Properties

Label 38.4.a.b.1.1
Level $38$
Weight $4$
Character 38.1
Self dual yes
Analytic conductor $2.242$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [38,4,Mod(1,38)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(38, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("38.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 38.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.24207258022\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(7.15207\) of defining polynomial
Character \(\chi\) \(=\) 38.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -6.15207 q^{3} +4.00000 q^{4} +18.3041 q^{5} +12.3041 q^{6} +21.8479 q^{7} -8.00000 q^{8} +10.8479 q^{9} -36.6083 q^{10} -8.30413 q^{11} -24.6083 q^{12} +53.0645 q^{13} -43.6959 q^{14} -112.608 q^{15} +16.0000 q^{16} +74.2810 q^{17} -21.6959 q^{18} -19.0000 q^{19} +73.2165 q^{20} -134.410 q^{21} +16.6083 q^{22} -163.977 q^{23} +49.2165 q^{24} +210.041 q^{25} -106.129 q^{26} +99.3686 q^{27} +87.3917 q^{28} -232.410 q^{29} +225.217 q^{30} +98.4331 q^{31} -32.0000 q^{32} +51.0876 q^{33} -148.562 q^{34} +399.908 q^{35} +43.3917 q^{36} +296.433 q^{37} +38.0000 q^{38} -326.456 q^{39} -146.433 q^{40} -434.912 q^{41} +268.820 q^{42} -171.299 q^{43} -33.2165 q^{44} +198.562 q^{45} +327.954 q^{46} -366.083 q^{47} -98.4331 q^{48} +134.332 q^{49} -420.083 q^{50} -456.982 q^{51} +212.258 q^{52} +138.631 q^{53} -198.737 q^{54} -152.000 q^{55} -174.783 q^{56} +116.889 q^{57} +464.820 q^{58} +572.797 q^{59} -450.433 q^{60} -632.691 q^{61} -196.866 q^{62} +237.005 q^{63} +64.0000 q^{64} +971.299 q^{65} -102.175 q^{66} -183.461 q^{67} +297.124 q^{68} +1008.80 q^{69} -799.815 q^{70} +56.6545 q^{71} -86.7835 q^{72} +68.1521 q^{73} -592.866 q^{74} -1292.19 q^{75} -76.0000 q^{76} -181.428 q^{77} +652.912 q^{78} -332.820 q^{79} +292.866 q^{80} -904.217 q^{81} +869.825 q^{82} +1152.91 q^{83} -537.640 q^{84} +1359.65 q^{85} +342.598 q^{86} +1429.80 q^{87} +66.4331 q^{88} -368.479 q^{89} -397.124 q^{90} +1159.35 q^{91} -655.908 q^{92} -605.567 q^{93} +732.165 q^{94} -347.779 q^{95} +196.866 q^{96} -426.443 q^{97} -268.664 q^{98} -90.0827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + q^{3} + 8 q^{4} + 10 q^{5} - 2 q^{6} + 57 q^{7} - 16 q^{8} + 35 q^{9} - 20 q^{10} + 10 q^{11} + 4 q^{12} + 13 q^{13} - 114 q^{14} - 172 q^{15} + 32 q^{16} - 51 q^{17} - 70 q^{18} - 38 q^{19}+ \cdots + 352 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −6.15207 −1.18397 −0.591983 0.805950i \(-0.701655\pi\)
−0.591983 + 0.805950i \(0.701655\pi\)
\(4\) 4.00000 0.500000
\(5\) 18.3041 1.63717 0.818586 0.574384i \(-0.194758\pi\)
0.818586 + 0.574384i \(0.194758\pi\)
\(6\) 12.3041 0.837190
\(7\) 21.8479 1.17968 0.589839 0.807521i \(-0.299191\pi\)
0.589839 + 0.807521i \(0.299191\pi\)
\(8\) −8.00000 −0.353553
\(9\) 10.8479 0.401775
\(10\) −36.6083 −1.15766
\(11\) −8.30413 −0.227617 −0.113809 0.993503i \(-0.536305\pi\)
−0.113809 + 0.993503i \(0.536305\pi\)
\(12\) −24.6083 −0.591983
\(13\) 53.0645 1.13211 0.566055 0.824367i \(-0.308469\pi\)
0.566055 + 0.824367i \(0.308469\pi\)
\(14\) −43.6959 −0.834158
\(15\) −112.608 −1.93836
\(16\) 16.0000 0.250000
\(17\) 74.2810 1.05975 0.529876 0.848075i \(-0.322238\pi\)
0.529876 + 0.848075i \(0.322238\pi\)
\(18\) −21.6959 −0.284098
\(19\) −19.0000 −0.229416
\(20\) 73.2165 0.818586
\(21\) −134.410 −1.39670
\(22\) 16.6083 0.160950
\(23\) −163.977 −1.48659 −0.743294 0.668964i \(-0.766738\pi\)
−0.743294 + 0.668964i \(0.766738\pi\)
\(24\) 49.2165 0.418595
\(25\) 210.041 1.68033
\(26\) −106.129 −0.800523
\(27\) 99.3686 0.708278
\(28\) 87.3917 0.589839
\(29\) −232.410 −1.48819 −0.744094 0.668075i \(-0.767118\pi\)
−0.744094 + 0.668075i \(0.767118\pi\)
\(30\) 225.217 1.37062
\(31\) 98.4331 0.570294 0.285147 0.958484i \(-0.407958\pi\)
0.285147 + 0.958484i \(0.407958\pi\)
\(32\) −32.0000 −0.176777
\(33\) 51.0876 0.269491
\(34\) −148.562 −0.749358
\(35\) 399.908 1.93133
\(36\) 43.3917 0.200888
\(37\) 296.433 1.31712 0.658558 0.752530i \(-0.271167\pi\)
0.658558 + 0.752530i \(0.271167\pi\)
\(38\) 38.0000 0.162221
\(39\) −326.456 −1.34038
\(40\) −146.433 −0.578828
\(41\) −434.912 −1.65663 −0.828316 0.560261i \(-0.810701\pi\)
−0.828316 + 0.560261i \(0.810701\pi\)
\(42\) 268.820 0.987615
\(43\) −171.299 −0.607509 −0.303755 0.952750i \(-0.598240\pi\)
−0.303755 + 0.952750i \(0.598240\pi\)
\(44\) −33.2165 −0.113809
\(45\) 198.562 0.657775
\(46\) 327.954 1.05118
\(47\) −366.083 −1.13614 −0.568071 0.822980i \(-0.692310\pi\)
−0.568071 + 0.822980i \(0.692310\pi\)
\(48\) −98.4331 −0.295991
\(49\) 134.332 0.391639
\(50\) −420.083 −1.18817
\(51\) −456.982 −1.25471
\(52\) 212.258 0.566055
\(53\) 138.631 0.359292 0.179646 0.983731i \(-0.442505\pi\)
0.179646 + 0.983731i \(0.442505\pi\)
\(54\) −198.737 −0.500828
\(55\) −152.000 −0.372649
\(56\) −174.783 −0.417079
\(57\) 116.889 0.271620
\(58\) 464.820 1.05231
\(59\) 572.797 1.26393 0.631964 0.774997i \(-0.282249\pi\)
0.631964 + 0.774997i \(0.282249\pi\)
\(60\) −450.433 −0.969178
\(61\) −632.691 −1.32800 −0.663998 0.747734i \(-0.731142\pi\)
−0.663998 + 0.747734i \(0.731142\pi\)
\(62\) −196.866 −0.403258
\(63\) 237.005 0.473965
\(64\) 64.0000 0.125000
\(65\) 971.299 1.85346
\(66\) −102.175 −0.190559
\(67\) −183.461 −0.334527 −0.167264 0.985912i \(-0.553493\pi\)
−0.167264 + 0.985912i \(0.553493\pi\)
\(68\) 297.124 0.529876
\(69\) 1008.80 1.76007
\(70\) −799.815 −1.36566
\(71\) 56.6545 0.0946994 0.0473497 0.998878i \(-0.484922\pi\)
0.0473497 + 0.998878i \(0.484922\pi\)
\(72\) −86.7835 −0.142049
\(73\) 68.1521 0.109268 0.0546342 0.998506i \(-0.482601\pi\)
0.0546342 + 0.998506i \(0.482601\pi\)
\(74\) −592.866 −0.931342
\(75\) −1292.19 −1.98945
\(76\) −76.0000 −0.114708
\(77\) −181.428 −0.268515
\(78\) 652.912 0.947792
\(79\) −332.820 −0.473989 −0.236995 0.971511i \(-0.576162\pi\)
−0.236995 + 0.971511i \(0.576162\pi\)
\(80\) 292.866 0.409293
\(81\) −904.217 −1.24035
\(82\) 869.825 1.17142
\(83\) 1152.91 1.52468 0.762341 0.647176i \(-0.224050\pi\)
0.762341 + 0.647176i \(0.224050\pi\)
\(84\) −537.640 −0.698349
\(85\) 1359.65 1.73500
\(86\) 342.598 0.429574
\(87\) 1429.80 1.76196
\(88\) 66.4331 0.0804749
\(89\) −368.479 −0.438862 −0.219431 0.975628i \(-0.570420\pi\)
−0.219431 + 0.975628i \(0.570420\pi\)
\(90\) −397.124 −0.465117
\(91\) 1159.35 1.33553
\(92\) −655.908 −0.743294
\(93\) −605.567 −0.675208
\(94\) 732.165 0.803373
\(95\) −347.779 −0.375593
\(96\) 196.866 0.209298
\(97\) −426.443 −0.446378 −0.223189 0.974775i \(-0.571647\pi\)
−0.223189 + 0.974775i \(0.571647\pi\)
\(98\) −268.664 −0.276931
\(99\) −90.0827 −0.0914510
\(100\) 840.165 0.840165
\(101\) −403.124 −0.397152 −0.198576 0.980086i \(-0.563632\pi\)
−0.198576 + 0.980086i \(0.563632\pi\)
\(102\) 913.964 0.887214
\(103\) −1135.68 −1.08642 −0.543211 0.839596i \(-0.682792\pi\)
−0.543211 + 0.839596i \(0.682792\pi\)
\(104\) −424.516 −0.400262
\(105\) −2460.26 −2.28663
\(106\) −277.263 −0.254058
\(107\) −380.096 −0.343414 −0.171707 0.985148i \(-0.554928\pi\)
−0.171707 + 0.985148i \(0.554928\pi\)
\(108\) 397.474 0.354139
\(109\) 1180.74 1.03756 0.518782 0.854907i \(-0.326386\pi\)
0.518782 + 0.854907i \(0.326386\pi\)
\(110\) 304.000 0.263502
\(111\) −1823.68 −1.55942
\(112\) 349.567 0.294919
\(113\) −1132.51 −0.942807 −0.471404 0.881918i \(-0.656252\pi\)
−0.471404 + 0.881918i \(0.656252\pi\)
\(114\) −233.779 −0.192065
\(115\) −3001.45 −2.43380
\(116\) −929.640 −0.744094
\(117\) 575.640 0.454854
\(118\) −1145.59 −0.893733
\(119\) 1622.89 1.25017
\(120\) 900.866 0.685312
\(121\) −1262.04 −0.948190
\(122\) 1265.38 0.939035
\(123\) 2675.61 1.96140
\(124\) 393.732 0.285147
\(125\) 1556.61 1.11382
\(126\) −474.010 −0.335144
\(127\) −40.0462 −0.0279806 −0.0139903 0.999902i \(-0.504453\pi\)
−0.0139903 + 0.999902i \(0.504453\pi\)
\(128\) −128.000 −0.0883883
\(129\) 1053.84 0.719270
\(130\) −1942.60 −1.31059
\(131\) −177.898 −0.118649 −0.0593244 0.998239i \(-0.518895\pi\)
−0.0593244 + 0.998239i \(0.518895\pi\)
\(132\) 204.350 0.134746
\(133\) −415.111 −0.270637
\(134\) 366.922 0.236547
\(135\) 1818.86 1.15957
\(136\) −594.248 −0.374679
\(137\) −24.7603 −0.0154410 −0.00772050 0.999970i \(-0.502458\pi\)
−0.00772050 + 0.999970i \(0.502458\pi\)
\(138\) −2017.59 −1.24456
\(139\) 2867.21 1.74959 0.874796 0.484491i \(-0.160995\pi\)
0.874796 + 0.484491i \(0.160995\pi\)
\(140\) 1599.63 0.965667
\(141\) 2252.17 1.34515
\(142\) −113.309 −0.0669626
\(143\) −440.655 −0.257688
\(144\) 173.567 0.100444
\(145\) −4254.06 −2.43642
\(146\) −136.304 −0.0772645
\(147\) −826.421 −0.463687
\(148\) 1185.73 0.658558
\(149\) 1949.35 1.07179 0.535895 0.844285i \(-0.319974\pi\)
0.535895 + 0.844285i \(0.319974\pi\)
\(150\) 2584.38 1.40676
\(151\) 1120.99 0.604136 0.302068 0.953286i \(-0.402323\pi\)
0.302068 + 0.953286i \(0.402323\pi\)
\(152\) 152.000 0.0811107
\(153\) 805.795 0.425782
\(154\) 362.856 0.189869
\(155\) 1801.73 0.933669
\(156\) −1305.82 −0.670190
\(157\) −2360.23 −1.19979 −0.599894 0.800079i \(-0.704791\pi\)
−0.599894 + 0.800079i \(0.704791\pi\)
\(158\) 665.640 0.335161
\(159\) −852.870 −0.425390
\(160\) −585.732 −0.289414
\(161\) −3582.56 −1.75370
\(162\) 1808.43 0.877061
\(163\) 861.825 0.414131 0.207065 0.978327i \(-0.433609\pi\)
0.207065 + 0.978327i \(0.433609\pi\)
\(164\) −1739.65 −0.828316
\(165\) 935.114 0.441203
\(166\) −2305.82 −1.07811
\(167\) 1686.51 0.781472 0.390736 0.920503i \(-0.372221\pi\)
0.390736 + 0.920503i \(0.372221\pi\)
\(168\) 1075.28 0.493807
\(169\) 618.838 0.281674
\(170\) −2719.30 −1.22683
\(171\) −206.111 −0.0921736
\(172\) −685.197 −0.303755
\(173\) −3191.44 −1.40255 −0.701273 0.712893i \(-0.747384\pi\)
−0.701273 + 0.712893i \(0.747384\pi\)
\(174\) −2859.60 −1.24590
\(175\) 4588.97 1.98225
\(176\) −132.866 −0.0569043
\(177\) −3523.88 −1.49645
\(178\) 736.959 0.310322
\(179\) −1229.49 −0.513389 −0.256695 0.966493i \(-0.582633\pi\)
−0.256695 + 0.966493i \(0.582633\pi\)
\(180\) 794.248 0.328888
\(181\) −3108.95 −1.27672 −0.638360 0.769738i \(-0.720387\pi\)
−0.638360 + 0.769738i \(0.720387\pi\)
\(182\) −2318.70 −0.944359
\(183\) 3892.36 1.57230
\(184\) 1311.82 0.525589
\(185\) 5425.95 2.15635
\(186\) 1211.13 0.477444
\(187\) −616.840 −0.241218
\(188\) −1464.33 −0.568071
\(189\) 2171.00 0.835539
\(190\) 695.557 0.265584
\(191\) −1415.48 −0.536233 −0.268117 0.963386i \(-0.586401\pi\)
−0.268117 + 0.963386i \(0.586401\pi\)
\(192\) −393.732 −0.147996
\(193\) 1443.40 0.538333 0.269167 0.963094i \(-0.413252\pi\)
0.269167 + 0.963094i \(0.413252\pi\)
\(194\) 852.886 0.315637
\(195\) −5975.50 −2.19443
\(196\) 537.329 0.195819
\(197\) 5271.92 1.90664 0.953322 0.301954i \(-0.0976389\pi\)
0.953322 + 0.301954i \(0.0976389\pi\)
\(198\) 180.165 0.0646656
\(199\) −2510.19 −0.894183 −0.447091 0.894488i \(-0.647540\pi\)
−0.447091 + 0.894488i \(0.647540\pi\)
\(200\) −1680.33 −0.594087
\(201\) 1128.67 0.396069
\(202\) 806.248 0.280829
\(203\) −5077.68 −1.75558
\(204\) −1827.93 −0.627355
\(205\) −7960.70 −2.71219
\(206\) 2271.35 0.768217
\(207\) −1778.81 −0.597275
\(208\) 849.032 0.283028
\(209\) 157.779 0.0522190
\(210\) 4920.52 1.61689
\(211\) 1854.44 0.605046 0.302523 0.953142i \(-0.402171\pi\)
0.302523 + 0.953142i \(0.402171\pi\)
\(212\) 554.526 0.179646
\(213\) −348.542 −0.112121
\(214\) 760.192 0.242830
\(215\) −3135.48 −0.994597
\(216\) −794.949 −0.250414
\(217\) 2150.56 0.672763
\(218\) −2361.48 −0.733668
\(219\) −419.276 −0.129370
\(220\) −608.000 −0.186324
\(221\) 3941.68 1.19976
\(222\) 3647.35 1.10268
\(223\) 1880.34 0.564649 0.282325 0.959319i \(-0.408895\pi\)
0.282325 + 0.959319i \(0.408895\pi\)
\(224\) −699.134 −0.208539
\(225\) 2278.51 0.675115
\(226\) 2265.01 0.666665
\(227\) 1799.23 0.526075 0.263038 0.964786i \(-0.415276\pi\)
0.263038 + 0.964786i \(0.415276\pi\)
\(228\) 467.557 0.135810
\(229\) 4835.34 1.39532 0.697660 0.716429i \(-0.254224\pi\)
0.697660 + 0.716429i \(0.254224\pi\)
\(230\) 6002.91 1.72096
\(231\) 1116.16 0.317913
\(232\) 1859.28 0.526154
\(233\) 865.299 0.243295 0.121647 0.992573i \(-0.461182\pi\)
0.121647 + 0.992573i \(0.461182\pi\)
\(234\) −1151.28 −0.321630
\(235\) −6700.83 −1.86006
\(236\) 2291.19 0.631964
\(237\) 2047.53 0.561187
\(238\) −3245.77 −0.884001
\(239\) −4764.27 −1.28943 −0.644717 0.764421i \(-0.723025\pi\)
−0.644717 + 0.764421i \(0.723025\pi\)
\(240\) −1801.73 −0.484589
\(241\) 615.336 0.164470 0.0822350 0.996613i \(-0.473794\pi\)
0.0822350 + 0.996613i \(0.473794\pi\)
\(242\) 2524.08 0.670472
\(243\) 2879.85 0.760257
\(244\) −2530.76 −0.663998
\(245\) 2458.83 0.641180
\(246\) −5351.22 −1.38692
\(247\) −1008.22 −0.259724
\(248\) −787.465 −0.201629
\(249\) −7092.79 −1.80517
\(250\) −3113.22 −0.787588
\(251\) −1658.08 −0.416959 −0.208480 0.978027i \(-0.566852\pi\)
−0.208480 + 0.978027i \(0.566852\pi\)
\(252\) 948.020 0.236983
\(253\) 1361.69 0.338373
\(254\) 80.0925 0.0197852
\(255\) −8364.66 −2.05418
\(256\) 256.000 0.0625000
\(257\) 3446.12 0.836432 0.418216 0.908348i \(-0.362656\pi\)
0.418216 + 0.908348i \(0.362656\pi\)
\(258\) −2107.69 −0.508601
\(259\) 6476.45 1.55377
\(260\) 3885.20 0.926730
\(261\) −2521.17 −0.597917
\(262\) 355.795 0.0838974
\(263\) 5755.80 1.34950 0.674748 0.738048i \(-0.264252\pi\)
0.674748 + 0.738048i \(0.264252\pi\)
\(264\) −408.701 −0.0952795
\(265\) 2537.53 0.588223
\(266\) 830.221 0.191369
\(267\) 2266.91 0.519598
\(268\) −733.844 −0.167264
\(269\) 2257.28 0.511631 0.255816 0.966726i \(-0.417656\pi\)
0.255816 + 0.966726i \(0.417656\pi\)
\(270\) −3637.71 −0.819941
\(271\) 7012.13 1.57180 0.785898 0.618357i \(-0.212201\pi\)
0.785898 + 0.618357i \(0.212201\pi\)
\(272\) 1188.50 0.264938
\(273\) −7132.39 −1.58122
\(274\) 49.5207 0.0109184
\(275\) −1744.21 −0.382472
\(276\) 4035.19 0.880035
\(277\) −372.810 −0.0808664 −0.0404332 0.999182i \(-0.512874\pi\)
−0.0404332 + 0.999182i \(0.512874\pi\)
\(278\) −5734.41 −1.23715
\(279\) 1067.80 0.229130
\(280\) −3199.26 −0.682830
\(281\) −1888.96 −0.401017 −0.200508 0.979692i \(-0.564259\pi\)
−0.200508 + 0.979692i \(0.564259\pi\)
\(282\) −4504.33 −0.951167
\(283\) −3884.43 −0.815920 −0.407960 0.913000i \(-0.633760\pi\)
−0.407960 + 0.913000i \(0.633760\pi\)
\(284\) 226.618 0.0473497
\(285\) 2139.56 0.444689
\(286\) 881.309 0.182213
\(287\) −9501.94 −1.95429
\(288\) −347.134 −0.0710245
\(289\) 604.668 0.123075
\(290\) 8508.13 1.72281
\(291\) 2623.51 0.528497
\(292\) 272.608 0.0546342
\(293\) −1273.01 −0.253823 −0.126911 0.991914i \(-0.540506\pi\)
−0.126911 + 0.991914i \(0.540506\pi\)
\(294\) 1652.84 0.327876
\(295\) 10484.5 2.06927
\(296\) −2371.46 −0.465671
\(297\) −825.170 −0.161216
\(298\) −3898.69 −0.757869
\(299\) −8701.35 −1.68298
\(300\) −5168.75 −0.994727
\(301\) −3742.53 −0.716665
\(302\) −2241.97 −0.427188
\(303\) 2480.05 0.470214
\(304\) −304.000 −0.0573539
\(305\) −11580.9 −2.17416
\(306\) −1611.59 −0.301074
\(307\) 819.153 0.152285 0.0761426 0.997097i \(-0.475740\pi\)
0.0761426 + 0.997097i \(0.475740\pi\)
\(308\) −725.713 −0.134258
\(309\) 6986.76 1.28629
\(310\) −3603.46 −0.660203
\(311\) 2104.67 0.383745 0.191872 0.981420i \(-0.438544\pi\)
0.191872 + 0.981420i \(0.438544\pi\)
\(312\) 2611.65 0.473896
\(313\) 2395.47 0.432587 0.216293 0.976328i \(-0.430603\pi\)
0.216293 + 0.976328i \(0.430603\pi\)
\(314\) 4720.46 0.848378
\(315\) 4338.17 0.775962
\(316\) −1331.28 −0.236995
\(317\) 2158.23 0.382393 0.191196 0.981552i \(-0.438763\pi\)
0.191196 + 0.981552i \(0.438763\pi\)
\(318\) 1705.74 0.300796
\(319\) 1929.96 0.338737
\(320\) 1171.46 0.204646
\(321\) 2338.38 0.406590
\(322\) 7165.11 1.24005
\(323\) −1411.34 −0.243124
\(324\) −3616.87 −0.620176
\(325\) 11145.7 1.90232
\(326\) −1723.65 −0.292835
\(327\) −7264.00 −1.22844
\(328\) 3479.30 0.585708
\(329\) −7998.15 −1.34028
\(330\) −1870.23 −0.311978
\(331\) 517.782 0.0859815 0.0429908 0.999075i \(-0.486311\pi\)
0.0429908 + 0.999075i \(0.486311\pi\)
\(332\) 4611.65 0.762341
\(333\) 3215.69 0.529185
\(334\) −3373.01 −0.552584
\(335\) −3358.10 −0.547679
\(336\) −2150.56 −0.349174
\(337\) 6503.63 1.05126 0.525631 0.850713i \(-0.323829\pi\)
0.525631 + 0.850713i \(0.323829\pi\)
\(338\) −1237.68 −0.199174
\(339\) 6967.25 1.11625
\(340\) 5438.60 0.867498
\(341\) −817.402 −0.129809
\(342\) 412.221 0.0651766
\(343\) −4558.96 −0.717670
\(344\) 1370.39 0.214787
\(345\) 18465.2 2.88154
\(346\) 6382.87 0.991749
\(347\) 6058.33 0.937257 0.468628 0.883395i \(-0.344748\pi\)
0.468628 + 0.883395i \(0.344748\pi\)
\(348\) 5719.21 0.880982
\(349\) −10955.1 −1.68027 −0.840135 0.542377i \(-0.817524\pi\)
−0.840135 + 0.542377i \(0.817524\pi\)
\(350\) −9177.94 −1.40166
\(351\) 5272.94 0.801849
\(352\) 265.732 0.0402374
\(353\) −1806.43 −0.272369 −0.136185 0.990683i \(-0.543484\pi\)
−0.136185 + 0.990683i \(0.543484\pi\)
\(354\) 7047.77 1.05815
\(355\) 1037.01 0.155039
\(356\) −1473.92 −0.219431
\(357\) −9984.11 −1.48015
\(358\) 2458.99 0.363021
\(359\) −7964.50 −1.17089 −0.585446 0.810711i \(-0.699081\pi\)
−0.585446 + 0.810711i \(0.699081\pi\)
\(360\) −1588.50 −0.232559
\(361\) 361.000 0.0526316
\(362\) 6217.90 0.902777
\(363\) 7764.16 1.12263
\(364\) 4637.40 0.667763
\(365\) 1247.46 0.178891
\(366\) −7784.71 −1.11179
\(367\) −7311.58 −1.03995 −0.519974 0.854182i \(-0.674059\pi\)
−0.519974 + 0.854182i \(0.674059\pi\)
\(368\) −2623.63 −0.371647
\(369\) −4717.90 −0.665594
\(370\) −10851.9 −1.52477
\(371\) 3028.81 0.423849
\(372\) −2422.27 −0.337604
\(373\) 5518.38 0.766035 0.383017 0.923741i \(-0.374885\pi\)
0.383017 + 0.923741i \(0.374885\pi\)
\(374\) 1233.68 0.170567
\(375\) −9576.36 −1.31872
\(376\) 2928.66 0.401687
\(377\) −12332.7 −1.68479
\(378\) −4342.00 −0.590815
\(379\) −1139.97 −0.154502 −0.0772512 0.997012i \(-0.524614\pi\)
−0.0772512 + 0.997012i \(0.524614\pi\)
\(380\) −1391.11 −0.187796
\(381\) 246.367 0.0331280
\(382\) 2830.96 0.379174
\(383\) −10409.5 −1.38877 −0.694385 0.719604i \(-0.744323\pi\)
−0.694385 + 0.719604i \(0.744323\pi\)
\(384\) 787.465 0.104649
\(385\) −3320.89 −0.439605
\(386\) −2886.80 −0.380659
\(387\) −1858.24 −0.244082
\(388\) −1705.77 −0.223189
\(389\) 10471.2 1.36481 0.682404 0.730975i \(-0.260934\pi\)
0.682404 + 0.730975i \(0.260934\pi\)
\(390\) 11951.0 1.55170
\(391\) −12180.4 −1.57542
\(392\) −1074.66 −0.138465
\(393\) 1094.44 0.140476
\(394\) −10543.8 −1.34820
\(395\) −6091.98 −0.776002
\(396\) −360.331 −0.0457255
\(397\) −9588.68 −1.21220 −0.606098 0.795390i \(-0.707266\pi\)
−0.606098 + 0.795390i \(0.707266\pi\)
\(398\) 5020.37 0.632283
\(399\) 2553.79 0.320424
\(400\) 3360.66 0.420083
\(401\) 8549.30 1.06467 0.532334 0.846535i \(-0.321315\pi\)
0.532334 + 0.846535i \(0.321315\pi\)
\(402\) −2257.33 −0.280063
\(403\) 5223.30 0.645635
\(404\) −1612.50 −0.198576
\(405\) −16550.9 −2.03067
\(406\) 10155.4 1.24138
\(407\) −2461.62 −0.299798
\(408\) 3655.85 0.443607
\(409\) 266.960 0.0322746 0.0161373 0.999870i \(-0.494863\pi\)
0.0161373 + 0.999870i \(0.494863\pi\)
\(410\) 15921.4 1.91781
\(411\) 152.327 0.0182816
\(412\) −4542.71 −0.543211
\(413\) 12514.4 1.49103
\(414\) 3557.62 0.422337
\(415\) 21103.1 2.49617
\(416\) −1698.06 −0.200131
\(417\) −17639.2 −2.07146
\(418\) −315.557 −0.0369244
\(419\) 8643.83 1.00783 0.503913 0.863755i \(-0.331893\pi\)
0.503913 + 0.863755i \(0.331893\pi\)
\(420\) −9841.03 −1.14332
\(421\) −16801.3 −1.94500 −0.972499 0.232905i \(-0.925177\pi\)
−0.972499 + 0.232905i \(0.925177\pi\)
\(422\) −3708.87 −0.427832
\(423\) −3971.24 −0.456474
\(424\) −1109.05 −0.127029
\(425\) 15602.1 1.78073
\(426\) 697.085 0.0792814
\(427\) −13823.0 −1.56661
\(428\) −1520.38 −0.171707
\(429\) 2710.94 0.305094
\(430\) 6270.97 0.703286
\(431\) 12053.5 1.34710 0.673548 0.739144i \(-0.264769\pi\)
0.673548 + 0.739144i \(0.264769\pi\)
\(432\) 1589.90 0.177069
\(433\) 9034.61 1.00271 0.501357 0.865240i \(-0.332834\pi\)
0.501357 + 0.865240i \(0.332834\pi\)
\(434\) −4301.12 −0.475715
\(435\) 26171.3 2.88464
\(436\) 4722.96 0.518782
\(437\) 3115.56 0.341047
\(438\) 838.552 0.0914785
\(439\) 3008.87 0.327120 0.163560 0.986533i \(-0.447702\pi\)
0.163560 + 0.986533i \(0.447702\pi\)
\(440\) 1216.00 0.131751
\(441\) 1457.23 0.157351
\(442\) −7883.37 −0.848356
\(443\) −229.594 −0.0246237 −0.0123119 0.999924i \(-0.503919\pi\)
−0.0123119 + 0.999924i \(0.503919\pi\)
\(444\) −7294.71 −0.779710
\(445\) −6744.70 −0.718493
\(446\) −3760.68 −0.399267
\(447\) −11992.5 −1.26896
\(448\) 1398.27 0.147460
\(449\) −7559.44 −0.794548 −0.397274 0.917700i \(-0.630044\pi\)
−0.397274 + 0.917700i \(0.630044\pi\)
\(450\) −4557.03 −0.477379
\(451\) 3611.57 0.377078
\(452\) −4530.02 −0.471404
\(453\) −6896.38 −0.715276
\(454\) −3598.46 −0.371991
\(455\) 21220.9 2.18648
\(456\) −935.114 −0.0960323
\(457\) 11556.4 1.18290 0.591449 0.806343i \(-0.298556\pi\)
0.591449 + 0.806343i \(0.298556\pi\)
\(458\) −9670.69 −0.986641
\(459\) 7381.20 0.750599
\(460\) −12005.8 −1.21690
\(461\) 9191.58 0.928622 0.464311 0.885672i \(-0.346302\pi\)
0.464311 + 0.885672i \(0.346302\pi\)
\(462\) −2232.32 −0.224798
\(463\) 1356.03 0.136113 0.0680564 0.997681i \(-0.478320\pi\)
0.0680564 + 0.997681i \(0.478320\pi\)
\(464\) −3718.56 −0.372047
\(465\) −11084.4 −1.10543
\(466\) −1730.60 −0.172035
\(467\) −14808.9 −1.46740 −0.733700 0.679473i \(-0.762208\pi\)
−0.733700 + 0.679473i \(0.762208\pi\)
\(468\) 2302.56 0.227427
\(469\) −4008.25 −0.394635
\(470\) 13401.7 1.31526
\(471\) 14520.3 1.42051
\(472\) −4582.37 −0.446866
\(473\) 1422.49 0.138280
\(474\) −4095.06 −0.396819
\(475\) −3990.79 −0.385494
\(476\) 6491.55 0.625083
\(477\) 1503.86 0.144355
\(478\) 9528.54 0.911768
\(479\) 9834.66 0.938115 0.469058 0.883168i \(-0.344594\pi\)
0.469058 + 0.883168i \(0.344594\pi\)
\(480\) 3603.46 0.342656
\(481\) 15730.1 1.49112
\(482\) −1230.67 −0.116298
\(483\) 22040.1 2.07632
\(484\) −5048.17 −0.474095
\(485\) −7805.67 −0.730798
\(486\) −5759.70 −0.537583
\(487\) 3687.82 0.343144 0.171572 0.985172i \(-0.445115\pi\)
0.171572 + 0.985172i \(0.445115\pi\)
\(488\) 5061.53 0.469518
\(489\) −5302.00 −0.490317
\(490\) −4917.67 −0.453383
\(491\) −11197.4 −1.02919 −0.514593 0.857435i \(-0.672057\pi\)
−0.514593 + 0.857435i \(0.672057\pi\)
\(492\) 10702.4 0.980698
\(493\) −17263.6 −1.57711
\(494\) 2016.45 0.183653
\(495\) −1648.89 −0.149721
\(496\) 1574.93 0.142573
\(497\) 1237.78 0.111715
\(498\) 14185.6 1.27645
\(499\) −12101.6 −1.08566 −0.542829 0.839843i \(-0.682647\pi\)
−0.542829 + 0.839843i \(0.682647\pi\)
\(500\) 6226.43 0.556909
\(501\) −10375.5 −0.925236
\(502\) 3316.15 0.294835
\(503\) −7266.58 −0.644136 −0.322068 0.946716i \(-0.604378\pi\)
−0.322068 + 0.946716i \(0.604378\pi\)
\(504\) −1896.04 −0.167572
\(505\) −7378.84 −0.650206
\(506\) −2723.37 −0.239266
\(507\) −3807.13 −0.333493
\(508\) −160.185 −0.0139903
\(509\) 2564.99 0.223362 0.111681 0.993744i \(-0.464376\pi\)
0.111681 + 0.993744i \(0.464376\pi\)
\(510\) 16729.3 1.45252
\(511\) 1488.98 0.128902
\(512\) −512.000 −0.0441942
\(513\) −1888.00 −0.162490
\(514\) −6892.24 −0.591447
\(515\) −20787.6 −1.77866
\(516\) 4215.38 0.359635
\(517\) 3040.00 0.258606
\(518\) −12952.9 −1.09868
\(519\) 19633.9 1.66057
\(520\) −7770.39 −0.655297
\(521\) 11254.6 0.946401 0.473201 0.880955i \(-0.343099\pi\)
0.473201 + 0.880955i \(0.343099\pi\)
\(522\) 5042.34 0.422791
\(523\) −18357.1 −1.53480 −0.767401 0.641168i \(-0.778450\pi\)
−0.767401 + 0.641168i \(0.778450\pi\)
\(524\) −711.591 −0.0593244
\(525\) −28231.6 −2.34691
\(526\) −11511.6 −0.954238
\(527\) 7311.71 0.604370
\(528\) 817.402 0.0673728
\(529\) 14721.4 1.20995
\(530\) −5075.06 −0.415936
\(531\) 6213.66 0.507815
\(532\) −1660.44 −0.135318
\(533\) −23078.4 −1.87549
\(534\) −4533.82 −0.367411
\(535\) −6957.33 −0.562227
\(536\) 1467.69 0.118273
\(537\) 7563.93 0.607836
\(538\) −4514.56 −0.361778
\(539\) −1115.51 −0.0891438
\(540\) 7275.43 0.579786
\(541\) 11381.8 0.904510 0.452255 0.891889i \(-0.350620\pi\)
0.452255 + 0.891889i \(0.350620\pi\)
\(542\) −14024.3 −1.11143
\(543\) 19126.5 1.51159
\(544\) −2376.99 −0.187340
\(545\) 21612.4 1.69867
\(546\) 14264.8 1.11809
\(547\) −8996.84 −0.703248 −0.351624 0.936141i \(-0.614371\pi\)
−0.351624 + 0.936141i \(0.614371\pi\)
\(548\) −99.0413 −0.00772050
\(549\) −6863.39 −0.533556
\(550\) 3488.42 0.270449
\(551\) 4415.79 0.341414
\(552\) −8070.37 −0.622279
\(553\) −7271.43 −0.559155
\(554\) 745.620 0.0571812
\(555\) −33380.8 −2.55304
\(556\) 11468.8 0.874796
\(557\) 10759.8 0.818507 0.409253 0.912421i \(-0.365789\pi\)
0.409253 + 0.912421i \(0.365789\pi\)
\(558\) −2135.59 −0.162019
\(559\) −9089.90 −0.687767
\(560\) 6398.52 0.482834
\(561\) 3794.84 0.285594
\(562\) 3777.91 0.283562
\(563\) 25381.8 1.90003 0.950015 0.312205i \(-0.101068\pi\)
0.950015 + 0.312205i \(0.101068\pi\)
\(564\) 9008.66 0.672576
\(565\) −20729.5 −1.54354
\(566\) 7768.86 0.576943
\(567\) −19755.3 −1.46322
\(568\) −453.236 −0.0334813
\(569\) −5546.00 −0.408612 −0.204306 0.978907i \(-0.565494\pi\)
−0.204306 + 0.978907i \(0.565494\pi\)
\(570\) −4279.11 −0.314443
\(571\) 7714.96 0.565431 0.282715 0.959204i \(-0.408765\pi\)
0.282715 + 0.959204i \(0.408765\pi\)
\(572\) −1762.62 −0.128844
\(573\) 8708.13 0.634882
\(574\) 19003.9 1.38189
\(575\) −34441.9 −2.49796
\(576\) 694.268 0.0502219
\(577\) 21335.1 1.53933 0.769665 0.638448i \(-0.220423\pi\)
0.769665 + 0.638448i \(0.220423\pi\)
\(578\) −1209.34 −0.0870273
\(579\) −8879.90 −0.637368
\(580\) −17016.3 −1.21821
\(581\) 25188.8 1.79863
\(582\) −5247.01 −0.373704
\(583\) −1151.21 −0.0817811
\(584\) −545.217 −0.0386322
\(585\) 10536.6 0.744674
\(586\) 2546.02 0.179480
\(587\) 12370.9 0.869846 0.434923 0.900468i \(-0.356776\pi\)
0.434923 + 0.900468i \(0.356776\pi\)
\(588\) −3305.68 −0.231844
\(589\) −1870.23 −0.130834
\(590\) −20969.1 −1.46319
\(591\) −32433.2 −2.25740
\(592\) 4742.93 0.329279
\(593\) 12982.5 0.899034 0.449517 0.893272i \(-0.351596\pi\)
0.449517 + 0.893272i \(0.351596\pi\)
\(594\) 1650.34 0.113997
\(595\) 29705.5 2.04674
\(596\) 7797.38 0.535895
\(597\) 15442.8 1.05868
\(598\) 17402.7 1.19005
\(599\) 13163.7 0.897921 0.448960 0.893552i \(-0.351794\pi\)
0.448960 + 0.893552i \(0.351794\pi\)
\(600\) 10337.5 0.703378
\(601\) −29325.4 −1.99036 −0.995180 0.0980640i \(-0.968735\pi\)
−0.995180 + 0.0980640i \(0.968735\pi\)
\(602\) 7485.07 0.506758
\(603\) −1990.17 −0.134405
\(604\) 4483.94 0.302068
\(605\) −23100.6 −1.55235
\(606\) −4960.09 −0.332492
\(607\) −2170.11 −0.145110 −0.0725552 0.997364i \(-0.523115\pi\)
−0.0725552 + 0.997364i \(0.523115\pi\)
\(608\) 608.000 0.0405554
\(609\) 31238.2 2.07855
\(610\) 23161.7 1.53736
\(611\) −19426.0 −1.28624
\(612\) 3223.18 0.212891
\(613\) −4917.96 −0.324036 −0.162018 0.986788i \(-0.551800\pi\)
−0.162018 + 0.986788i \(0.551800\pi\)
\(614\) −1638.31 −0.107682
\(615\) 48974.7 3.21114
\(616\) 1451.43 0.0949344
\(617\) 24763.5 1.61579 0.807894 0.589328i \(-0.200607\pi\)
0.807894 + 0.589328i \(0.200607\pi\)
\(618\) −13973.5 −0.909542
\(619\) −27552.0 −1.78902 −0.894512 0.447043i \(-0.852477\pi\)
−0.894512 + 0.447043i \(0.852477\pi\)
\(620\) 7206.93 0.466834
\(621\) −16294.2 −1.05292
\(622\) −4209.33 −0.271348
\(623\) −8050.51 −0.517716
\(624\) −5223.30 −0.335095
\(625\) 2237.20 0.143181
\(626\) −4790.93 −0.305885
\(627\) −970.664 −0.0618255
\(628\) −9440.91 −0.599894
\(629\) 22019.3 1.39582
\(630\) −8676.34 −0.548688
\(631\) 377.839 0.0238376 0.0119188 0.999929i \(-0.496206\pi\)
0.0119188 + 0.999929i \(0.496206\pi\)
\(632\) 2662.56 0.167581
\(633\) −11408.6 −0.716354
\(634\) −4316.47 −0.270393
\(635\) −733.012 −0.0458090
\(636\) −3411.48 −0.212695
\(637\) 7128.27 0.443379
\(638\) −3859.93 −0.239523
\(639\) 614.584 0.0380479
\(640\) −2342.93 −0.144707
\(641\) −14047.3 −0.865576 −0.432788 0.901496i \(-0.642470\pi\)
−0.432788 + 0.901496i \(0.642470\pi\)
\(642\) −4676.75 −0.287503
\(643\) 5768.94 0.353818 0.176909 0.984227i \(-0.443390\pi\)
0.176909 + 0.984227i \(0.443390\pi\)
\(644\) −14330.2 −0.876848
\(645\) 19289.7 1.17757
\(646\) 2822.68 0.171915
\(647\) 4568.59 0.277604 0.138802 0.990320i \(-0.455675\pi\)
0.138802 + 0.990320i \(0.455675\pi\)
\(648\) 7233.73 0.438531
\(649\) −4756.58 −0.287692
\(650\) −22291.5 −1.34514
\(651\) −13230.4 −0.796528
\(652\) 3447.30 0.207065
\(653\) −16532.7 −0.990774 −0.495387 0.868672i \(-0.664974\pi\)
−0.495387 + 0.868672i \(0.664974\pi\)
\(654\) 14528.0 0.868638
\(655\) −3256.26 −0.194248
\(656\) −6958.60 −0.414158
\(657\) 739.309 0.0439014
\(658\) 15996.3 0.947721
\(659\) −18630.0 −1.10125 −0.550624 0.834753i \(-0.685610\pi\)
−0.550624 + 0.834753i \(0.685610\pi\)
\(660\) 3740.46 0.220602
\(661\) 28851.3 1.69771 0.848854 0.528627i \(-0.177293\pi\)
0.848854 + 0.528627i \(0.177293\pi\)
\(662\) −1035.56 −0.0607981
\(663\) −24249.5 −1.42047
\(664\) −9223.30 −0.539056
\(665\) −7598.24 −0.443079
\(666\) −6431.37 −0.374190
\(667\) 38109.9 2.21232
\(668\) 6746.02 0.390736
\(669\) −11568.0 −0.668525
\(670\) 6716.19 0.387267
\(671\) 5253.95 0.302275
\(672\) 4301.12 0.246904
\(673\) −3873.41 −0.221856 −0.110928 0.993828i \(-0.535382\pi\)
−0.110928 + 0.993828i \(0.535382\pi\)
\(674\) −13007.3 −0.743354
\(675\) 20871.5 1.19014
\(676\) 2475.35 0.140837
\(677\) 5025.24 0.285282 0.142641 0.989775i \(-0.454441\pi\)
0.142641 + 0.989775i \(0.454441\pi\)
\(678\) −13934.5 −0.789309
\(679\) −9316.90 −0.526583
\(680\) −10877.2 −0.613414
\(681\) −11069.0 −0.622855
\(682\) 1634.80 0.0917886
\(683\) −14157.0 −0.793122 −0.396561 0.918008i \(-0.629796\pi\)
−0.396561 + 0.918008i \(0.629796\pi\)
\(684\) −824.443 −0.0460868
\(685\) −453.217 −0.0252796
\(686\) 9117.92 0.507469
\(687\) −29747.4 −1.65201
\(688\) −2740.79 −0.151877
\(689\) 7356.40 0.406758
\(690\) −36930.3 −2.03755
\(691\) −2437.65 −0.134200 −0.0671002 0.997746i \(-0.521375\pi\)
−0.0671002 + 0.997746i \(0.521375\pi\)
\(692\) −12765.7 −0.701273
\(693\) −1968.12 −0.107883
\(694\) −12116.7 −0.662741
\(695\) 52481.7 2.86438
\(696\) −11438.4 −0.622948
\(697\) −32305.7 −1.75562
\(698\) 21910.2 1.18813
\(699\) −5323.38 −0.288052
\(700\) 18355.9 0.991124
\(701\) 9496.96 0.511691 0.255845 0.966718i \(-0.417646\pi\)
0.255845 + 0.966718i \(0.417646\pi\)
\(702\) −10545.9 −0.566993
\(703\) −5632.23 −0.302167
\(704\) −531.465 −0.0284522
\(705\) 41223.9 2.20225
\(706\) 3612.85 0.192594
\(707\) −8807.43 −0.468511
\(708\) −14095.5 −0.748224
\(709\) 6350.33 0.336377 0.168189 0.985755i \(-0.446208\pi\)
0.168189 + 0.985755i \(0.446208\pi\)
\(710\) −2074.02 −0.109629
\(711\) −3610.41 −0.190437
\(712\) 2947.83 0.155161
\(713\) −16140.7 −0.847792
\(714\) 19968.2 1.04663
\(715\) −8065.80 −0.421879
\(716\) −4917.98 −0.256695
\(717\) 29310.1 1.52665
\(718\) 15929.0 0.827946
\(719\) −19722.6 −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(720\) 3176.99 0.164444
\(721\) −24812.2 −1.28163
\(722\) −722.000 −0.0372161
\(723\) −3785.59 −0.194727
\(724\) −12435.8 −0.638360
\(725\) −48815.7 −2.50065
\(726\) −15528.3 −0.793816
\(727\) 28325.8 1.44504 0.722520 0.691350i \(-0.242984\pi\)
0.722520 + 0.691350i \(0.242984\pi\)
\(728\) −9274.79 −0.472179
\(729\) 6696.82 0.340234
\(730\) −2494.93 −0.126495
\(731\) −12724.3 −0.643809
\(732\) 15569.4 0.786151
\(733\) 33981.8 1.71234 0.856170 0.516694i \(-0.172837\pi\)
0.856170 + 0.516694i \(0.172837\pi\)
\(734\) 14623.2 0.735355
\(735\) −15126.9 −0.759135
\(736\) 5247.26 0.262794
\(737\) 1523.49 0.0761443
\(738\) 9435.80 0.470646
\(739\) 9147.10 0.455320 0.227660 0.973741i \(-0.426893\pi\)
0.227660 + 0.973741i \(0.426893\pi\)
\(740\) 21703.8 1.07817
\(741\) 6202.67 0.307504
\(742\) −6057.62 −0.299706
\(743\) −34159.2 −1.68665 −0.843324 0.537405i \(-0.819404\pi\)
−0.843324 + 0.537405i \(0.819404\pi\)
\(744\) 4844.54 0.238722
\(745\) 35681.1 1.75470
\(746\) −11036.8 −0.541668
\(747\) 12506.7 0.612579
\(748\) −2467.36 −0.120609
\(749\) −8304.31 −0.405117
\(750\) 19152.7 0.932478
\(751\) 28361.8 1.37808 0.689038 0.724725i \(-0.258033\pi\)
0.689038 + 0.724725i \(0.258033\pi\)
\(752\) −5857.32 −0.284035
\(753\) 10200.6 0.493666
\(754\) 24665.4 1.19133
\(755\) 20518.7 0.989074
\(756\) 8683.99 0.417770
\(757\) 11464.9 0.550462 0.275231 0.961378i \(-0.411246\pi\)
0.275231 + 0.961378i \(0.411246\pi\)
\(758\) 2279.94 0.109250
\(759\) −8377.18 −0.400623
\(760\) 2782.23 0.132792
\(761\) 14289.3 0.680666 0.340333 0.940305i \(-0.389460\pi\)
0.340333 + 0.940305i \(0.389460\pi\)
\(762\) −492.734 −0.0234250
\(763\) 25796.7 1.22399
\(764\) −5661.92 −0.268117
\(765\) 14749.4 0.697079
\(766\) 20818.9 0.982008
\(767\) 30395.2 1.43091
\(768\) −1574.93 −0.0739979
\(769\) 100.811 0.00472734 0.00236367 0.999997i \(-0.499248\pi\)
0.00236367 + 0.999997i \(0.499248\pi\)
\(770\) 6641.77 0.310848
\(771\) −21200.8 −0.990307
\(772\) 5773.61 0.269167
\(773\) 52.1073 0.00242454 0.00121227 0.999999i \(-0.499614\pi\)
0.00121227 + 0.999999i \(0.499614\pi\)
\(774\) 3716.49 0.172592
\(775\) 20675.0 0.958282
\(776\) 3411.54 0.157819
\(777\) −39843.6 −1.83961
\(778\) −20942.4 −0.965065
\(779\) 8263.34 0.380057
\(780\) −23902.0 −1.09722
\(781\) −470.467 −0.0215552
\(782\) 24360.7 1.11399
\(783\) −23094.3 −1.05405
\(784\) 2149.31 0.0979097
\(785\) −43201.9 −1.96426
\(786\) −2188.88 −0.0993316
\(787\) 15261.8 0.691266 0.345633 0.938370i \(-0.387664\pi\)
0.345633 + 0.938370i \(0.387664\pi\)
\(788\) 21087.7 0.953322
\(789\) −35410.0 −1.59776
\(790\) 12184.0 0.548716
\(791\) −24742.9 −1.11221
\(792\) 720.662 0.0323328
\(793\) −33573.4 −1.50344
\(794\) 19177.4 0.857152
\(795\) −15611.0 −0.696436
\(796\) −10040.7 −0.447091
\(797\) 24432.3 1.08587 0.542934 0.839775i \(-0.317313\pi\)
0.542934 + 0.839775i \(0.317313\pi\)
\(798\) −5107.58 −0.226574
\(799\) −27193.0 −1.20403
\(800\) −6721.32 −0.297043
\(801\) −3997.24 −0.176324
\(802\) −17098.6 −0.752834
\(803\) −565.944 −0.0248714
\(804\) 4514.66 0.198035
\(805\) −65575.6 −2.87110
\(806\) −10446.6 −0.456533
\(807\) −13886.9 −0.605754
\(808\) 3224.99 0.140414
\(809\) 3635.86 0.158010 0.0790050 0.996874i \(-0.474826\pi\)
0.0790050 + 0.996874i \(0.474826\pi\)
\(810\) 33101.8 1.43590
\(811\) 1087.93 0.0471051 0.0235526 0.999723i \(-0.492502\pi\)
0.0235526 + 0.999723i \(0.492502\pi\)
\(812\) −20310.7 −0.877791
\(813\) −43139.1 −1.86095
\(814\) 4923.24 0.211990
\(815\) 15775.0 0.678003
\(816\) −7311.71 −0.313678
\(817\) 3254.69 0.139372
\(818\) −533.920 −0.0228216
\(819\) 12576.5 0.536581
\(820\) −31842.8 −1.35610
\(821\) 10953.7 0.465636 0.232818 0.972520i \(-0.425205\pi\)
0.232818 + 0.972520i \(0.425205\pi\)
\(822\) −304.655 −0.0129271
\(823\) 13502.5 0.571893 0.285947 0.958246i \(-0.407692\pi\)
0.285947 + 0.958246i \(0.407692\pi\)
\(824\) 9085.41 0.384108
\(825\) 10730.5 0.452834
\(826\) −25028.9 −1.05432
\(827\) 26812.4 1.12740 0.563699 0.825980i \(-0.309378\pi\)
0.563699 + 0.825980i \(0.309378\pi\)
\(828\) −7115.24 −0.298637
\(829\) −4497.94 −0.188444 −0.0942218 0.995551i \(-0.530036\pi\)
−0.0942218 + 0.995551i \(0.530036\pi\)
\(830\) −42206.1 −1.76506
\(831\) 2293.55 0.0957430
\(832\) 3396.13 0.141514
\(833\) 9978.33 0.415040
\(834\) 35278.5 1.46474
\(835\) 30870.0 1.27940
\(836\) 631.114 0.0261095
\(837\) 9781.16 0.403926
\(838\) −17287.7 −0.712640
\(839\) 30324.9 1.24783 0.623917 0.781491i \(-0.285540\pi\)
0.623917 + 0.781491i \(0.285540\pi\)
\(840\) 19682.1 0.808447
\(841\) 29625.4 1.21470
\(842\) 33602.6 1.37532
\(843\) 11621.0 0.474790
\(844\) 7417.75 0.302523
\(845\) 11327.3 0.461149
\(846\) 7942.48 0.322776
\(847\) −27573.0 −1.11856
\(848\) 2218.10 0.0898230
\(849\) 23897.3 0.966022
\(850\) −31204.2 −1.25917
\(851\) −48608.2 −1.95801
\(852\) −1394.17 −0.0560604
\(853\) 17230.8 0.691642 0.345821 0.938300i \(-0.387600\pi\)
0.345821 + 0.938300i \(0.387600\pi\)
\(854\) 27646.0 1.10776
\(855\) −3772.68 −0.150904
\(856\) 3040.77 0.121415
\(857\) −6724.12 −0.268018 −0.134009 0.990980i \(-0.542785\pi\)
−0.134009 + 0.990980i \(0.542785\pi\)
\(858\) −5421.87 −0.215734
\(859\) −36183.5 −1.43721 −0.718606 0.695417i \(-0.755219\pi\)
−0.718606 + 0.695417i \(0.755219\pi\)
\(860\) −12541.9 −0.497298
\(861\) 58456.6 2.31381
\(862\) −24107.1 −0.952541
\(863\) 14350.8 0.566056 0.283028 0.959112i \(-0.408661\pi\)
0.283028 + 0.959112i \(0.408661\pi\)
\(864\) −3179.80 −0.125207
\(865\) −58416.5 −2.29621
\(866\) −18069.2 −0.709027
\(867\) −3719.96 −0.145717
\(868\) 8602.24 0.336381
\(869\) 2763.78 0.107888
\(870\) −52342.6 −2.03975
\(871\) −9735.27 −0.378722
\(872\) −9445.93 −0.366834
\(873\) −4626.02 −0.179344
\(874\) −6231.12 −0.241157
\(875\) 34008.7 1.31395
\(876\) −1677.10 −0.0646851
\(877\) −42978.6 −1.65483 −0.827414 0.561592i \(-0.810189\pi\)
−0.827414 + 0.561592i \(0.810189\pi\)
\(878\) −6017.74 −0.231309
\(879\) 7831.65 0.300518
\(880\) −2432.00 −0.0931622
\(881\) −7298.75 −0.279116 −0.139558 0.990214i \(-0.544568\pi\)
−0.139558 + 0.990214i \(0.544568\pi\)
\(882\) −2914.45 −0.111264
\(883\) 46722.1 1.78066 0.890331 0.455314i \(-0.150473\pi\)
0.890331 + 0.455314i \(0.150473\pi\)
\(884\) 15766.7 0.599878
\(885\) −64501.7 −2.44994
\(886\) 459.187 0.0174116
\(887\) 35268.7 1.33507 0.667535 0.744578i \(-0.267349\pi\)
0.667535 + 0.744578i \(0.267349\pi\)
\(888\) 14589.4 0.551338
\(889\) −874.928 −0.0330080
\(890\) 13489.4 0.508051
\(891\) 7508.74 0.282326
\(892\) 7521.35 0.282325
\(893\) 6955.57 0.260649
\(894\) 23985.0 0.897292
\(895\) −22504.8 −0.840506
\(896\) −2796.54 −0.104270
\(897\) 53531.3 1.99259
\(898\) 15118.9 0.561830
\(899\) −22876.8 −0.848704
\(900\) 9114.06 0.337558
\(901\) 10297.7 0.380761
\(902\) −7223.14 −0.266635
\(903\) 23024.3 0.848507
\(904\) 9060.05 0.333333
\(905\) −56906.6 −2.09021
\(906\) 13792.8 0.505777
\(907\) −46292.7 −1.69474 −0.847368 0.531007i \(-0.821814\pi\)
−0.847368 + 0.531007i \(0.821814\pi\)
\(908\) 7196.92 0.263038
\(909\) −4373.06 −0.159566
\(910\) −42441.8 −1.54608
\(911\) −42085.5 −1.53058 −0.765288 0.643688i \(-0.777403\pi\)
−0.765288 + 0.643688i \(0.777403\pi\)
\(912\) 1870.23 0.0679051
\(913\) −9573.94 −0.347044
\(914\) −23112.7 −0.836435
\(915\) 71246.2 2.57413
\(916\) 19341.4 0.697660
\(917\) −3886.70 −0.139967
\(918\) −14762.4 −0.530754
\(919\) 21331.8 0.765691 0.382845 0.923812i \(-0.374944\pi\)
0.382845 + 0.923812i \(0.374944\pi\)
\(920\) 24011.6 0.860479
\(921\) −5039.49 −0.180300
\(922\) −18383.2 −0.656635
\(923\) 3006.34 0.107210
\(924\) 4464.63 0.158956
\(925\) 62263.2 2.21319
\(926\) −2712.07 −0.0962463
\(927\) −12319.7 −0.436498
\(928\) 7437.12 0.263077
\(929\) −34331.5 −1.21247 −0.606233 0.795287i \(-0.707320\pi\)
−0.606233 + 0.795287i \(0.707320\pi\)
\(930\) 22168.8 0.781658
\(931\) −2552.31 −0.0898481
\(932\) 3461.20 0.121647
\(933\) −12948.0 −0.454341
\(934\) 29617.9 1.03761
\(935\) −11290.7 −0.394915
\(936\) −4605.12 −0.160815
\(937\) 13625.1 0.475041 0.237521 0.971383i \(-0.423665\pi\)
0.237521 + 0.971383i \(0.423665\pi\)
\(938\) 8016.49 0.279049
\(939\) −14737.1 −0.512168
\(940\) −26803.3 −0.930029
\(941\) 7086.48 0.245497 0.122748 0.992438i \(-0.460829\pi\)
0.122748 + 0.992438i \(0.460829\pi\)
\(942\) −29040.6 −1.00445
\(943\) 71315.6 2.46273
\(944\) 9164.75 0.315982
\(945\) 39738.3 1.36792
\(946\) −2844.98 −0.0977784
\(947\) 38735.9 1.32920 0.664598 0.747202i \(-0.268603\pi\)
0.664598 + 0.747202i \(0.268603\pi\)
\(948\) 8190.12 0.280594
\(949\) 3616.45 0.123704
\(950\) 7981.57 0.272586
\(951\) −13277.6 −0.452740
\(952\) −12983.1 −0.442000
\(953\) 30964.3 1.05250 0.526249 0.850330i \(-0.323598\pi\)
0.526249 + 0.850330i \(0.323598\pi\)
\(954\) −3007.73 −0.102074
\(955\) −25909.1 −0.877906
\(956\) −19057.1 −0.644717
\(957\) −11873.3 −0.401053
\(958\) −19669.3 −0.663347
\(959\) −540.962 −0.0182154
\(960\) −7206.93 −0.242294
\(961\) −20101.9 −0.674765
\(962\) −31460.1 −1.05438
\(963\) −4123.26 −0.137975
\(964\) 2461.34 0.0822350
\(965\) 26420.2 0.881344
\(966\) −44080.2 −1.46818
\(967\) 10968.0 0.364743 0.182371 0.983230i \(-0.441623\pi\)
0.182371 + 0.983230i \(0.441623\pi\)
\(968\) 10096.3 0.335236
\(969\) 8682.65 0.287850
\(970\) 15611.3 0.516752
\(971\) −30081.2 −0.994183 −0.497091 0.867698i \(-0.665599\pi\)
−0.497091 + 0.867698i \(0.665599\pi\)
\(972\) 11519.4 0.380128
\(973\) 62642.5 2.06395
\(974\) −7375.64 −0.242640
\(975\) −68569.3 −2.25228
\(976\) −10123.1 −0.331999
\(977\) 26628.1 0.871962 0.435981 0.899956i \(-0.356401\pi\)
0.435981 + 0.899956i \(0.356401\pi\)
\(978\) 10604.0 0.346706
\(979\) 3059.90 0.0998926
\(980\) 9835.34 0.320590
\(981\) 12808.6 0.416867
\(982\) 22394.7 0.727744
\(983\) 25495.3 0.827236 0.413618 0.910450i \(-0.364265\pi\)
0.413618 + 0.910450i \(0.364265\pi\)
\(984\) −21404.9 −0.693458
\(985\) 96498.0 3.12150
\(986\) 34527.3 1.11519
\(987\) 49205.2 1.58685
\(988\) −4032.90 −0.129862
\(989\) 28089.1 0.903116
\(990\) 3297.77 0.105869
\(991\) −54385.4 −1.74330 −0.871649 0.490130i \(-0.836949\pi\)
−0.871649 + 0.490130i \(0.836949\pi\)
\(992\) −3149.86 −0.100815
\(993\) −3185.43 −0.101799
\(994\) −2475.57 −0.0789942
\(995\) −45946.8 −1.46393
\(996\) −28371.2 −0.902586
\(997\) −36846.5 −1.17045 −0.585227 0.810870i \(-0.698994\pi\)
−0.585227 + 0.810870i \(0.698994\pi\)
\(998\) 24203.3 0.767677
\(999\) 29456.1 0.932884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 38.4.a.b.1.1 2
3.2 odd 2 342.4.a.k.1.1 2
4.3 odd 2 304.4.a.d.1.2 2
5.2 odd 4 950.4.b.g.799.2 4
5.3 odd 4 950.4.b.g.799.3 4
5.4 even 2 950.4.a.h.1.2 2
7.6 odd 2 1862.4.a.b.1.2 2
8.3 odd 2 1216.4.a.l.1.1 2
8.5 even 2 1216.4.a.j.1.2 2
19.18 odd 2 722.4.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.a.b.1.1 2 1.1 even 1 trivial
304.4.a.d.1.2 2 4.3 odd 2
342.4.a.k.1.1 2 3.2 odd 2
722.4.a.i.1.2 2 19.18 odd 2
950.4.a.h.1.2 2 5.4 even 2
950.4.b.g.799.2 4 5.2 odd 4
950.4.b.g.799.3 4 5.3 odd 4
1216.4.a.j.1.2 2 8.5 even 2
1216.4.a.l.1.1 2 8.3 odd 2
1862.4.a.b.1.2 2 7.6 odd 2