[N,k,chi] = [38,6,Mod(1,38)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(38, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("38.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1441})\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(1\)
\(19\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 3T_{3} - 358 \)
T3^2 - 3*T3 - 358
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(38))\).
$p$
$F_p(T)$
$2$
\( (T + 4)^{2} \)
(T + 4)^2
$3$
\( T^{2} - 3T - 358 \)
T^2 - 3*T - 358
$5$
\( T^{2} + 45T - 2736 \)
T^2 + 45*T - 2736
$7$
\( T^{2} - 114T - 2515 \)
T^2 - 114*T - 2515
$11$
\( T^{2} - 661T + 108870 \)
T^2 - 661*T + 108870
$13$
\( T^{2} - 1613 T + 641436 \)
T^2 - 1613*T + 641436
$17$
\( T^{2} - 64T - 35001 \)
T^2 - 64*T - 35001
$19$
\( (T - 361)^{2} \)
(T - 361)^2
$23$
\( T^{2} + 3185 T + 1671096 \)
T^2 + 3185*T + 1671096
$29$
\( T^{2} + 2481 T - 34206966 \)
T^2 + 2481*T - 34206966
$31$
\( T^{2} + 1180 T - 35625024 \)
T^2 + 1180*T - 35625024
$37$
\( T^{2} - 10488 T + 16841900 \)
T^2 - 10488*T + 16841900
$41$
\( T^{2} - 16630 T - 61416816 \)
T^2 - 16630*T - 61416816
$43$
\( T^{2} - 11303 T + 3493752 \)
T^2 - 11303*T + 3493752
$47$
\( T^{2} + 12155 T - 410935800 \)
T^2 + 12155*T - 410935800
$53$
\( T^{2} - 20585 T - 24187104 \)
T^2 - 20585*T - 24187104
$59$
\( T^{2} + 78581 T + 1541823618 \)
T^2 + 78581*T + 1541823618
$61$
\( T^{2} - 43621 T + 230502754 \)
T^2 - 43621*T + 230502754
$67$
\( T^{2} - 7805 T - 3449006904 \)
T^2 - 7805*T - 3449006904
$71$
\( T^{2} + 62488 T + 396968940 \)
T^2 + 62488*T + 396968940
$73$
\( T^{2} - 16218 T - 3142002343 \)
T^2 - 16218*T - 3142002343
$79$
\( T^{2} - 67122 T + 1119872072 \)
T^2 - 67122*T + 1119872072
$83$
\( T^{2} + 10714 T - 2126648040 \)
T^2 + 10714*T - 2126648040
$89$
\( T^{2} - 128188 T - 2478833568 \)
T^2 - 128188*T - 2478833568
$97$
\( T^{2} - 178558 T + 5494062880 \)
T^2 - 178558*T + 5494062880
show more
show less