Properties

Label 38.8.a.d
Level $38$
Weight $8$
Character orbit 38.a
Self dual yes
Analytic conductor $11.871$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [38,8,Mod(1,38)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("38.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(38, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 38.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,16,-69] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.8706309684\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{633}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 158 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{633})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + ( - 3 \beta - 33) q^{3} + 64 q^{4} + (31 \beta + 62) q^{5} + ( - 24 \beta - 264) q^{6} + ( - 28 \beta - 1105) q^{7} + 512 q^{8} + (207 \beta + 324) q^{9} + (248 \beta + 496) q^{10} + ( - 151 \beta - 1572) q^{11}+ \cdots + ( - 405585 \beta - 5447934) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} - 69 q^{3} + 128 q^{4} + 155 q^{5} - 552 q^{6} - 2238 q^{7} + 1024 q^{8} + 855 q^{9} + 1240 q^{10} - 3295 q^{11} - 4416 q^{12} - 13427 q^{13} - 17904 q^{14} - 34782 q^{15} + 8192 q^{16} - 32256 q^{17}+ \cdots - 11301453 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
13.0797
−12.0797
8.00000 −72.2392 64.0000 467.472 −577.914 −1471.23 512.000 3031.51 3739.78
1.2 8.00000 3.23924 64.0000 −312.472 25.9139 −766.767 512.000 −2176.51 −2499.78
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.8.a.d 2
3.b odd 2 1 342.8.a.g 2
4.b odd 2 1 304.8.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.8.a.d 2 1.a even 1 1 trivial
304.8.a.d 2 4.b odd 2 1
342.8.a.g 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 69T_{3} - 234 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(38))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 69T - 234 \) Copy content Toggle raw display
$5$ \( T^{2} - 155T - 146072 \) Copy content Toggle raw display
$7$ \( T^{2} + 2238 T + 1128093 \) Copy content Toggle raw display
$11$ \( T^{2} + 3295 T - 894002 \) Copy content Toggle raw display
$13$ \( T^{2} + 13427 T + 13167724 \) Copy content Toggle raw display
$17$ \( T^{2} + 32256 T + 253133559 \) Copy content Toggle raw display
$19$ \( (T + 6859)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1087606952 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 1552615514 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 9936311536 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 6156318428 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 393872642768 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 268023173408 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 474895142800 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 79392286228 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1837525132614 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 359679230318 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1107042934188 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 10503963815108 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 4520032488687 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 5162668519808 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 23086028557656 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 29977064763600 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 88352296135184 \) Copy content Toggle raw display
show more
show less