[N,k,chi] = [38,8,Mod(1,38)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(38, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("38.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17953})\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(1\)
\(19\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 11T_{3} - 4458 \)
T3^2 + 11*T3 - 4458
acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(38))\).
$p$
$F_p(T)$
$2$
\( (T + 8)^{2} \)
(T + 8)^2
$3$
\( T^{2} + 11T - 4458 \)
T^2 + 11*T - 4458
$5$
\( T^{2} + 69T - 39204 \)
T^2 + 69*T - 39204
$7$
\( T^{2} + 348T - 849421 \)
T^2 + 348*T - 849421
$11$
\( T^{2} - 2723 T + 1849194 \)
T^2 - 2723*T + 1849194
$13$
\( T^{2} + 14113 T + 47419908 \)
T^2 + 14113*T + 47419908
$17$
\( T^{2} + 38560 T + 304915287 \)
T^2 + 38560*T + 304915287
$19$
\( (T - 6859)^{2} \)
(T - 6859)^2
$23$
\( T^{2} + 73897 T + 727281168 \)
T^2 + 73897*T + 727281168
$29$
\( T^{2} - 159813 T - 10315913526 \)
T^2 - 159813*T - 10315913526
$31$
\( T^{2} + 259468 T + 16830838944 \)
T^2 + 259468*T + 16830838944
$37$
\( T^{2} + 528168 T + 17489301548 \)
T^2 + 528168*T + 17489301548
$41$
\( T^{2} - 1005650 T + 249116260800 \)
T^2 - 1005650*T + 249116260800
$43$
\( T^{2} - 286217 T - 224831764452 \)
T^2 - 286217*T - 224831764452
$47$
\( T^{2} + 1397509 T + 485859505512 \)
T^2 + 1397509*T + 485859505512
$53$
\( T^{2} + 1385969 T - 1418308915764 \)
T^2 + 1385969*T - 1418308915764
$59$
\( T^{2} - 2700953 T - 405173436054 \)
T^2 - 2700953*T - 405173436054
$61$
\( T^{2} + 3975947 T + 1928935887694 \)
T^2 + 3975947*T + 1928935887694
$67$
\( T^{2} + 134557 T - 12718841223612 \)
T^2 + 134557*T - 12718841223612
$71$
\( T^{2} - 4202740 T + 1157380019748 \)
T^2 - 4202740*T + 1157380019748
$73$
\( T^{2} - 900498 T - 4028508966511 \)
T^2 - 900498*T - 4028508966511
$79$
\( T^{2} + 6893730 T + 11081929595552 \)
T^2 + 6893730*T + 11081929595552
$83$
\( T^{2} + 2465330 T - 991765457112 \)
T^2 + 2465330*T - 991765457112
$89$
\( T^{2} - 17431724 T + 64480164517536 \)
T^2 - 17431724*T + 64480164517536
$97$
\( T^{2} - 6351934 T - 97107139603184 \)
T^2 - 6351934*T - 97107139603184
show more
show less