Properties

Label 38.4.e.a
Level $38$
Weight $4$
Character orbit 38.e
Analytic conductor $2.242$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 38.e (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.24207258022\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 6 x^{11} - 135 x^{10} + 730 x^{9} + 7953 x^{8} - 36258 x^{7} - 262940 x^{6} + 918855 x^{5} + 5157591 x^{4} - 11890401 x^{3} - 56759508 x^{2} + 62864118 x + 272110107\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 \beta_{3} q^{2} + ( -1 + 2 \beta_{2} - \beta_{4} + 2 \beta_{6} - \beta_{7} - 2 \beta_{8} ) q^{3} -4 \beta_{6} q^{4} + ( 1 - 2 \beta_{1} - 3 \beta_{3} + \beta_{5} + \beta_{6} + 3 \beta_{8} + \beta_{9} + \beta_{10} ) q^{5} + ( -2 \beta_{2} + 2 \beta_{5} - 2 \beta_{6} + 4 \beta_{7} + 2 \beta_{8} ) q^{6} + ( -\beta_{1} + 6 \beta_{2} + 2 \beta_{3} + 2 \beta_{6} - 4 \beta_{7} - 7 \beta_{8} + \beta_{9} ) q^{7} + ( -8 - 8 \beta_{7} ) q^{8} + ( -3 \beta_{1} - 7 \beta_{2} - 3 \beta_{3} + 3 \beta_{4} + 3 \beta_{7} + 3 \beta_{10} + 3 \beta_{11} ) q^{9} +O(q^{10})\) \( q -2 \beta_{3} q^{2} + ( -1 + 2 \beta_{2} - \beta_{4} + 2 \beta_{6} - \beta_{7} - 2 \beta_{8} ) q^{3} -4 \beta_{6} q^{4} + ( 1 - 2 \beta_{1} - 3 \beta_{3} + \beta_{5} + \beta_{6} + 3 \beta_{8} + \beta_{9} + \beta_{10} ) q^{5} + ( -2 \beta_{2} + 2 \beta_{5} - 2 \beta_{6} + 4 \beta_{7} + 2 \beta_{8} ) q^{6} + ( -\beta_{1} + 6 \beta_{2} + 2 \beta_{3} + 2 \beta_{6} - 4 \beta_{7} - 7 \beta_{8} + \beta_{9} ) q^{7} + ( -8 - 8 \beta_{7} ) q^{8} + ( -3 \beta_{1} - 7 \beta_{2} - 3 \beta_{3} + 3 \beta_{4} + 3 \beta_{7} + 3 \beta_{10} + 3 \beta_{11} ) q^{9} + ( 2 + 4 \beta_{1} + 12 \beta_{2} - 2 \beta_{4} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{9} - 4 \beta_{11} ) q^{10} + ( -6 - 4 \beta_{2} - 3 \beta_{3} + 2 \beta_{4} - 3 \beta_{5} + 16 \beta_{6} - 4 \beta_{7} - 13 \beta_{8} - 2 \beta_{10} + 5 \beta_{11} ) q^{11} + ( 4 \beta_{1} + 8 \beta_{2} + 4 \beta_{3} + 4 \beta_{6} - 4 \beta_{7} - 4 \beta_{8} - 4 \beta_{9} ) q^{12} + ( 9 + \beta_{1} - 5 \beta_{2} - 7 \beta_{3} - 2 \beta_{4} - 5 \beta_{5} - 7 \beta_{6} + 7 \beta_{7} + 10 \beta_{8} - 2 \beta_{9} - \beta_{11} ) q^{13} + ( -8 - 12 \beta_{2} - 6 \beta_{3} - 2 \beta_{4} - 10 \beta_{6} + 4 \beta_{7} + 6 \beta_{8} - 2 \beta_{11} ) q^{14} + ( 44 + 3 \beta_{1} + 28 \beta_{3} + 3 \beta_{4} + 9 \beta_{5} + 3 \beta_{6} + 34 \beta_{7} + 19 \beta_{8} + 3 \beta_{9} - 9 \beta_{10} - 3 \beta_{11} ) q^{15} + 16 \beta_{8} q^{16} + ( -6 - 6 \beta_{1} - 33 \beta_{2} + 22 \beta_{3} - 6 \beta_{5} - 21 \beta_{6} - 33 \beta_{7} + 7 \beta_{9} - \beta_{10} - 5 \beta_{11} ) q^{17} + ( 8 + 6 \beta_{1} + 6 \beta_{3} - 12 \beta_{6} - 6 \beta_{8} - 6 \beta_{10} - 6 \beta_{11} ) q^{18} + ( -29 + 3 \beta_{1} + 18 \beta_{2} - 7 \beta_{4} - 13 \beta_{5} + 9 \beta_{6} + 10 \beta_{7} + 2 \beta_{9} + 4 \beta_{10} + \beta_{11} ) q^{19} + ( -20 + 4 \beta_{4} - 4 \beta_{5} - 4 \beta_{7} + 8 \beta_{10} + 8 \beta_{11} ) q^{20} + ( -23 - 5 \beta_{2} + 10 \beta_{3} + 18 \beta_{6} - 5 \beta_{7} - 5 \beta_{9} + 5 \beta_{10} + 2 \beta_{11} ) q^{21} + ( 30 - 10 \beta_{1} - 40 \beta_{2} + 6 \beta_{5} - 26 \beta_{6} + 32 \beta_{7} + 2 \beta_{8} + 6 \beta_{9} - 10 \beta_{10} ) q^{22} + ( -23 + 13 \beta_{1} - 17 \beta_{3} + 13 \beta_{4} + \beta_{5} + 38 \beta_{6} - 12 \beta_{7} + 7 \beta_{8} - 4 \beta_{9} - \beta_{10} + 4 \beta_{11} ) q^{23} + ( -8 - 16 \beta_{2} - 16 \beta_{3} + 8 \beta_{4} + 8 \beta_{7} + 16 \beta_{8} + 8 \beta_{11} ) q^{24} + ( 18 + 9 \beta_{1} + 43 \beta_{2} - 18 \beta_{4} + 25 \beta_{6} - 39 \beta_{7} - 57 \beta_{8} - 18 \beta_{9} - 9 \beta_{11} ) q^{25} + ( -2 - 10 \beta_{1} + 10 \beta_{2} + 6 \beta_{3} + 4 \beta_{4} + 2 \beta_{5} + 6 \beta_{6} - 14 \beta_{7} - 20 \beta_{8} + 10 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{26} + ( 31 + 9 \beta_{4} + 18 \beta_{5} - 49 \beta_{6} + 40 \beta_{7} + 49 \beta_{8} - 8 \beta_{9} - 9 \beta_{10} - 9 \beta_{11} ) q^{27} + ( 8 + 16 \beta_{2} + 28 \beta_{3} - 20 \beta_{7} - 8 \beta_{8} + 4 \beta_{10} ) q^{28} + ( 39 - \beta_{1} + 91 \beta_{2} + 13 \beta_{3} + 4 \beta_{4} - 3 \beta_{6} + 26 \beta_{7} - 36 \beta_{8} - 3 \beta_{9} + 26 \beta_{10} + \beta_{11} ) q^{29} + ( 12 + 38 \beta_{2} - 38 \beta_{3} - 6 \beta_{4} - 12 \beta_{5} + 94 \beta_{6} + 6 \beta_{7} - 56 \beta_{8} - 18 \beta_{9} + 6 \beta_{10} + 6 \beta_{11} ) q^{30} + ( -13 - 9 \beta_{1} - 15 \beta_{2} - 72 \beta_{3} - 12 \beta_{4} + 13 \beta_{5} - 34 \beta_{6} - 4 \beta_{7} + 6 \beta_{8} + 9 \beta_{9} - 25 \beta_{10} + 13 \beta_{11} ) q^{31} + ( 32 \beta_{2} + 32 \beta_{6} ) q^{32} + ( -141 - 25 \beta_{1} - 111 \beta_{2} - 43 \beta_{3} + 3 \beta_{4} + 4 \beta_{5} - 138 \beta_{6} - 51 \beta_{7} + 43 \beta_{8} + 21 \beta_{9} + 21 \beta_{10} + 3 \beta_{11} ) q^{33} + ( 34 - 14 \beta_{1} - 20 \beta_{3} - 14 \beta_{4} - 10 \beta_{5} + 36 \beta_{6} - 42 \beta_{7} + 40 \beta_{8} + 12 \beta_{9} + 10 \beta_{10} - 12 \beta_{11} ) q^{34} + ( -34 + 19 \beta_{2} + 15 \beta_{4} + 15 \beta_{5} + 23 \beta_{6} - 23 \beta_{7} + 15 \beta_{8} + 15 \beta_{9} ) q^{35} + ( -12 - 12 \beta_{1} - 24 \beta_{2} - 16 \beta_{3} - 12 \beta_{5} - 24 \beta_{7} + 12 \beta_{10} + 12 \beta_{11} ) q^{36} + ( 96 + 21 \beta_{1} - \beta_{2} + 11 \beta_{3} - 27 \beta_{4} + 27 \beta_{5} - 33 \beta_{6} + 27 \beta_{7} - 68 \beta_{8} - 19 \beta_{10} - 19 \beta_{11} ) q^{37} + ( -20 - 18 \beta_{1} + 96 \beta_{3} - 4 \beta_{4} + 16 \beta_{5} + 26 \beta_{6} + 18 \beta_{7} - 50 \beta_{8} + 26 \beta_{9} - 2 \beta_{10} + 6 \beta_{11} ) q^{38} + ( -98 - 8 \beta_{1} + 17 \beta_{2} - \beta_{3} - 4 \beta_{4} + 4 \beta_{5} + 26 \beta_{6} + 4 \beta_{7} + 12 \beta_{8} + 6 \beta_{10} + 6 \beta_{11} ) q^{39} + ( -16 + 8 \beta_{1} + 24 \beta_{3} + 8 \beta_{5} + 8 \beta_{6} + 8 \beta_{9} - 16 \beta_{10} ) q^{40} + ( 82 + 7 \beta_{1} - 72 \beta_{2} - 3 \beta_{4} - 21 \beta_{5} - 135 \beta_{6} + 117 \beta_{7} - 50 \beta_{8} - 21 \beta_{9} + 7 \beta_{10} ) q^{41} + ( 42 + 10 \beta_{1} + 32 \beta_{3} + 10 \beta_{4} + 4 \beta_{5} + 14 \beta_{6} + 36 \beta_{7} + 20 \beta_{8} - 4 \beta_{10} ) q^{42} + ( 25 + 4 \beta_{1} - 36 \beta_{2} - 337 \beta_{3} - 7 \beta_{4} - 15 \beta_{5} + 18 \beta_{6} + 50 \beta_{7} + 337 \beta_{8} + 11 \beta_{9} + 11 \beta_{10} - 7 \beta_{11} ) q^{43} + ( 28 - 8 \beta_{1} + 8 \beta_{2} + 12 \beta_{3} - 12 \beta_{4} - 4 \beta_{6} - 52 \beta_{7} - 64 \beta_{8} - 12 \beta_{9} - 20 \beta_{11} ) q^{44} + ( 28 + 27 \beta_{1} + 282 \beta_{2} + 114 \beta_{3} - 29 \beta_{4} - 28 \beta_{5} + 87 \beta_{6} - 202 \beta_{7} - 255 \beta_{8} - 27 \beta_{9} - \beta_{10} - 28 \beta_{11} ) q^{45} + ( 68 - 20 \beta_{2} - 14 \beta_{3} + 8 \beta_{4} - 18 \beta_{5} - 20 \beta_{6} + 76 \beta_{7} + 34 \beta_{8} - 2 \beta_{9} - 8 \beta_{10} + 26 \beta_{11} ) q^{46} + ( -29 - 5 \beta_{1} - 178 \beta_{2} + 126 \beta_{3} + 34 \beta_{4} - 29 \beta_{6} - 155 \beta_{7} + 58 \beta_{8} - 29 \beta_{9} - 31 \beta_{10} + 5 \beta_{11} ) q^{47} + ( 16 + 16 \beta_{2} + 16 \beta_{3} - 16 \beta_{8} - 16 \beta_{10} ) q^{48} + ( 234 + 18 \beta_{2} - 11 \beta_{3} + 3 \beta_{4} + 13 \beta_{5} + 64 \beta_{6} + 237 \beta_{7} - 53 \beta_{8} + 7 \beta_{9} - 3 \beta_{10} - 10 \beta_{11} ) q^{49} + ( -18 - 114 \beta_{2} - 114 \beta_{3} + 36 \beta_{4} + 18 \beta_{5} - 114 \beta_{6} + 50 \beta_{7} + 114 \beta_{8} + 18 \beta_{10} + 18 \beta_{11} ) q^{50} + ( -215 + 28 \beta_{1} + 219 \beta_{2} + 165 \beta_{3} - 3 \beta_{4} - 17 \beta_{5} + 216 \beta_{6} - 5 \beta_{7} + 9 \beta_{8} - 3 \beta_{9} + 25 \beta_{11} ) q^{51} + ( -12 + 8 \beta_{1} - 20 \beta_{2} - 12 \beta_{3} - 20 \beta_{4} - 4 \beta_{5} - 32 \beta_{6} + 12 \beta_{7} + 12 \beta_{8} - 4 \beta_{9} - 4 \beta_{10} - 20 \beta_{11} ) q^{52} + ( 6 + 43 \beta_{1} + 92 \beta_{3} + 43 \beta_{4} - 19 \beta_{5} + 96 \beta_{6} + 106 \beta_{7} - 43 \beta_{8} - 33 \beta_{9} + 19 \beta_{10} + 33 \beta_{11} ) q^{53} + ( -80 + 18 \beta_{1} + 82 \beta_{2} + 16 \beta_{4} - 36 \beta_{5} + 46 \beta_{6} - 98 \beta_{7} - 28 \beta_{8} - 36 \beta_{9} + 18 \beta_{10} ) q^{54} + ( 66 + 8 \beta_{1} - 199 \beta_{2} + 180 \beta_{3} + 8 \beta_{5} - 273 \beta_{6} - 199 \beta_{7} + 41 \beta_{9} - 49 \beta_{10} - 48 \beta_{11} ) q^{55} + ( -32 + 8 \beta_{1} - 8 \beta_{2} - 56 \beta_{3} + 40 \beta_{6} + 40 \beta_{8} ) q^{56} + ( -132 - 39 \beta_{1} - 266 \beta_{2} + 132 \beta_{3} + 42 \beta_{4} + 3 \beta_{5} - 64 \beta_{6} + 153 \beta_{7} - 102 \beta_{8} - 7 \beta_{9} + 21 \beta_{10} + 13 \beta_{11} ) q^{57} + ( -190 + 52 \beta_{1} - 34 \beta_{2} - 26 \beta_{3} + 6 \beta_{4} - 6 \beta_{5} - 60 \beta_{6} - 6 \beta_{7} - 46 \beta_{8} - 2 \beta_{10} - 2 \beta_{11} ) q^{58} + ( -385 - 12 \beta_{1} - 15 \beta_{2} + 48 \beta_{3} - 12 \beta_{5} + 382 \beta_{6} - 15 \beta_{7} + 36 \beta_{9} - 24 \beta_{10} + 23 \beta_{11} ) q^{59} + ( 100 - 12 \beta_{1} - 148 \beta_{2} + 36 \beta_{4} + 24 \beta_{5} - 200 \beta_{6} + 188 \beta_{7} + 24 \beta_{9} - 12 \beta_{10} ) q^{60} + ( 271 - 46 \beta_{1} - 81 \beta_{3} - 46 \beta_{4} - 61 \beta_{5} + 97 \beta_{6} - 133 \beta_{7} + 306 \beta_{8} - 9 \beta_{9} + 61 \beta_{10} + 9 \beta_{11} ) q^{61} + ( -64 - 24 \beta_{1} + 30 \beta_{2} - 16 \beta_{3} - 18 \beta_{4} + 50 \beta_{5} - 82 \beta_{6} - 68 \beta_{7} + 16 \beta_{8} - 26 \beta_{9} - 26 \beta_{10} - 18 \beta_{11} ) q^{62} + ( -10 - 30 \beta_{1} - 37 \beta_{2} - 20 \beta_{3} + 45 \beta_{4} + 29 \beta_{5} + 8 \beta_{6} - 36 \beta_{7} - 20 \beta_{8} + 45 \beta_{9} + 15 \beta_{11} ) q^{63} + 64 \beta_{7} q^{64} + ( 100 - 53 \beta_{2} + 74 \beta_{3} - 14 \beta_{4} - 7 \beta_{5} - 247 \beta_{6} + 86 \beta_{7} + 173 \beta_{8} + 14 \beta_{10} - 7 \beta_{11} ) q^{65} + ( -60 + 50 \beta_{1} + 172 \beta_{2} + 216 \beta_{3} - 42 \beta_{4} - 8 \beta_{6} - 276 \beta_{7} + 68 \beta_{8} - 8 \beta_{9} - 6 \beta_{10} - 50 \beta_{11} ) q^{66} + ( 298 - 24 \beta_{1} + 315 \beta_{2} + 183 \beta_{3} + 5 \beta_{4} + 19 \beta_{6} + 115 \beta_{7} - 317 \beta_{8} + 19 \beta_{9} - 17 \beta_{10} + 24 \beta_{11} ) q^{67} + ( 96 + 132 \beta_{2} - 80 \beta_{3} - 24 \beta_{4} + 4 \beta_{5} + 40 \beta_{6} + 72 \beta_{7} + 40 \beta_{8} + 20 \beta_{9} + 24 \beta_{10} - 28 \beta_{11} ) q^{68} + ( 7 - 35 \beta_{1} + 68 \beta_{2} - 211 \beta_{3} - 19 \beta_{4} - 7 \beta_{5} - 206 \beta_{6} + 28 \beta_{7} - 103 \beta_{8} + 35 \beta_{9} - 12 \beta_{10} - 7 \beta_{11} ) q^{69} + ( 8 + 30 \beta_{1} + 60 \beta_{2} - 8 \beta_{3} - 30 \beta_{4} - 30 \beta_{5} + 30 \beta_{6} + 46 \beta_{7} + 46 \beta_{8} - 30 \beta_{9} ) q^{70} + ( 145 + 47 \beta_{1} + 165 \beta_{2} - 254 \beta_{3} - 35 \beta_{4} + 21 \beta_{5} + 110 \beta_{6} + 48 \beta_{7} + 254 \beta_{8} - 68 \beta_{9} - 68 \beta_{10} - 35 \beta_{11} ) q^{71} + ( 24 + 24 \beta_{5} - 32 \beta_{6} + 24 \beta_{8} + 24 \beta_{9} - 24 \beta_{10} - 24 \beta_{11} ) q^{72} + ( 73 - 18 \beta_{1} - 81 \beta_{2} - 10 \beta_{4} + 29 \beta_{5} + 140 \beta_{6} - 101 \beta_{7} - 473 \beta_{8} + 29 \beta_{9} - 18 \beta_{10} ) q^{73} + ( -26 + 16 \beta_{1} - 66 \beta_{2} - 196 \beta_{3} + 16 \beta_{5} - 56 \beta_{6} - 66 \beta_{7} - 54 \beta_{9} + 38 \beta_{10} + 42 \beta_{11} ) q^{74} + ( -133 - 70 \beta_{1} - 368 \beta_{2} - 583 \beta_{3} + 27 \beta_{4} - 27 \beta_{5} + 285 \beta_{6} - 27 \beta_{7} + 228 \beta_{8} + 111 \beta_{10} + 111 \beta_{11} ) q^{75} + ( 40 + 28 \beta_{1} - 12 \beta_{2} + 68 \beta_{3} - 52 \beta_{4} + 20 \beta_{5} + 128 \beta_{6} + 52 \beta_{7} - 56 \beta_{8} - 32 \beta_{9} - 12 \beta_{10} - 36 \beta_{11} ) q^{76} + ( -93 - 40 \beta_{1} - 222 \beta_{2} - 93 \beta_{3} - 10 \beta_{4} + 10 \beta_{5} - 89 \beta_{6} + 10 \beta_{7} - 98 \beta_{8} - 11 \beta_{10} - 11 \beta_{11} ) q^{77} + ( 6 + 20 \beta_{1} + 52 \beta_{2} + 200 \beta_{3} + 20 \beta_{5} + 26 \beta_{6} + 52 \beta_{7} - 8 \beta_{9} - 12 \beta_{10} - 16 \beta_{11} ) q^{78} + ( 139 + 18 \beta_{1} - 90 \beta_{2} - 31 \beta_{4} + 17 \beta_{5} - 286 \beta_{6} + 334 \beta_{7} - 203 \beta_{8} + 17 \beta_{9} + 18 \beta_{10} ) q^{79} + ( 16 - 16 \beta_{1} - 16 \beta_{4} + 80 \beta_{6} + 16 \beta_{7} - 16 \beta_{9} + 16 \beta_{11} ) q^{80} + ( 75 + 6 \beta_{1} + 471 \beta_{2} - 236 \beta_{3} + 21 \beta_{4} - 27 \beta_{5} + 96 \beta_{6} - 417 \beta_{7} + 236 \beta_{8} + 21 \beta_{9} + 21 \beta_{10} + 21 \beta_{11} ) q^{81} + ( -126 - 28 \beta_{1} - 164 \beta_{2} + 98 \beta_{3} + 42 \beta_{4} + 6 \beta_{5} - 122 \beta_{6} - 270 \beta_{7} - 234 \beta_{8} + 42 \beta_{9} + 14 \beta_{11} ) q^{82} + ( 17 + 15 \beta_{1} + 405 \beta_{2} + 35 \beta_{3} + 13 \beta_{4} - 17 \beta_{5} - 12 \beta_{6} - 162 \beta_{7} - 390 \beta_{8} - 15 \beta_{9} + 30 \beta_{10} - 17 \beta_{11} ) q^{83} + ( 28 + 20 \beta_{2} - 40 \beta_{3} - 20 \beta_{5} + 104 \beta_{6} + 28 \beta_{7} - 64 \beta_{8} - 8 \beta_{9} + 20 \beta_{11} ) q^{84} + ( -479 - 50 \beta_{1} - 69 \beta_{2} - 95 \beta_{3} - 44 \beta_{4} + 94 \beta_{6} - 384 \beta_{7} + 385 \beta_{8} + 94 \beta_{9} + 50 \beta_{11} ) q^{85} + ( 122 - 8 \beta_{1} + 702 \beta_{2} + 86 \beta_{3} - 22 \beta_{4} + 30 \beta_{6} + 36 \beta_{7} - 152 \beta_{8} + 30 \beta_{9} + 14 \beta_{10} + 8 \beta_{11} ) q^{86} + ( 499 + 37 \beta_{2} - 23 \beta_{3} + 14 \beta_{4} + 42 \beta_{5} + 132 \beta_{6} + 513 \beta_{7} - 109 \beta_{8} - 34 \beta_{9} - 14 \beta_{10} - 28 \beta_{11} ) q^{87} + ( 16 - 128 \beta_{2} - 104 \beta_{3} + 24 \beta_{4} - 16 \beta_{5} - 160 \beta_{6} - 8 \beta_{7} + 128 \beta_{8} + 40 \beta_{10} - 16 \beta_{11} ) q^{88} + ( -472 - 91 \beta_{1} + 216 \beta_{2} + 606 \beta_{3} + 24 \beta_{4} + 128 \beta_{5} + 240 \beta_{6} + 47 \beta_{7} - 57 \beta_{8} + 24 \beta_{9} - 67 \beta_{11} ) q^{89} + ( -334 - 58 \beta_{1} - 564 \beta_{2} - 402 \beta_{3} + 54 \beta_{4} + 2 \beta_{5} - 280 \beta_{6} + 174 \beta_{7} + 402 \beta_{8} + 56 \beta_{9} + 56 \beta_{10} + 54 \beta_{11} ) q^{90} + ( 152 - 32 \beta_{1} + 84 \beta_{3} - 32 \beta_{4} - 41 \beta_{5} - 225 \beta_{6} + 66 \beta_{7} + 36 \beta_{8} - 23 \beta_{9} + 41 \beta_{10} + 23 \beta_{11} ) q^{91} + ( -52 - 52 \beta_{1} - 4 \beta_{2} + 4 \beta_{4} + 36 \beta_{5} + 72 \beta_{6} - 40 \beta_{7} - 184 \beta_{8} + 36 \beta_{9} - 52 \beta_{10} ) q^{92} + ( -219 + 53 \beta_{1} - 551 \beta_{2} + 209 \beta_{3} + 53 \beta_{5} - 385 \beta_{6} - 551 \beta_{7} - 65 \beta_{9} + 12 \beta_{10} - 3 \beta_{11} ) q^{93} + ( 288 - 62 \beta_{1} - 72 \beta_{2} - 252 \beta_{3} + 58 \beta_{4} - 58 \beta_{5} + 242 \beta_{6} - 58 \beta_{7} + 368 \beta_{8} - 10 \beta_{10} - 10 \beta_{11} ) q^{94} + ( 57 + 95 \beta_{1} - 247 \beta_{2} + 665 \beta_{3} + 38 \beta_{4} - 456 \beta_{6} + 209 \beta_{7} + 95 \beta_{8} - 19 \beta_{9} - 57 \beta_{10} + 19 \beta_{11} ) q^{95} + ( -32 - 32 \beta_{1} - 64 \beta_{2} - 32 \beta_{3} ) q^{96} + ( -473 + 4 \beta_{1} + 173 \beta_{2} - 306 \beta_{3} + 4 \beta_{5} + 642 \beta_{6} + 173 \beta_{7} - 72 \beta_{9} + 68 \beta_{10} - 125 \beta_{11} ) q^{97} + ( 112 + 20 \beta_{1} - 78 \beta_{2} - 14 \beta_{4} - 26 \beta_{5} - 140 \beta_{6} + 128 \beta_{7} - 462 \beta_{8} - 26 \beta_{9} + 20 \beta_{10} ) q^{98} + ( 443 + 53 \beta_{1} + 313 \beta_{3} + 53 \beta_{4} + 138 \beta_{5} - 52 \beta_{6} + 396 \beta_{7} + 183 \beta_{8} + 55 \beta_{9} - 138 \beta_{10} - 55 \beta_{11} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 9q^{3} - 18q^{6} + 21q^{7} - 48q^{8} - 27q^{9} + O(q^{10}) \) \( 12q - 9q^{3} - 18q^{6} + 21q^{7} - 48q^{8} - 27q^{9} - 9q^{11} + 36q^{12} + 39q^{13} - 138q^{14} + 423q^{15} + 69q^{17} + 132q^{18} - 462q^{19} - 216q^{20} - 279q^{21} + 204q^{22} - 66q^{23} - 72q^{24} + 342q^{25} + 48q^{26} + 189q^{27} + 192q^{28} + 159q^{29} + 72q^{31} - 1560q^{33} + 408q^{34} - 135q^{35} - 108q^{36} + 1116q^{37} - 294q^{38} - 1248q^{39} + 147q^{41} + 414q^{42} - 117q^{43} + 408q^{44} + 1296q^{45} + 528q^{46} + 783q^{47} + 288q^{48} + 1413q^{49} - 354q^{50} - 2301q^{51} - 348q^{52} - 249q^{53} - 540q^{54} + 2187q^{55} - 336q^{56} - 2670q^{57} - 1932q^{58} - 4248q^{59} + 324q^{60} + 3114q^{61} - 438q^{62} + 363q^{63} - 384q^{64} + 495q^{65} + 822q^{66} + 3060q^{67} + 408q^{68} - 237q^{69} - 270q^{70} + 1686q^{71} + 432q^{72} + 1626q^{73} + 90q^{74} - 1854q^{75} - 1416q^{77} - 108q^{78} - 327q^{79} + 3483q^{81} + 294q^{82} + 927q^{83} + 204q^{84} - 3294q^{85} + 1188q^{86} + 2892q^{87} - 72q^{88} - 6366q^{89} - 5076q^{90} + 840q^{91} - 156q^{92} + 870q^{93} + 3432q^{94} + 513q^{95} - 576q^{96} - 8052q^{97} + 378q^{98} + 4494q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 6 x^{11} - 135 x^{10} + 730 x^{9} + 7953 x^{8} - 36258 x^{7} - 262940 x^{6} + 918855 x^{5} + 5157591 x^{4} - 11890401 x^{3} - 56759508 x^{2} + 62864118 x + 272110107\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\(-177221217078 \nu^{11} + 3257235752468 \nu^{10} + 7448859189417 \nu^{9} - 348800270203041 \nu^{8} + 246725060413890 \nu^{7} + 15490888685337464 \nu^{6} - 19811196354376926 \nu^{5} - 357754300688799514 \nu^{4} + 400473915693733842 \nu^{3} + 4306750761297997378 \nu^{2} - 2692306104561693094 \nu - 21338093845933036168\)\()/ 207201391860211327 \)
\(\beta_{3}\)\(=\)\((\)\(177221217078 \nu^{11} + 1307802364610 \nu^{10} - 30274049774807 \nu^{9} - 164426429455098 \nu^{8} + 1943132881731006 \nu^{7} + 8679404020188818 \nu^{6} - 60460050360167694 \nu^{5} - 238663501216099822 \nu^{4} + 928747583953979022 \nu^{3} + 3391717877058441844 \nu^{2} - 5684523648618559763 \nu - 19685341428196901362\)\()/ 207201391860211327 \)
\(\beta_{4}\)\(=\)\((\)\(-488144071095 \nu^{11} + 17846740004059 \nu^{10} - 13839005362779 \nu^{9} - 2106984070175911 \nu^{8} + 4541779588170822 \nu^{7} + 102961725378166441 \nu^{6} - 217798892218728099 \nu^{5} - 2625515013443047084 \nu^{4} + 4208642241669180665 \nu^{3} + 35298117216643037198 \nu^{2} - 30071865827575778859 \nu - 200899777020391137346\)\()/ 207201391860211327 \)
\(\beta_{5}\)\(=\)\((\)\(488144071095 \nu^{11} + 12477155222014 \nu^{10} - 137780470767586 \nu^{9} - 1508975589988942 \nu^{8} + 10831775909270780 \nu^{7} + 78118444919969751 \nu^{6} - 379885864716473617 \nu^{5} - 2156767180008845078 \nu^{4} + 6370302460492549118 \nu^{3} + 31574050688047386454 \nu^{2} - 42191996299443789347 \nu - 194202797254829741988\)\()/ 207201391860211327 \)
\(\beta_{6}\)\(=\)\((\)\(-545356750193 \nu^{11} + 639178329540 \nu^{10} + 77274249510048 \nu^{9} - 43408610678418 \nu^{8} - 4452252157863755 \nu^{7} - 199135495484657 \nu^{6} + 130514673620858285 \nu^{5} + 80929955889112716 \nu^{4} - 1946446810652341253 \nu^{3} - 2244991753408961063 \nu^{2} + 11804378059999411394 \nu + 19269854158760561501\)\()/ 207201391860211327 \)
\(\beta_{7}\)\(=\)\((\)\(1581666 \nu^{11} - 8699163 \nu^{10} - 191254825 \nu^{9} + 925890435 \nu^{8} + 9722082222 \nu^{7} - 38409003948 \nu^{6} - 260049871314 \nu^{5} + 748351094985 \nu^{4} + 3667777839865 \nu^{3} - 6269852665791 \nu^{2} - 21765274073007 \nu + 11710200330886\)\()/ 486606417103 \)
\(\beta_{8}\)\(=\)\((\)\(722577967271 \nu^{11} - 4051943557973 \nu^{10} - 83945461319640 \nu^{9} + 426412366504371 \nu^{8} + 4064047270679267 \nu^{7} - 17527628089879562 \nu^{6} - 103497407053708736 \nu^{5} + 342676177232219537 \nu^{4} + 1402092497979595547 \nu^{3} - 2996806964224757833 \nu^{2} - 8103858975645019699 \nu + 7404279427818802783\)\()/ 207201391860211327 \)
\(\beta_{9}\)\(=\)\((\)\(882100559090 \nu^{11} + 8843624294225 \nu^{10} - 174667730262753 \nu^{9} - 1173088304769666 \nu^{8} + 12516666641744675 \nu^{7} + 66554394063895991 \nu^{6} - 430697507264496290 \nu^{5} - 1992730817819811185 \nu^{4} + 7284724960989936728 \nu^{3} + 31203967995735408752 \nu^{2} - 48949073051985878985 \nu - 202532641899861005459\)\()/ 207201391860211327 \)
\(\beta_{10}\)\(=\)\((\)\(-1648551699807 \nu^{11} + 11116259193530 \nu^{10} + 165757370191268 \nu^{9} - 1065326603875755 \nu^{8} - 6944287407575079 \nu^{7} + 40202711062797866 \nu^{6} + 151876342577052782 \nu^{5} - 733168791455953581 \nu^{4} - 1726174510506912575 \nu^{3} + 6362770351786971041 \nu^{2} + 7777903016411569028 \nu - 21134063485749103201\)\()/ 207201391860211327 \)
\(\beta_{11}\)\(=\)\((\)\(-1648551699807 \nu^{11} + 7017809504347 \nu^{10} + 186249618637183 \nu^{9} - 654710361086352 \nu^{8} - 8709705869408181 \nu^{7} + 22740043057351849 \nu^{6} + 210529378653279533 \nu^{5} - 334306486848652462 \nu^{4} - 2623754819217589847 \nu^{3} + 1262244190577485046 \nu^{2} + 13337295222073937409 \nu + 9268488754807344483\)\()/ 207201391860211327 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\beta_{11} + \beta_{10} - 3 \beta_{8} - 3 \beta_{6} - \beta_{3} - 4 \beta_{2} + \beta_{1} + 26\)
\(\nu^{3}\)\(=\)\(3 \beta_{10} - 15 \beta_{8} + 10 \beta_{7} + 6 \beta_{6} + 3 \beta_{5} - 3 \beta_{4} + 28 \beta_{3} - 25 \beta_{2} + 25 \beta_{1} + 32\)
\(\nu^{4}\)\(=\)\(-53 \beta_{11} + 59 \beta_{10} + 10 \beta_{9} - 217 \beta_{8} + 15 \beta_{7} - 165 \beta_{6} - 3 \beta_{5} - 15 \beta_{4} + 37 \beta_{3} - 256 \beta_{2} + 44 \beta_{1} + 698\)
\(\nu^{5}\)\(=\)\(-81 \beta_{11} + 194 \beta_{10} + 25 \beta_{9} - 1321 \beta_{8} + 892 \beta_{7} + 381 \beta_{6} + 162 \beta_{5} - 207 \beta_{4} + 1665 \beta_{3} - 1414 \beta_{2} + 615 \beta_{1} + 1854\)
\(\nu^{6}\)\(=\)\(-2280 \beta_{11} + 2604 \beta_{10} + 917 \beta_{9} - 11518 \beta_{8} + 2205 \beta_{7} - 5675 \beta_{6} - 219 \beta_{5} - 1296 \beta_{4} + 5259 \beta_{3} - 11343 \beta_{2} + 1302 \beta_{1} + 19896\)
\(\nu^{7}\)\(=\)\(-6561 \beta_{11} + 9574 \beta_{10} + 3122 \beta_{9} - 76494 \beta_{8} + 52916 \beta_{7} + 19598 \beta_{6} + 5456 \beta_{5} - 10601 \beta_{4} + 78989 \beta_{3} - 60371 \beta_{2} + 14109 \beta_{1} + 81501\)
\(\nu^{8}\)\(=\)\(-93098 \beta_{11} + 103652 \beta_{10} + 56038 \beta_{9} - 531544 \beta_{8} + 177506 \beta_{7} - 126516 \beta_{6} - 14142 \beta_{5} - 73372 \beta_{4} + 339489 \beta_{3} - 419971 \beta_{2} + 26559 \beta_{1} + 609442\)
\(\nu^{9}\)\(=\)\(-366048 \beta_{11} + 423666 \beta_{10} + 233544 \beta_{9} - 3638850 \beta_{8} + 2627538 \beta_{7} + 1015026 \beta_{6} + 112374 \beta_{5} - 475506 \beta_{4} + 3478249 \beta_{3} - 2250730 \beta_{2} + 261745 \beta_{1} + 3220296\)
\(\nu^{10}\)\(=\)\(-3739994 \beta_{11} + 3951167 \beta_{10} + 2861082 \beta_{9} - 22427599 \beta_{8} + 10768116 \beta_{7} - 48010 \beta_{6} - 902652 \beta_{5} - 3405306 \beta_{4} + 17512846 \beta_{3} - 13691236 \beta_{2} + 64789 \beta_{1} + 19795826\)
\(\nu^{11}\)\(=\)\(-17577635 \beta_{11} + 17659182 \beta_{10} + 13629198 \beta_{9} - 153343365 \beta_{8} + 118000897 \beta_{7} + 53163670 \beta_{6} - 854642 \beta_{5} - 19566517 \beta_{4} + 147712096 \beta_{3} - 75222735 \beta_{2} + 1401338 \beta_{1} + 119730930\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).

\(n\) \(21\)
\(\chi(n)\) \(-\beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
5.05412 0.342020i
−4.05412 0.342020i
5.30460 0.984808i
−4.30460 0.984808i
5.30460 + 0.984808i
−4.30460 + 0.984808i
5.05412 + 0.342020i
−4.05412 + 0.342020i
−5.28151 + 0.642788i
6.28151 + 0.642788i
−5.28151 0.642788i
6.28151 0.642788i
−1.87939 + 0.684040i −1.54081 + 8.73839i 3.06418 2.57115i −15.3487 12.8791i −3.08163 17.4768i 4.71270 + 8.16264i −4.00000 + 6.92820i −48.6136 17.6939i 37.6558 + 13.7056i
5.2 −1.87939 + 0.684040i 0.0408138 0.231467i 3.06418 2.57115i 8.45426 + 7.09396i 0.0816277 + 0.462933i 9.26682 + 16.0506i −4.00000 + 6.92820i 25.3198 + 9.21565i −20.7414 7.54924i
9.1 0.347296 + 1.96962i −4.43054 + 3.71766i −3.75877 + 1.36808i −5.82452 2.11995i −8.86108 7.43533i −5.61124 + 9.71895i −4.00000 6.92820i 1.12015 6.35271i 2.15265 12.2083i
9.2 0.347296 + 1.96962i 2.93054 2.45902i −3.75877 + 1.36808i 14.2818 + 5.19813i 5.86108 + 4.91803i −0.806634 + 1.39713i −4.00000 6.92820i −2.14719 + 12.1773i −5.27832 + 29.9349i
17.1 0.347296 1.96962i −4.43054 3.71766i −3.75877 1.36808i −5.82452 + 2.11995i −8.86108 + 7.43533i −5.61124 9.71895i −4.00000 + 6.92820i 1.12015 + 6.35271i 2.15265 + 12.2083i
17.2 0.347296 1.96962i 2.93054 + 2.45902i −3.75877 1.36808i 14.2818 5.19813i 5.86108 4.91803i −0.806634 1.39713i −4.00000 + 6.92820i −2.14719 12.1773i −5.27832 29.9349i
23.1 −1.87939 0.684040i −1.54081 8.73839i 3.06418 + 2.57115i −15.3487 + 12.8791i −3.08163 + 17.4768i 4.71270 8.16264i −4.00000 6.92820i −48.6136 + 17.6939i 37.6558 13.7056i
23.2 −1.87939 0.684040i 0.0408138 + 0.231467i 3.06418 + 2.57115i 8.45426 7.09396i 0.0816277 0.462933i 9.26682 16.0506i −4.00000 6.92820i 25.3198 9.21565i −20.7414 + 7.54924i
25.1 1.53209 1.28558i −6.18284 2.25037i 0.694593 3.93923i −1.97089 11.1775i −12.3657 + 4.50074i 4.35993 7.55162i −4.00000 6.92820i 12.4801 + 10.4721i −17.3890 14.5911i
25.2 1.53209 1.28558i 4.68284 + 1.70441i 0.694593 3.93923i 0.408053 + 2.31419i 9.36568 3.40883i −1.42158 + 2.46225i −4.00000 6.92820i −1.65925 1.39227i 3.60023 + 3.02095i
35.1 1.53209 + 1.28558i −6.18284 + 2.25037i 0.694593 + 3.93923i −1.97089 + 11.1775i −12.3657 4.50074i 4.35993 + 7.55162i −4.00000 + 6.92820i 12.4801 10.4721i −17.3890 + 14.5911i
35.2 1.53209 + 1.28558i 4.68284 1.70441i 0.694593 + 3.93923i 0.408053 2.31419i 9.36568 + 3.40883i −1.42158 2.46225i −4.00000 + 6.92820i −1.65925 + 1.39227i 3.60023 3.02095i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 35.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.4.e.a 12
19.e even 9 1 inner 38.4.e.a 12
19.e even 9 1 722.4.a.p 6
19.f odd 18 1 722.4.a.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.4.e.a 12 1.a even 1 1 trivial
38.4.e.a 12 19.e even 9 1 inner
722.4.a.o 6 19.f odd 18 1
722.4.a.p 6 19.e even 9 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{12} + \cdots\) acting on \(S_{4}^{\mathrm{new}}(38, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 64 + 8 T^{3} + T^{6} )^{2} \)
$3$ \( 2289169 - 3812760 T + 41991777 T^{2} - 7640667 T^{3} - 1524069 T^{4} + 455373 T^{5} + 104059 T^{6} - 12789 T^{7} - 3078 T^{8} + 18 T^{9} + 54 T^{10} + 9 T^{11} + T^{12} \)
$5$ \( 308668025241 + 47026984455 T^{2} + 8325351315 T^{3} - 310013082 T^{4} - 52730757 T^{5} + 7680096 T^{6} - 387828 T^{7} + 86184 T^{8} - 3807 T^{9} - 171 T^{10} + T^{12} \)
$7$ \( 6147971281 + 4832033034 T + 3568652778 T^{2} + 664168338 T^{3} + 190779828 T^{4} - 19945329 T^{5} + 7780561 T^{6} - 499224 T^{7} + 78153 T^{8} - 4032 T^{9} + 543 T^{10} - 21 T^{11} + T^{12} \)
$11$ \( 55852694640072009 + 18946674089939034 T + 5342969387212434 T^{2} + 394241314725342 T^{3} + 26568941456988 T^{4} + 448724166057 T^{5} + 23002625845 T^{6} + 242956320 T^{7} + 15152733 T^{8} + 72412 T^{9} + 4467 T^{10} + 9 T^{11} + T^{12} \)
$13$ \( 2526622400339361 + 893895298905411 T + 125510637696768 T^{2} - 5805332499315 T^{3} - 94113959409 T^{4} + 23286242937 T^{5} - 691452707 T^{6} - 15643335 T^{7} + 3268521 T^{8} - 151168 T^{9} + 3093 T^{10} - 39 T^{11} + T^{12} \)
$17$ \( 41291236350884987289 + 8053507369061103897 T + 322348062584234556 T^{2} - 14736949267107501 T^{3} + 227525551080489 T^{4} - 19314933698529 T^{5} + 430615925533 T^{6} + 3888127239 T^{7} + 89111013 T^{8} - 202922 T^{9} + 6573 T^{10} - 69 T^{11} + T^{12} \)
$19$ \( \)\(10\!\cdots\!41\)\( + \)\(70\!\cdots\!38\)\( T + \)\(26\!\cdots\!09\)\( T^{2} + 6977564182816810667 T^{3} + 140887266091556787 T^{4} + 2279655633148929 T^{5} + 30289255560054 T^{6} + 332359765731 T^{7} + 2994678027 T^{8} + 21623273 T^{9} + 119769 T^{10} + 462 T^{11} + T^{12} \)
$23$ \( 1661445125170242624 + 8250617240307544032 T + 17481514318653692160 T^{2} + 369180959621191776 T^{3} + 15109247764032948 T^{4} + 403274909170962 T^{5} + 4630079925055 T^{6} + 19761003645 T^{7} - 50281050 T^{8} - 2540393 T^{9} - 9393 T^{10} + 66 T^{11} + T^{12} \)
$29$ \( \)\(42\!\cdots\!49\)\( + \)\(62\!\cdots\!19\)\( T + \)\(52\!\cdots\!73\)\( T^{2} + 19490166915390314163 T^{3} + 20088314461740996 T^{4} - 3679914246957738 T^{5} + 51931558923381 T^{6} + 287360014986 T^{7} + 363014820 T^{8} - 15111543 T^{9} + 36549 T^{10} - 159 T^{11} + T^{12} \)
$31$ \( 12864556391487985809 + 2905365643838412561 T + 2825290834482672945 T^{2} - 421369154701038126 T^{3} + 373161834393040251 T^{4} + 5631942481020828 T^{5} + 145104336346555 T^{6} - 765699417285 T^{7} + 8039906460 T^{8} - 12679630 T^{9} + 94386 T^{10} - 72 T^{11} + T^{12} \)
$37$ \( ( -20292669795592 - 333342861012 T + 873439542 T^{2} + 27776061 T^{3} - 5829 T^{4} - 558 T^{5} + T^{6} )^{2} \)
$41$ \( \)\(38\!\cdots\!69\)\( - \)\(35\!\cdots\!26\)\( T + \)\(10\!\cdots\!88\)\( T^{2} - \)\(26\!\cdots\!44\)\( T^{3} - 34158094410019986 T^{4} + 22597082878313673 T^{5} + 346102292661616 T^{6} - 1029082759782 T^{7} - 1462805700 T^{8} - 5523470 T^{9} + 44007 T^{10} - 147 T^{11} + T^{12} \)
$43$ \( \)\(50\!\cdots\!21\)\( + \)\(79\!\cdots\!50\)\( T + \)\(73\!\cdots\!78\)\( T^{2} - \)\(25\!\cdots\!58\)\( T^{3} - \)\(47\!\cdots\!02\)\( T^{4} - 329351791996754085 T^{5} + 9563708705642044 T^{6} + 7534924386000 T^{7} + 9169647846 T^{8} - 125186686 T^{9} - 100119 T^{10} + 117 T^{11} + T^{12} \)
$47$ \( \)\(11\!\cdots\!81\)\( - \)\(14\!\cdots\!69\)\( T + \)\(60\!\cdots\!38\)\( T^{2} - \)\(74\!\cdots\!09\)\( T^{3} + \)\(37\!\cdots\!53\)\( T^{4} - 9129921438809088855 T^{5} + 28138906880851573 T^{6} - 23382222137127 T^{7} + 98529797043 T^{8} - 165648734 T^{9} + 538857 T^{10} - 783 T^{11} + T^{12} \)
$53$ \( \)\(10\!\cdots\!69\)\( - \)\(12\!\cdots\!48\)\( T + \)\(15\!\cdots\!18\)\( T^{2} + \)\(13\!\cdots\!48\)\( T^{3} + 94602386667122435106 T^{4} + 1279825787527695477 T^{5} + 12557540430188128 T^{6} + 3760730462118 T^{7} - 73248937122 T^{8} - 60388354 T^{9} + 105357 T^{10} + 249 T^{11} + T^{12} \)
$59$ \( \)\(36\!\cdots\!09\)\( + \)\(38\!\cdots\!49\)\( T + \)\(24\!\cdots\!24\)\( T^{2} + \)\(12\!\cdots\!54\)\( T^{3} + \)\(52\!\cdots\!46\)\( T^{4} + \)\(16\!\cdots\!78\)\( T^{5} + 4011137221960166293 T^{6} + 7461817063521066 T^{7} + 10662945482052 T^{8} + 11434548754 T^{9} + 8725923 T^{10} + 4248 T^{11} + T^{12} \)
$61$ \( \)\(28\!\cdots\!49\)\( - \)\(91\!\cdots\!75\)\( T + \)\(11\!\cdots\!36\)\( T^{2} - \)\(59\!\cdots\!52\)\( T^{3} + \)\(14\!\cdots\!90\)\( T^{4} - \)\(21\!\cdots\!90\)\( T^{5} + 316488210252698001 T^{6} - 644105512496790 T^{7} + 1653282567918 T^{8} - 3347236136 T^{9} + 4298859 T^{10} - 3114 T^{11} + T^{12} \)
$67$ \( \)\(46\!\cdots\!24\)\( - \)\(11\!\cdots\!04\)\( T + \)\(14\!\cdots\!40\)\( T^{2} - \)\(10\!\cdots\!08\)\( T^{3} + \)\(57\!\cdots\!76\)\( T^{4} - \)\(25\!\cdots\!98\)\( T^{5} + 861301773618169759 T^{6} - 1973627314411971 T^{7} + 3215120967474 T^{8} - 4149125071 T^{9} + 4343541 T^{10} - 3060 T^{11} + T^{12} \)
$71$ \( \)\(82\!\cdots\!04\)\( - \)\(96\!\cdots\!52\)\( T + \)\(55\!\cdots\!00\)\( T^{2} - \)\(22\!\cdots\!64\)\( T^{3} + \)\(60\!\cdots\!80\)\( T^{4} - 94304054831460753942 T^{5} + 139493818956164347 T^{6} - 285375563530917 T^{7} + 532267549746 T^{8} - 791604703 T^{9} + 1303347 T^{10} - 1686 T^{11} + T^{12} \)
$73$ \( \)\(20\!\cdots\!64\)\( - \)\(30\!\cdots\!12\)\( T + \)\(19\!\cdots\!44\)\( T^{2} - \)\(16\!\cdots\!16\)\( T^{3} + \)\(89\!\cdots\!32\)\( T^{4} - 39946015265777682708 T^{5} + 71359192068322645 T^{6} - 247928106864687 T^{7} + 762333081576 T^{8} - 1123503723 T^{9} + 1342599 T^{10} - 1626 T^{11} + T^{12} \)
$79$ \( \)\(63\!\cdots\!89\)\( + \)\(60\!\cdots\!25\)\( T + \)\(27\!\cdots\!13\)\( T^{2} + \)\(98\!\cdots\!33\)\( T^{3} + \)\(32\!\cdots\!12\)\( T^{4} + 64638450155885579430 T^{5} + 105670159148243629 T^{6} + 109416411202242 T^{7} + 13156632780 T^{8} - 392593905 T^{9} - 352623 T^{10} + 327 T^{11} + T^{12} \)
$83$ \( \)\(42\!\cdots\!49\)\( - \)\(32\!\cdots\!88\)\( T + \)\(30\!\cdots\!94\)\( T^{2} - \)\(59\!\cdots\!46\)\( T^{3} + \)\(51\!\cdots\!36\)\( T^{4} - \)\(14\!\cdots\!33\)\( T^{5} + 526141730677629979 T^{6} - 731559168841452 T^{7} + 1252988383671 T^{8} - 958146838 T^{9} + 1520553 T^{10} - 927 T^{11} + T^{12} \)
$89$ \( \)\(80\!\cdots\!69\)\( + \)\(70\!\cdots\!50\)\( T + \)\(61\!\cdots\!51\)\( T^{2} + \)\(31\!\cdots\!91\)\( T^{3} + \)\(92\!\cdots\!34\)\( T^{4} + \)\(20\!\cdots\!77\)\( T^{5} + 35164025888988214738 T^{6} + 43958862958376796 T^{7} + 43933183937700 T^{8} + 34377047389 T^{9} + 18939837 T^{10} + 6366 T^{11} + T^{12} \)
$97$ \( \)\(11\!\cdots\!89\)\( + \)\(11\!\cdots\!63\)\( T + \)\(58\!\cdots\!44\)\( T^{2} + \)\(15\!\cdots\!68\)\( T^{3} + \)\(27\!\cdots\!04\)\( T^{4} + \)\(35\!\cdots\!94\)\( T^{5} + \)\(35\!\cdots\!39\)\( T^{6} + 274537730415549132 T^{7} + 167528412323352 T^{8} + 82492823608 T^{9} + 31462761 T^{10} + 8052 T^{11} + T^{12} \)
show more
show less