Newspace parameters
Level: | \( N \) | \(=\) | \( 38 = 2 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 38.c (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.24207258022\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) |
Defining polynomial: |
\( x^{6} - x^{5} + 64x^{4} + 33x^{3} + 3984x^{2} - 945x + 225 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - x^{5} + 64x^{4} + 33x^{3} + 3984x^{2} - 945x + 225 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{5} - 64\nu^{4} + 4096\nu^{3} - 3984\nu^{2} + 945\nu - 60480 ) / 254031 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 21\nu^{5} - 1344\nu^{4} + 1339\nu^{3} - 83664\nu^{2} + 19845\nu - 3641036 ) / 169354 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 1344\nu^{5} - 1339\nu^{4} + 85696\nu^{3} + 64832\nu^{2} + 5334576\nu + 4800 ) / 1270155 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 57792\nu^{5} - 57577\nu^{4} + 3684928\nu^{3} + 1517621\nu^{2} + 229386768\nu - 54410265 ) / 2540310 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -2\beta_{5} + 43\beta_{4} - 43 \)
|
\(\nu^{3}\) | \(=\) |
\( -2\beta_{3} + 63\beta_{2} - 28 \)
|
\(\nu^{4}\) | \(=\) |
\( 128\beta_{5} - 2737\beta_{4} - 128\beta_{3} - 48\beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( 224\beta_{5} - 3856\beta_{4} - 4017\beta_{2} - 4017\beta _1 + 3856 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).
\(n\) | \(21\) |
\(\chi(n)\) | \(-\beta_{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
1.00000 | + | 1.73205i | −4.78825 | − | 8.29349i | −2.00000 | + | 3.46410i | −7.88908 | − | 13.6643i | 9.57650 | − | 16.5870i | 16.5765 | −8.00000 | −32.3546 | + | 56.0399i | 15.7782 | − | 27.3286i | ||||||||||||||||||||||
7.2 | 1.00000 | + | 1.73205i | −0.881294 | − | 1.52645i | −2.00000 | + | 3.46410i | 10.3546 | + | 17.9347i | 1.76259 | − | 3.05289i | 8.76259 | −8.00000 | 11.9466 | − | 20.6922i | −20.7092 | + | 35.8694i | |||||||||||||||||||||||
7.3 | 1.00000 | + | 1.73205i | 3.16954 | + | 5.48981i | −2.00000 | + | 3.46410i | −2.96554 | − | 5.13646i | −6.33908 | + | 10.9796i | 0.660916 | −8.00000 | −6.59199 | + | 11.4177i | 5.93108 | − | 10.2729i | |||||||||||||||||||||||
11.1 | 1.00000 | − | 1.73205i | −4.78825 | + | 8.29349i | −2.00000 | − | 3.46410i | −7.88908 | + | 13.6643i | 9.57650 | + | 16.5870i | 16.5765 | −8.00000 | −32.3546 | − | 56.0399i | 15.7782 | + | 27.3286i | |||||||||||||||||||||||
11.2 | 1.00000 | − | 1.73205i | −0.881294 | + | 1.52645i | −2.00000 | − | 3.46410i | 10.3546 | − | 17.9347i | 1.76259 | + | 3.05289i | 8.76259 | −8.00000 | 11.9466 | + | 20.6922i | −20.7092 | − | 35.8694i | |||||||||||||||||||||||
11.3 | 1.00000 | − | 1.73205i | 3.16954 | − | 5.48981i | −2.00000 | − | 3.46410i | −2.96554 | + | 5.13646i | −6.33908 | − | 10.9796i | 0.660916 | −8.00000 | −6.59199 | − | 11.4177i | 5.93108 | + | 10.2729i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 38.4.c.c | ✓ | 6 |
3.b | odd | 2 | 1 | 342.4.g.f | 6 | ||
4.b | odd | 2 | 1 | 304.4.i.e | 6 | ||
19.c | even | 3 | 1 | inner | 38.4.c.c | ✓ | 6 |
19.c | even | 3 | 1 | 722.4.a.j | 3 | ||
19.d | odd | 6 | 1 | 722.4.a.k | 3 | ||
57.h | odd | 6 | 1 | 342.4.g.f | 6 | ||
76.g | odd | 6 | 1 | 304.4.i.e | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
38.4.c.c | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
38.4.c.c | ✓ | 6 | 19.c | even | 3 | 1 | inner |
304.4.i.e | 6 | 4.b | odd | 2 | 1 | ||
304.4.i.e | 6 | 76.g | odd | 6 | 1 | ||
342.4.g.f | 6 | 3.b | odd | 2 | 1 | ||
342.4.g.f | 6 | 57.h | odd | 6 | 1 | ||
722.4.a.j | 3 | 19.c | even | 3 | 1 | ||
722.4.a.k | 3 | 19.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{6} + 5T_{3}^{5} + 80T_{3}^{4} - 61T_{3}^{3} + 3560T_{3}^{2} + 5885T_{3} + 11449 \)
acting on \(S_{4}^{\mathrm{new}}(38, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2 T + 4)^{3} \)
$3$
\( T^{6} + 5 T^{5} + 80 T^{4} + \cdots + 11449 \)
$5$
\( T^{6} + T^{5} + 357 T^{4} + \cdots + 3755844 \)
$7$
\( (T^{3} - 26 T^{2} + 162 T - 96)^{2} \)
$11$
\( (T^{3} - 4 T^{2} - 3311 T + 49980)^{2} \)
$13$
\( T^{6} - 129 T^{5} + \cdots + 129322384 \)
$17$
\( T^{6} + 51 T^{5} + \cdots + 11293737984 \)
$19$
\( T^{6} - 40 T^{5} + \cdots + 322687697779 \)
$23$
\( T^{6} - 47 T^{5} + \cdots + 4555440036 \)
$29$
\( T^{6} + 125 T^{5} + \cdots + 5937750562500 \)
$31$
\( (T^{3} + 50 T^{2} - 52150 T + 3809848)^{2} \)
$37$
\( (T^{3} + 188 T^{2} - 658 T - 88004)^{2} \)
$41$
\( T^{6} - 475 T^{5} + \cdots + 81183541856481 \)
$43$
\( T^{6} + \cdots + 259289089231936 \)
$47$
\( T^{6} + 241 T^{5} + \cdots + 25671752892900 \)
$53$
\( T^{6} - 29 T^{5} + \cdots + 10857156800400 \)
$59$
\( T^{6} + 1065 T^{5} + \cdots + 12\!\cdots\!21 \)
$61$
\( T^{6} + \cdots + 356206057990084 \)
$67$
\( T^{6} - 877 T^{5} + \cdots + 964239549849 \)
$71$
\( T^{6} - 2135 T^{5} + \cdots + 68\!\cdots\!16 \)
$73$
\( T^{6} - 667 T^{5} + \cdots + 713681971209 \)
$79$
\( T^{6} - 1671 T^{5} + \cdots + 15\!\cdots\!00 \)
$83$
\( (T^{3} - 588 T^{2} - 848043 T - 162474984)^{2} \)
$89$
\( T^{6} - 693 T^{5} + \cdots + 27\!\cdots\!04 \)
$97$
\( T^{6} + 985 T^{5} + \cdots + 68\!\cdots\!25 \)
show more
show less