.51253i −0.472329 0.171914i
$$690$$ −1.68777 + 16.9510i −0.0642522 + 0.645315i
$$691$$ 16.0220 + 9.25033i 0.609507 + 0.351899i 0.772773 0.634683i $$-0.218869\pi$$
−0.163265 + 0.986582i $$0.552203\pi$$
$$692$$ 31.8836 2.30764i 1.21203 0.0877233i
$$693$$ −34.5016 6.08356i −1.31061 0.231095i
$$694$$ −14.8004 + 6.00074i −0.561815 + 0.227785i
$$695$$ 0.696634 + 1.10435i 0.0264248 + 0.0418903i
$$696$$ −9.67002 + 21.9347i −0.366541 + 0.831434i
$$697$$ 12.7923 + 10.7340i 0.484543 + 0.406580i
$$698$$ 8.04020 + 37.6007i 0.304326 + 1.42321i
$$699$$ 5.44730 1.98266i 0.206036 0.0749909i
$$700$$ 12.6725 + 37.5950i 0.478977 + 1.42096i
$$701$$ 1.38515 + 7.85560i 0.0523165 + 0.296702i 0.999728 0.0233157i $$-0.00742230\pi$$
−0.947412 + 0.320018i $$0.896311\pi$$
$$702$$ −12.7370 + 7.98055i −0.480726 + 0.301206i
$$703$$ 11.3081 17.9960i 0.426493 0.678730i
$$704$$ 7.86602 + 35.7202i 0.296462 + 1.34625i
$$705$$ −3.75410 17.2989i −0.141387 0.651513i
$$706$$ −2.80763 + 8.67696i −0.105666 + 0.326562i
$$707$$ −17.4874 + 6.36491i −0.657683 + 0.239377i
$$708$$ −0.419071 0.431849i −0.0157496 0.0162299i
$$709$$ 21.0922 + 17.6985i 0.792136 + 0.664681i 0.946273 0.323369i $$-0.104815\pi$$
−0.154137 + 0.988049i $$0.549260\pi$$
$$710$$ 1.09449 + 14.5090i 0.0410756 + 0.544512i
$$711$$ 1.73459 + 3.00440i 0.0650523 + 0.112674i
$$712$$ 1.80385 + 0.119511i 0.0676023 + 0.00447887i
$$713$$ 0.233018 1.32151i 0.00872660 0.0494910i
$$714$$ −8.33479 + 15.7217i −0.311922 + 0.588368i
$$715$$ −9.92639 + 18.8623i −0.371226 + 0.705409i
$$716$$ 28.3018 12.6836i 1.05769 0.474007i
$$717$$ −24.3807 8.87386i −0.910515 0.331400i
$$718$$ −19.2504 + 24.7014i −0.718420 + 0.921850i
$$719$$ 26.5671 + 31.6614i 0.990785 + 1.18077i 0.983520 + 0.180798i $$0.0578679\pi$$
0.00726446 + 0.999974i $$0.497688\pi$$
$$720$$ −13.3346 10.9830i −0.496950 0.409312i
$$721$$ 34.1730i 1.27267i
$$722$$ 24.8750 + 10.1605i 0.925751 + 0.378134i
$$723$$ 4.35919 0.162120
$$724$$ −10.5144 + 37.0084i −0.390766 + 1.37541i
$$725$$ −28.7273 29.2451i −1.06691 1.08614i
$$726$$ −8.89925 + 11.4192i −0.330282 + 0.423806i
$$727$$ −20.2269 7.36199i −0.750174 0.273041i −0.0614953 0.998107i $$-0.519587\pi$$
−0.688679 + 0.725066i $$0.741809\pi$$
$$728$$ 19.4435 + 13.0116i 0.720625 + 0.482243i
$$729$$ 7.39752 12.8129i 0.273982 0.474551i
$$730$$ −10.4747 + 21.7784i −0.387685 + 0.806053i
$$731$$ −11.2709 1.98736i −0.416867 0.0735050i
$$732$$ 16.7222 23.1346i 0.618072 0.855079i
$$733$$ 30.6070 17.6710i 1.13049 0.652692i 0.186436 0.982467i $$-0.440306\pi$$
0.944059 + 0.329776i $$0.106973\pi$$
$$734$$ 30.4667 1.10110i 1.12455 0.0406425i
$$735$$ 15.9719 + 12.3694i 0.589134 + 0.456253i
$$736$$ −18.8108 + 22.6974i −0.693376 + 0.836635i
$$737$$ 28.8546 10.5022i 1.06287 0.386854i
$$738$$ −4.57691 + 14.1449i −0.168478 + 0.520682i
$$739$$ −30.7103 + 5.41506i −1.12970 + 0.199196i −0.707095 0.707119i $$-0.749994\pi$$
−0.422603 + 0.906315i $$0.638883\pi$$
$$740$$ −19.9798 8.73567i −0.734470 0.321130i
$$741$$ −7.95430 4.99824i −0.292208 0.183615i
$$742$$ −18.8517 30.0873i −0.692067 1.10454i
$$743$$ 5.87565 1.03604i 0.215557 0.0380085i −0.0648267 0.997897i $$-0.520649\pi$$
0.280384 + 0.959888i $$0.409538\pi$$
$$744$$ −0.543485 0.521010i −0.0199251 0.0191011i
$$745$$ −12.9155 31.5790i −0.473189 1.15697i
$$746$$ 8.64440 + 40.4263i 0.316494 + 1.48011i
$$747$$ −9.17987 7.70282i −0.335874 0.281832i
$$748$$ −15.7446 23.2200i −0.575680 0.849008i
$$749$$ −40.0941 + 23.1483i −1.46501 + 0.845821i
$$750$$ −14.3224 + 7.87454i −0.522981 + 0.287538i
$$751$$ 3.87069 21.9518i 0.141244 0.801032i −0.829063 0.559155i $$-0.811126\pi$$
0.970307 0.241877i $$-0.0777631\pi$$
$$752$$ 11.3366 28.4578i 0.413404 1.03775i
$$753$$ −3.24822 + 5.62608i −0.118372 + 0.205026i
$$754$$ −23.9434 3.33526i −0.871965 0.121463i
$$755$$ 3.57665 11.1695i 0.130168 0.406500i
$$756$$ −40.2371 4.12995i −1.46341 0.150205i
$$757$$ −2.83015 3.37284i −0.102863 0.122588i 0.712157 0.702021i $$-0.247719\pi$$
−0.815020 + 0.579433i $$0.803274\pi$$
$$758$$ 8.27900 7.47274i 0.300707 0.271422i
$$759$$ −24.6289 −0.893972
$$760$$ 6.52467 26.7849i 0.236675 0.971589i
$$761$$ 13.2216 0.479284 0.239642 0.970861i $$-0.422970\pi$$
0.239642 + 0.970861i $$0.422970\pi$$
$$762$$ −7.84586 + 7.08178i −0.284226 + 0.256546i
$$763$$ 47.2898 + 56.3578i 1.71201 + 2.04029i
$$764$$ −0.841199 0.0863409i −0.0304335 0.00312370i
$$765$$ 12.6194 + 4.04092i 0.456254 + 0.146100i
$$766$$ 7.46801 + 1.04028i 0.269830 + 0.0375868i
$$767$$ 0.303425 0.525548i 0.0109561 0.0189765i
$$768$$ 4.71368 + 15.8535i