[N,k,chi] = [38,8,Mod(1,38)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(38, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("38.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{633})\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(19\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 69T_{3} - 234 \)
T3^2 + 69*T3 - 234
acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(38))\).
$p$
$F_p(T)$
$2$
\( (T - 8)^{2} \)
(T - 8)^2
$3$
\( T^{2} + 69T - 234 \)
T^2 + 69*T - 234
$5$
\( T^{2} - 155T - 146072 \)
T^2 - 155*T - 146072
$7$
\( T^{2} + 2238 T + 1128093 \)
T^2 + 2238*T + 1128093
$11$
\( T^{2} + 3295 T - 894002 \)
T^2 + 3295*T - 894002
$13$
\( T^{2} + 13427 T + 13167724 \)
T^2 + 13427*T + 13167724
$17$
\( T^{2} + 32256 T + 253133559 \)
T^2 + 32256*T + 253133559
$19$
\( (T + 6859)^{2} \)
(T + 6859)^2
$23$
\( T^{2} + 82525 T - 1087606952 \)
T^2 + 82525*T - 1087606952
$29$
\( T^{2} + 12749 T - 1552615514 \)
T^2 + 12749*T - 1552615514
$31$
\( T^{2} - 258944 T + 9936311536 \)
T^2 - 258944*T + 9936311536
$37$
\( T^{2} + 149260 T - 6156318428 \)
T^2 + 149260*T - 6156318428
$41$
\( T^{2} - 339130 T - 393872642768 \)
T^2 - 339130*T - 393872642768
$43$
\( T^{2} + 83869 T - 268023173408 \)
T^2 + 83869*T - 268023173408
$47$
\( T^{2} - 1471025 T + 474895142800 \)
T^2 - 1471025*T + 474895142800
$53$
\( T^{2} + 945643 T + 79392286228 \)
T^2 + 945643*T + 79392286228
$59$
\( T^{2} + 969009 T - 1837525132614 \)
T^2 + 969009*T - 1837525132614
$61$
\( T^{2} + 1506755 T - 359679230318 \)
T^2 + 1506755*T - 359679230318
$67$
\( T^{2} + 1848219 T - 1107042934188 \)
T^2 + 1848219*T - 1107042934188
$71$
\( T^{2} + 3417184 T - 10503963815108 \)
T^2 + 3417184*T - 10503963815108
$73$
\( T^{2} + 2499822 T - 4520032488687 \)
T^2 + 2499822*T - 4520032488687
$79$
\( T^{2} - 2636926 T - 5162668519808 \)
T^2 - 2636926*T - 5162668519808
$83$
\( T^{2} + 10059354 T + 23086028557656 \)
T^2 + 10059354*T + 23086028557656
$89$
\( T^{2} + 3506160 T - 29977064763600 \)
T^2 + 3506160*T - 29977064763600
$97$
\( T^{2} - 5893526 T - 88352296135184 \)
T^2 - 5893526*T - 88352296135184
show more
show less