Newspace parameters
Level: | \( N \) | \(=\) | \( 38 = 2 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 38.e (of order \(9\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.24207258022\) |
Analytic rank: | \(0\) |
Dimension: | \(18\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{9})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) |
Defining polynomial: |
\( x^{18} + 165 x^{16} - 56 x^{15} + 18435 x^{14} - 11748 x^{13} + 1092662 x^{12} - 1833567 x^{11} + 46842546 x^{10} - 93643115 x^{9} + 1273086000 x^{8} + \cdots + 3892796082289 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 3^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{18} + 165 x^{16} - 56 x^{15} + 18435 x^{14} - 11748 x^{13} + 1092662 x^{12} - 1833567 x^{11} + 46842546 x^{10} - 93643115 x^{9} + 1273086000 x^{8} + \cdots + 3892796082289 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 64\!\cdots\!63 \nu^{17} + \cdots - 68\!\cdots\!38 ) / 31\!\cdots\!93 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 23\!\cdots\!97 \nu^{17} + \cdots - 84\!\cdots\!58 ) / 41\!\cdots\!44 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 18\!\cdots\!06 \nu^{17} + \cdots + 97\!\cdots\!92 ) / 32\!\cdots\!99 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 19\!\cdots\!39 \nu^{17} + \cdots - 52\!\cdots\!50 ) / 20\!\cdots\!72 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 50\!\cdots\!79 \nu^{17} + \cdots + 31\!\cdots\!66 ) / 40\!\cdots\!08 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 55\!\cdots\!10 \nu^{17} + \cdots + 10\!\cdots\!79 ) / 41\!\cdots\!44 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 83\!\cdots\!42 \nu^{17} + \cdots - 14\!\cdots\!51 ) / 41\!\cdots\!44 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 11\!\cdots\!57 \nu^{17} + \cdots - 71\!\cdots\!30 ) / 41\!\cdots\!44 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 14\!\cdots\!22 \nu^{17} + \cdots - 21\!\cdots\!81 ) / 40\!\cdots\!08 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 19\!\cdots\!05 \nu^{17} + \cdots - 42\!\cdots\!11 ) / 40\!\cdots\!08 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 10\!\cdots\!35 \nu^{17} + \cdots + 11\!\cdots\!41 ) / 20\!\cdots\!72 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 21\!\cdots\!14 \nu^{17} + \cdots + 39\!\cdots\!97 ) / 40\!\cdots\!08 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 10\!\cdots\!39 \nu^{17} + \cdots - 20\!\cdots\!55 ) / 17\!\cdots\!56 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 13\!\cdots\!44 \nu^{17} + \cdots + 56\!\cdots\!27 ) / 17\!\cdots\!56 \)
|
\(\beta_{16}\) | \(=\) |
\( ( 55\!\cdots\!46 \nu^{17} + \cdots - 77\!\cdots\!15 ) / 20\!\cdots\!72 \)
|
\(\beta_{17}\) | \(=\) |
\( ( - 55\!\cdots\!90 \nu^{17} + \cdots - 49\!\cdots\!95 ) / 20\!\cdots\!72 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{15} - 3\beta_{11} - 5\beta_{9} + 5\beta_{7} - 3\beta_{6} + 36\beta_{4} + 5\beta_{3} - \beta_{2} - \beta _1 - 36 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{16} + 2 \beta_{13} - \beta_{12} + 6 \beta_{11} - 8 \beta_{10} + 24 \beta_{9} - 88 \beta_{8} + 88 \beta_{7} - 8 \beta_{6} + 112 \beta_{3} + 57 \beta_{2} + 8 \)
|
\(\nu^{4}\) | \(=\) |
\( 5 \beta_{17} + 7 \beta_{16} + 56 \beta_{14} + 296 \beta_{13} + 7 \beta_{12} + 296 \beta_{11} - 274 \beta_{10} + 622 \beta_{9} - 622 \beta_{8} - 222 \beta_{7} - 22 \beta_{6} - 2 \beta_{5} - 2078 \beta_{4} + 222 \beta_{3} + 29 \beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( 40 \beta_{17} - 40 \beta_{16} + 6 \beta_{15} + 879 \beta_{13} + 156 \beta_{12} + 268 \beta_{11} + 879 \beta_{10} + 9012 \beta_{9} - 2569 \beta_{8} - 11581 \beta_{7} + 268 \beta_{6} + 156 \beta_{5} - 1595 \beta_{4} - 9012 \beta_{3} + \cdots + 1595 \)
|
\(\nu^{6}\) | \(=\) |
\( - 893 \beta_{17} - 400 \beta_{16} - 3312 \beta_{15} - 3312 \beta_{14} - 23021 \beta_{13} - 493 \beta_{12} - 2780 \beta_{11} + 25801 \beta_{10} - 31030 \beta_{9} + 35155 \beta_{8} - 35155 \beta_{7} + \cdots + 145459 \)
|
\(\nu^{7}\) | \(=\) |
\( - 14918 \beta_{17} - 14572 \beta_{16} - 1818 \beta_{14} - 128486 \beta_{13} - 14572 \beta_{12} - 128486 \beta_{11} + 37444 \beta_{10} - 1038778 \beta_{9} + 1038778 \beta_{8} + 233570 \beta_{7} + \cdots + 295792 \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 58696 \beta_{17} - 58696 \beta_{16} + 224404 \beta_{15} - 292430 \beta_{13} - 34846 \beta_{12} - 1918802 \beta_{11} - 292430 \beta_{10} - 3361386 \beta_{9} + 3261130 \beta_{8} + \cdots - 11160210 \)
|
\(\nu^{9}\) | \(=\) |
\( 1409632 \beta_{17} + 1293906 \beta_{16} + 386589 \beta_{15} + 386589 \beta_{14} + 4671837 \beta_{13} + 115726 \beta_{12} + 8449912 \beta_{11} - 13121749 \beta_{10} + 20972780 \beta_{9} + \cdots - 40208848 \)
|
\(\nu^{10}\) | \(=\) |
\( 3551481 \beta_{17} + 9258444 \beta_{16} + 16810526 \beta_{14} + 190372536 \beta_{13} + 9258444 \beta_{12} + 190372536 \beta_{11} - 160533576 \beta_{10} + 640135440 \beta_{9} + \cdots - 74540953 \beta_1 \)
|
\(\nu^{11}\) | \(=\) |
\( - 17339398 \beta_{17} + 17339398 \beta_{16} - 50766222 \beta_{15} + 750873190 \beta_{13} + 109791635 \beta_{12} + 529267958 \beta_{11} + 750873190 \beta_{10} + \cdots + 4346923604 \)
|
\(\nu^{12}\) | \(=\) |
\( - 890919814 \beta_{17} - 375717320 \beta_{16} - 1339981704 \beta_{15} - 1339981704 \beta_{14} - 13528021390 \beta_{13} - 515202494 \beta_{12} - 3012820279 \beta_{11} + \cdots + 75363031909 \)
|
\(\nu^{13}\) | \(=\) |
\( - 9302450500 \beta_{17} - 11254259423 \beta_{16} - 5647093956 \beta_{14} - 121694400067 \beta_{13} - 11254259423 \beta_{12} - 121694400067 \beta_{11} + \cdots + 159584620144 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( 45203148824 \beta_{17} - 45203148824 \beta_{16} + 110912225908 \beta_{15} - 300460695808 \beta_{13} - 38993259452 \beta_{12} - 1149648891760 \beta_{11} + \cdots - 6433442474541 \)
|
\(\nu^{15}\) | \(=\) |
\( 994183242116 \beta_{17} + 792214993472 \beta_{16} + 580600861908 \beta_{15} + 580600861908 \beta_{14} + 5697403289404 \beta_{13} + 201968248644 \beta_{12} + \cdots - 42530549970820 \)
|
\(\nu^{16}\) | \(=\) |
\( 3930296819656 \beta_{17} + 7858333786556 \beta_{16} + 9402098067641 \beta_{14} + 128074633720903 \beta_{13} + 7858333786556 \beta_{12} + \cdots - 83123860453267 \beta_1 \)
|
\(\nu^{17}\) | \(=\) |
\( - 20122050426723 \beta_{17} + 20122050426723 \beta_{16} - 57162326555028 \beta_{15} + 493750285485482 \beta_{13} + 67957658485045 \beta_{12} + \cdots + 40\!\cdots\!04 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).
\(n\) | \(21\) |
\(\chi(n)\) | \(\beta_{7}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
1.87939 | − | 0.684040i | −1.31024 | + | 7.43077i | 3.06418 | − | 2.57115i | 3.45478 | + | 2.89891i | 2.62049 | + | 14.8615i | 4.21085 | + | 7.29340i | 4.00000 | − | 6.92820i | −28.1279 | − | 10.2377i | 8.47584 | + | 3.08495i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
5.2 | 1.87939 | − | 0.684040i | 0.541460 | − | 3.07077i | 3.06418 | − | 2.57115i | 8.27240 | + | 6.94137i | −1.08292 | − | 6.14154i | −13.7717 | − | 23.8533i | 4.00000 | − | 6.92820i | 16.2353 | + | 5.90915i | 20.2952 | + | 7.38685i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
5.3 | 1.87939 | − | 0.684040i | 0.900544 | − | 5.10724i | 3.06418 | − | 2.57115i | −10.9611 | − | 9.19749i | −1.80109 | − | 10.2145i | 16.0725 | + | 27.8383i | 4.00000 | − | 6.92820i | 0.0987659 | + | 0.0359478i | −26.8917 | − | 9.78776i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
9.1 | −0.347296 | − | 1.96962i | −5.68185 | + | 4.76764i | −3.75877 | + | 1.36808i | 18.4168 | + | 6.70318i | 11.3637 | + | 9.53528i | −15.6039 | + | 27.0267i | 4.00000 | + | 6.92820i | 4.86455 | − | 27.5882i | 6.80659 | − | 38.6021i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
9.2 | −0.347296 | − | 1.96962i | −3.39993 | + | 2.85288i | −3.75877 | + | 1.36808i | −20.2092 | − | 7.35554i | 6.79986 | + | 5.70576i | 2.98693 | − | 5.17352i | 4.00000 | + | 6.92820i | −1.26790 | + | 7.19064i | −7.46901 | + | 42.3588i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
9.3 | −0.347296 | − | 1.96962i | 6.25156 | − | 5.24568i | −3.75877 | + | 1.36808i | 0.852642 | + | 0.310336i | −12.5031 | − | 10.4914i | −4.68031 | + | 8.10654i | 4.00000 | + | 6.92820i | 6.87632 | − | 38.9975i | 0.315124 | − | 1.78716i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
17.1 | −0.347296 | + | 1.96962i | −5.68185 | − | 4.76764i | −3.75877 | − | 1.36808i | 18.4168 | − | 6.70318i | 11.3637 | − | 9.53528i | −15.6039 | − | 27.0267i | 4.00000 | − | 6.92820i | 4.86455 | + | 27.5882i | 6.80659 | + | 38.6021i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
17.2 | −0.347296 | + | 1.96962i | −3.39993 | − | 2.85288i | −3.75877 | − | 1.36808i | −20.2092 | + | 7.35554i | 6.79986 | − | 5.70576i | 2.98693 | + | 5.17352i | 4.00000 | − | 6.92820i | −1.26790 | − | 7.19064i | −7.46901 | − | 42.3588i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
17.3 | −0.347296 | + | 1.96962i | 6.25156 | + | 5.24568i | −3.75877 | − | 1.36808i | 0.852642 | − | 0.310336i | −12.5031 | + | 10.4914i | −4.68031 | − | 8.10654i | 4.00000 | − | 6.92820i | 6.87632 | + | 38.9975i | 0.315124 | + | 1.78716i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
23.1 | 1.87939 | + | 0.684040i | −1.31024 | − | 7.43077i | 3.06418 | + | 2.57115i | 3.45478 | − | 2.89891i | 2.62049 | − | 14.8615i | 4.21085 | − | 7.29340i | 4.00000 | + | 6.92820i | −28.1279 | + | 10.2377i | 8.47584 | − | 3.08495i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
23.2 | 1.87939 | + | 0.684040i | 0.541460 | + | 3.07077i | 3.06418 | + | 2.57115i | 8.27240 | − | 6.94137i | −1.08292 | + | 6.14154i | −13.7717 | + | 23.8533i | 4.00000 | + | 6.92820i | 16.2353 | − | 5.90915i | 20.2952 | − | 7.38685i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
23.3 | 1.87939 | + | 0.684040i | 0.900544 | + | 5.10724i | 3.06418 | + | 2.57115i | −10.9611 | + | 9.19749i | −1.80109 | + | 10.2145i | 16.0725 | − | 27.8383i | 4.00000 | + | 6.92820i | 0.0987659 | − | 0.0359478i | −26.8917 | + | 9.78776i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
25.1 | −1.53209 | + | 1.28558i | −3.05945 | − | 1.11355i | 0.694593 | − | 3.93923i | −1.91957 | − | 10.8864i | 6.11891 | − | 2.22710i | 9.80910 | − | 16.9899i | 4.00000 | + | 6.92820i | −12.5629 | − | 10.5416i | 16.9363 | + | 14.2112i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
25.2 | −1.53209 | + | 1.28558i | −0.598158 | − | 0.217712i | 0.694593 | − | 3.93923i | 3.08282 | + | 17.4836i | 1.19632 | − | 0.435424i | −11.6036 | + | 20.0980i | 4.00000 | + | 6.92820i | −20.3728 | − | 17.0948i | −27.1996 | − | 22.8232i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
25.3 | −1.53209 | + | 1.28558i | 9.35607 | + | 3.40533i | 0.694593 | − | 3.93923i | −0.989599 | − | 5.61230i | −18.7121 | + | 6.81067i | −3.91986 | + | 6.78940i | 4.00000 | + | 6.92820i | 55.2566 | + | 46.3658i | 8.73118 | + | 7.32633i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
35.1 | −1.53209 | − | 1.28558i | −3.05945 | + | 1.11355i | 0.694593 | + | 3.93923i | −1.91957 | + | 10.8864i | 6.11891 | + | 2.22710i | 9.80910 | + | 16.9899i | 4.00000 | − | 6.92820i | −12.5629 | + | 10.5416i | 16.9363 | − | 14.2112i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
35.2 | −1.53209 | − | 1.28558i | −0.598158 | + | 0.217712i | 0.694593 | + | 3.93923i | 3.08282 | − | 17.4836i | 1.19632 | + | 0.435424i | −11.6036 | − | 20.0980i | 4.00000 | − | 6.92820i | −20.3728 | + | 17.0948i | −27.1996 | + | 22.8232i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
35.3 | −1.53209 | − | 1.28558i | 9.35607 | − | 3.40533i | 0.694593 | + | 3.93923i | −0.989599 | + | 5.61230i | −18.7121 | − | 6.81067i | −3.91986 | − | 6.78940i | 4.00000 | − | 6.92820i | 55.2566 | − | 46.3658i | 8.73118 | − | 7.32633i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 38.4.e.b | ✓ | 18 |
19.e | even | 9 | 1 | inner | 38.4.e.b | ✓ | 18 |
19.e | even | 9 | 1 | 722.4.a.t | 9 | ||
19.f | odd | 18 | 1 | 722.4.a.u | 9 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
38.4.e.b | ✓ | 18 | 1.a | even | 1 | 1 | trivial |
38.4.e.b | ✓ | 18 | 19.e | even | 9 | 1 | inner |
722.4.a.t | 9 | 19.e | even | 9 | 1 | ||
722.4.a.u | 9 | 19.f | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{18} - 6 T_{3}^{17} - 3 T_{3}^{16} - 298 T_{3}^{15} + 3495 T_{3}^{14} + 10455 T_{3}^{13} + 207596 T_{3}^{12} - 770469 T_{3}^{11} + 3933852 T_{3}^{10} + 76842539 T_{3}^{9} + 766535988 T_{3}^{8} + \cdots + 457499373769 \)
acting on \(S_{4}^{\mathrm{new}}(38, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{6} - 8 T^{3} + 64)^{3} \)
$3$
\( T^{18} - 6 T^{17} + \cdots + 457499373769 \)
$5$
\( T^{18} - 267 T^{16} + \cdots + 88\!\cdots\!24 \)
$7$
\( T^{18} + 33 T^{17} + \cdots + 21\!\cdots\!04 \)
$11$
\( T^{18} + 75 T^{17} + \cdots + 19\!\cdots\!21 \)
$13$
\( T^{18} - 99 T^{17} + \cdots + 42\!\cdots\!76 \)
$17$
\( T^{18} + 111 T^{17} + \cdots + 35\!\cdots\!61 \)
$19$
\( T^{18} + 372 T^{17} + \cdots + 33\!\cdots\!39 \)
$23$
\( T^{18} - 198 T^{17} + \cdots + 85\!\cdots\!16 \)
$29$
\( T^{18} - 669 T^{17} + \cdots + 86\!\cdots\!56 \)
$31$
\( T^{18} + 42 T^{17} + \cdots + 40\!\cdots\!76 \)
$37$
\( (T^{9} + 528 T^{8} + \cdots - 64\!\cdots\!08)^{2} \)
$41$
\( T^{18} + 210 T^{17} + \cdots + 96\!\cdots\!49 \)
$43$
\( T^{18} + 399 T^{17} + \cdots + 33\!\cdots\!29 \)
$47$
\( T^{18} - 1149 T^{17} + \cdots + 15\!\cdots\!96 \)
$53$
\( T^{18} + 633 T^{17} + \cdots + 18\!\cdots\!04 \)
$59$
\( T^{18} - 51 T^{17} + \cdots + 10\!\cdots\!41 \)
$61$
\( T^{18} + 4104 T^{17} + \cdots + 40\!\cdots\!16 \)
$67$
\( T^{18} + 675 T^{17} + \cdots + 23\!\cdots\!04 \)
$71$
\( T^{18} - 2964 T^{17} + \cdots + 12\!\cdots\!04 \)
$73$
\( T^{18} + 2004 T^{17} + \cdots + 60\!\cdots\!64 \)
$79$
\( T^{18} - 543 T^{17} + \cdots + 11\!\cdots\!64 \)
$83$
\( T^{18} - 381 T^{17} + \cdots + 40\!\cdots\!49 \)
$89$
\( T^{18} - 4386 T^{17} + \cdots + 53\!\cdots\!61 \)
$97$
\( T^{18} - 7599 T^{17} + \cdots + 20\!\cdots\!61 \)
show more
show less