Properties

Label 38.6.a.c
Level $38$
Weight $6$
Character orbit 38.a
Self dual yes
Analytic conductor $6.095$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [38,6,Mod(1,38)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("38.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(38, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 38.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.09458515289\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1441}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1441})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + ( - \beta + 2) q^{3} + 16 q^{4} + ( - 3 \beta - 21) q^{5} + (4 \beta - 8) q^{6} + (4 \beta + 55) q^{7} - 64 q^{8} + ( - 3 \beta + 121) q^{9} + (12 \beta + 84) q^{10} + ( - \beta + 331) q^{11}+ \cdots + ( - 1111 \beta + 41131) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 3 q^{3} + 32 q^{4} - 45 q^{5} - 12 q^{6} + 114 q^{7} - 128 q^{8} + 239 q^{9} + 180 q^{10} + 661 q^{11} + 48 q^{12} + 1613 q^{13} - 456 q^{14} + 2094 q^{15} + 512 q^{16} + 64 q^{17} - 956 q^{18}+ \cdots + 81151 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.4803
−18.4803
−4.00000 −17.4803 16.0000 −79.4408 69.9210 132.921 −64.0000 62.5592 317.763
1.2 −4.00000 20.4803 16.0000 34.4408 −81.9210 −18.9210 −64.0000 176.441 −137.763
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.6.a.c 2
3.b odd 2 1 342.6.a.i 2
4.b odd 2 1 304.6.a.f 2
5.b even 2 1 950.6.a.d 2
19.b odd 2 1 722.6.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.6.a.c 2 1.a even 1 1 trivial
304.6.a.f 2 4.b odd 2 1
342.6.a.i 2 3.b odd 2 1
722.6.a.c 2 19.b odd 2 1
950.6.a.d 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 3T_{3} - 358 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(38))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T - 358 \) Copy content Toggle raw display
$5$ \( T^{2} + 45T - 2736 \) Copy content Toggle raw display
$7$ \( T^{2} - 114T - 2515 \) Copy content Toggle raw display
$11$ \( T^{2} - 661T + 108870 \) Copy content Toggle raw display
$13$ \( T^{2} - 1613 T + 641436 \) Copy content Toggle raw display
$17$ \( T^{2} - 64T - 35001 \) Copy content Toggle raw display
$19$ \( (T - 361)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3185 T + 1671096 \) Copy content Toggle raw display
$29$ \( T^{2} + 2481 T - 34206966 \) Copy content Toggle raw display
$31$ \( T^{2} + 1180 T - 35625024 \) Copy content Toggle raw display
$37$ \( T^{2} - 10488 T + 16841900 \) Copy content Toggle raw display
$41$ \( T^{2} - 16630 T - 61416816 \) Copy content Toggle raw display
$43$ \( T^{2} - 11303 T + 3493752 \) Copy content Toggle raw display
$47$ \( T^{2} + 12155 T - 410935800 \) Copy content Toggle raw display
$53$ \( T^{2} - 20585 T - 24187104 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1541823618 \) Copy content Toggle raw display
$61$ \( T^{2} - 43621 T + 230502754 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 3449006904 \) Copy content Toggle raw display
$71$ \( T^{2} + 62488 T + 396968940 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 3142002343 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1119872072 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 2126648040 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 2478833568 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 5494062880 \) Copy content Toggle raw display
show more
show less