Properties

Label 38.3.f.a.33.2
Level $38$
Weight $3$
Character 38.33
Analytic conductor $1.035$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [38,3,Mod(3,38)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("38.3"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(38, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([13])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 38.f (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03542500457\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 33.2
Character \(\chi\) \(=\) 38.33
Dual form 38.3.f.a.15.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.483690 - 1.32893i) q^{2} +(3.64826 + 0.643286i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(0.297798 + 0.249882i) q^{5} +(-0.909744 - 5.15941i) q^{6} +(-2.96431 - 5.13434i) q^{7} +(2.44949 + 1.41421i) q^{8} +(4.43872 + 1.61556i) q^{9} +(0.188033 - 0.516617i) q^{10} +(-8.13043 + 14.0823i) q^{11} +(-6.41645 + 3.70454i) q^{12} +(1.76528 - 0.311267i) q^{13} +(-5.38935 + 6.42278i) q^{14} +(0.925699 + 1.10320i) q^{15} +(0.694593 - 3.93923i) q^{16} +(-24.3446 + 8.86071i) q^{17} -6.68017i q^{18} +(18.6700 + 3.52570i) q^{19} -0.777496 q^{20} +(-7.51173 - 20.6383i) q^{21} +(22.6470 + 3.99327i) q^{22} +(32.3354 - 27.1326i) q^{23} +(8.02662 + 6.73514i) q^{24} +(-4.31496 - 24.4714i) q^{25} +(-1.26750 - 2.19538i) q^{26} +(-13.7197 - 7.92106i) q^{27} +(11.1422 + 4.05542i) q^{28} +(-9.40038 + 25.8273i) q^{29} +(1.01833 - 1.76379i) q^{30} +(17.4291 - 10.0627i) q^{31} +(-5.57091 + 0.982302i) q^{32} +(-38.7208 + 46.1457i) q^{33} +(23.5505 + 28.0663i) q^{34} +(0.400214 - 2.26973i) q^{35} +(-8.87745 + 3.23113i) q^{36} -19.4424i q^{37} +(-4.34510 - 26.5164i) q^{38} +6.64044 q^{39} +(0.376067 + 1.03323i) q^{40} +(-18.6213 - 3.28344i) q^{41} +(-23.7934 + 19.9651i) q^{42} +(37.5820 + 31.5350i) q^{43} +(-5.64734 - 32.0276i) q^{44} +(0.918143 + 1.59027i) q^{45} +(-51.6975 - 29.8476i) q^{46} +(52.0500 + 18.9446i) q^{47} +(5.06810 - 13.9245i) q^{48} +(6.92569 - 11.9956i) q^{49} +(-30.4335 + 17.5708i) q^{50} +(-94.5153 + 16.6656i) q^{51} +(-2.30441 + 2.74629i) q^{52} +(-9.03932 - 10.7726i) q^{53} +(-3.89044 + 22.0638i) q^{54} +(-5.94015 + 2.16204i) q^{55} -16.7687i q^{56} +(65.8450 + 24.8728i) q^{57} +38.8695 q^{58} +(7.58069 + 20.8278i) q^{59} +(-2.83651 - 0.500152i) q^{60} +(-10.9255 + 9.16757i) q^{61} +(-21.8028 - 18.2948i) q^{62} +(-4.86291 - 27.5790i) q^{63} +(4.00000 + 6.92820i) q^{64} +(0.603479 + 0.348419i) q^{65} +(80.0531 + 29.1369i) q^{66} +(12.7327 - 34.9828i) q^{67} +(25.9070 - 44.8722i) q^{68} +(135.422 - 78.1858i) q^{69} +(-3.20988 + 0.565989i) q^{70} +(-20.3418 + 24.2424i) q^{71} +(8.58785 + 10.2346i) q^{72} +(-12.9628 + 73.5160i) q^{73} +(-25.8376 + 9.40410i) q^{74} -92.0536i q^{75} +(-33.1367 + 18.6000i) q^{76} +96.4045 q^{77} +(-3.21191 - 8.82466i) q^{78} +(-147.140 - 25.9447i) q^{79} +(1.19119 - 0.999530i) q^{80} +(-77.5237 - 65.0501i) q^{81} +(4.64349 + 26.3345i) q^{82} +(29.0689 + 50.3489i) q^{83} +(38.0407 + 21.9628i) q^{84} +(-9.46392 - 3.44458i) q^{85} +(23.7297 - 65.1969i) q^{86} +(-50.9094 + 88.1776i) q^{87} +(-39.8308 + 22.9963i) q^{88} +(-91.8814 + 16.2012i) q^{89} +(1.66926 - 1.98934i) q^{90} +(-6.83101 - 8.14088i) q^{91} +(-14.6597 + 83.1391i) q^{92} +(70.0590 - 25.4994i) q^{93} -78.3339i q^{94} +(4.67889 + 5.71526i) q^{95} -20.9560 q^{96} +(41.6935 + 114.552i) q^{97} +(-19.2912 - 3.40156i) q^{98} +(-58.8396 + 49.3723i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{3} + 12 q^{6} - 18 q^{7} + 6 q^{9} + 30 q^{11} - 36 q^{12} - 90 q^{13} - 48 q^{14} - 114 q^{15} + 18 q^{17} - 12 q^{19} + 24 q^{20} + 90 q^{21} + 84 q^{22} + 120 q^{23} - 24 q^{24} + 252 q^{25}+ \cdots - 204 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).

\(n\) \(21\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.483690 1.32893i −0.241845 0.664463i
\(3\) 3.64826 + 0.643286i 1.21609 + 0.214429i 0.744640 0.667466i \(-0.232621\pi\)
0.471446 + 0.881895i \(0.343732\pi\)
\(4\) −1.53209 + 1.28558i −0.383022 + 0.321394i
\(5\) 0.297798 + 0.249882i 0.0595597 + 0.0499765i 0.672082 0.740477i \(-0.265400\pi\)
−0.612522 + 0.790454i \(0.709845\pi\)
\(6\) −0.909744 5.15941i −0.151624 0.859902i
\(7\) −2.96431 5.13434i −0.423473 0.733477i 0.572803 0.819693i \(-0.305856\pi\)
−0.996277 + 0.0862156i \(0.972523\pi\)
\(8\) 2.44949 + 1.41421i 0.306186 + 0.176777i
\(9\) 4.43872 + 1.61556i 0.493191 + 0.179507i
\(10\) 0.188033 0.516617i 0.0188033 0.0516617i
\(11\) −8.13043 + 14.0823i −0.739130 + 1.28021i 0.213758 + 0.976887i \(0.431430\pi\)
−0.952888 + 0.303324i \(0.901904\pi\)
\(12\) −6.41645 + 3.70454i −0.534704 + 0.308711i
\(13\) 1.76528 0.311267i 0.135791 0.0239436i −0.105339 0.994436i \(-0.533593\pi\)
0.241131 + 0.970493i \(0.422482\pi\)
\(14\) −5.38935 + 6.42278i −0.384954 + 0.458770i
\(15\) 0.925699 + 1.10320i 0.0617132 + 0.0735470i
\(16\) 0.694593 3.93923i 0.0434120 0.246202i
\(17\) −24.3446 + 8.86071i −1.43204 + 0.521218i −0.937514 0.347947i \(-0.886879\pi\)
−0.494521 + 0.869166i \(0.664657\pi\)
\(18\) 6.68017i 0.371120i
\(19\) 18.6700 + 3.52570i 0.982632 + 0.185563i
\(20\) −0.777496 −0.0388748
\(21\) −7.51173 20.6383i −0.357701 0.982776i
\(22\) 22.6470 + 3.99327i 1.02941 + 0.181512i
\(23\) 32.3354 27.1326i 1.40589 1.17968i 0.447471 0.894299i \(-0.352325\pi\)
0.958415 0.285379i \(-0.0921196\pi\)
\(24\) 8.02662 + 6.73514i 0.334443 + 0.280631i
\(25\) −4.31496 24.4714i −0.172598 0.978855i
\(26\) −1.26750 2.19538i −0.0487500 0.0844375i
\(27\) −13.7197 7.92106i −0.508136 0.293373i
\(28\) 11.1422 + 4.05542i 0.397935 + 0.144836i
\(29\) −9.40038 + 25.8273i −0.324151 + 0.890598i 0.665409 + 0.746479i \(0.268257\pi\)
−0.989560 + 0.144119i \(0.953965\pi\)
\(30\) 1.01833 1.76379i 0.0339442 0.0587931i
\(31\) 17.4291 10.0627i 0.562229 0.324603i −0.191811 0.981432i \(-0.561436\pi\)
0.754040 + 0.656829i \(0.228103\pi\)
\(32\) −5.57091 + 0.982302i −0.174091 + 0.0306970i
\(33\) −38.7208 + 46.1457i −1.17336 + 1.39835i
\(34\) 23.5505 + 28.0663i 0.692660 + 0.825481i
\(35\) 0.400214 2.26973i 0.0114347 0.0648494i
\(36\) −8.87745 + 3.23113i −0.246596 + 0.0897535i
\(37\) 19.4424i 0.525471i −0.964868 0.262736i \(-0.915375\pi\)
0.964868 0.262736i \(-0.0846247\pi\)
\(38\) −4.34510 26.5164i −0.114345 0.697800i
\(39\) 6.64044 0.170268
\(40\) 0.376067 + 1.03323i 0.00940167 + 0.0258309i
\(41\) −18.6213 3.28344i −0.454179 0.0800839i −0.0581209 0.998310i \(-0.518511\pi\)
−0.396058 + 0.918226i \(0.629622\pi\)
\(42\) −23.7934 + 19.9651i −0.566510 + 0.475358i
\(43\) 37.5820 + 31.5350i 0.874000 + 0.733373i 0.964936 0.262484i \(-0.0845416\pi\)
−0.0909364 + 0.995857i \(0.528986\pi\)
\(44\) −5.64734 32.0276i −0.128349 0.727901i
\(45\) 0.918143 + 1.59027i 0.0204032 + 0.0353394i
\(46\) −51.6975 29.8476i −1.12386 0.648860i
\(47\) 52.0500 + 18.9446i 1.10745 + 0.403077i 0.830056 0.557680i \(-0.188308\pi\)
0.277390 + 0.960757i \(0.410531\pi\)
\(48\) 5.06810 13.9245i 0.105586 0.290094i
\(49\) 6.92569 11.9956i 0.141341 0.244809i
\(50\) −30.4335 + 17.5708i −0.608671 + 0.351416i
\(51\) −94.5153 + 16.6656i −1.85324 + 0.326776i
\(52\) −2.30441 + 2.74629i −0.0443157 + 0.0528134i
\(53\) −9.03932 10.7726i −0.170553 0.203257i 0.673997 0.738734i \(-0.264576\pi\)
−0.844550 + 0.535477i \(0.820132\pi\)
\(54\) −3.89044 + 22.0638i −0.0720451 + 0.408588i
\(55\) −5.94015 + 2.16204i −0.108003 + 0.0393098i
\(56\) 16.7687i 0.299441i
\(57\) 65.8450 + 24.8728i 1.15517 + 0.436365i
\(58\) 38.8695 0.670163
\(59\) 7.58069 + 20.8278i 0.128486 + 0.353013i 0.987210 0.159426i \(-0.0509643\pi\)
−0.858724 + 0.512439i \(0.828742\pi\)
\(60\) −2.83651 0.500152i −0.0472751 0.00833587i
\(61\) −10.9255 + 9.16757i −0.179106 + 0.150288i −0.727933 0.685648i \(-0.759519\pi\)
0.548827 + 0.835936i \(0.315075\pi\)
\(62\) −21.8028 18.2948i −0.351659 0.295077i
\(63\) −4.86291 27.5790i −0.0771891 0.437761i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) 0.603479 + 0.348419i 0.00928429 + 0.00536029i
\(66\) 80.0531 + 29.1369i 1.21293 + 0.441469i
\(67\) 12.7327 34.9828i 0.190040 0.522131i −0.807680 0.589621i \(-0.799277\pi\)
0.997720 + 0.0674903i \(0.0214992\pi\)
\(68\) 25.9070 44.8722i 0.380985 0.659885i
\(69\) 135.422 78.1858i 1.96263 1.13313i
\(70\) −3.20988 + 0.565989i −0.0458554 + 0.00808555i
\(71\) −20.3418 + 24.2424i −0.286505 + 0.341443i −0.890031 0.455900i \(-0.849317\pi\)
0.603526 + 0.797343i \(0.293762\pi\)
\(72\) 8.58785 + 10.2346i 0.119276 + 0.142147i
\(73\) −12.9628 + 73.5160i −0.177573 + 1.00707i 0.757558 + 0.652767i \(0.226392\pi\)
−0.935132 + 0.354301i \(0.884719\pi\)
\(74\) −25.8376 + 9.40410i −0.349156 + 0.127082i
\(75\) 92.0536i 1.22738i
\(76\) −33.1367 + 18.6000i −0.436009 + 0.244737i
\(77\) 96.4045 1.25201
\(78\) −3.21191 8.82466i −0.0411784 0.113137i
\(79\) −147.140 25.9447i −1.86253 0.328414i −0.874785 0.484512i \(-0.838997\pi\)
−0.987741 + 0.156099i \(0.950108\pi\)
\(80\) 1.19119 0.999530i 0.0148899 0.0124941i
\(81\) −77.5237 65.0501i −0.957083 0.803088i
\(82\) 4.64349 + 26.3345i 0.0566279 + 0.321153i
\(83\) 29.0689 + 50.3489i 0.350228 + 0.606613i 0.986289 0.165026i \(-0.0527707\pi\)
−0.636061 + 0.771639i \(0.719437\pi\)
\(84\) 38.0407 + 21.9628i 0.452866 + 0.261462i
\(85\) −9.46392 3.44458i −0.111340 0.0405245i
\(86\) 23.7297 65.1969i 0.275927 0.758103i
\(87\) −50.9094 + 88.1776i −0.585165 + 1.01354i
\(88\) −39.8308 + 22.9963i −0.452623 + 0.261322i
\(89\) −91.8814 + 16.2012i −1.03238 + 0.182036i −0.664071 0.747670i \(-0.731173\pi\)
−0.368304 + 0.929705i \(0.620062\pi\)
\(90\) 1.66926 1.98934i 0.0185473 0.0221038i
\(91\) −6.83101 8.14088i −0.0750660 0.0894602i
\(92\) −14.6597 + 83.1391i −0.159344 + 0.903686i
\(93\) 70.0590 25.4994i 0.753322 0.274187i
\(94\) 78.3339i 0.833339i
\(95\) 4.67889 + 5.71526i 0.0492515 + 0.0601606i
\(96\) −20.9560 −0.218292
\(97\) 41.6935 + 114.552i 0.429830 + 1.18095i 0.945916 + 0.324411i \(0.105166\pi\)
−0.516086 + 0.856537i \(0.672612\pi\)
\(98\) −19.2912 3.40156i −0.196849 0.0347098i
\(99\) −58.8396 + 49.3723i −0.594339 + 0.498710i
\(100\) 38.0707 + 31.9451i 0.380707 + 0.319451i
\(101\) −23.4332 132.896i −0.232012 1.31580i −0.848816 0.528688i \(-0.822684\pi\)
0.616805 0.787116i \(-0.288427\pi\)
\(102\) 67.8634 + 117.543i 0.665328 + 1.15238i
\(103\) −92.3597 53.3239i −0.896697 0.517708i −0.0205696 0.999788i \(-0.506548\pi\)
−0.876127 + 0.482080i \(0.839881\pi\)
\(104\) 4.76424 + 1.73404i 0.0458100 + 0.0166735i
\(105\) 2.92017 8.02310i 0.0278111 0.0764105i
\(106\) −9.94382 + 17.2232i −0.0938096 + 0.162483i
\(107\) 6.51505 3.76147i 0.0608883 0.0351539i −0.469247 0.883067i \(-0.655475\pi\)
0.530135 + 0.847913i \(0.322141\pi\)
\(108\) 31.2029 5.50191i 0.288916 0.0509436i
\(109\) −9.26982 + 11.0473i −0.0850442 + 0.101352i −0.806889 0.590704i \(-0.798850\pi\)
0.721844 + 0.692055i \(0.243295\pi\)
\(110\) 5.74638 + 6.84827i 0.0522398 + 0.0622570i
\(111\) 12.5070 70.9310i 0.112676 0.639018i
\(112\) −22.2843 + 8.11084i −0.198967 + 0.0724182i
\(113\) 141.490i 1.25212i 0.779774 + 0.626061i \(0.215334\pi\)
−0.779774 + 0.626061i \(0.784666\pi\)
\(114\) 1.20560 99.5338i 0.0105754 0.873104i
\(115\) 16.4094 0.142690
\(116\) −18.8008 51.6547i −0.162076 0.445299i
\(117\) 8.33848 + 1.47030i 0.0712690 + 0.0125667i
\(118\) 24.0119 20.1483i 0.203490 0.170749i
\(119\) 117.659 + 98.7276i 0.988731 + 0.829643i
\(120\) 0.707322 + 4.01142i 0.00589435 + 0.0334285i
\(121\) −71.7077 124.201i −0.592626 1.02646i
\(122\) 17.4676 + 10.0849i 0.143177 + 0.0826631i
\(123\) −65.8232 23.9577i −0.535148 0.194778i
\(124\) −13.7666 + 37.8233i −0.111021 + 0.305027i
\(125\) 9.68933 16.7824i 0.0775146 0.134259i
\(126\) −34.2983 + 19.8021i −0.272208 + 0.157160i
\(127\) 92.1323 16.2454i 0.725451 0.127917i 0.201285 0.979533i \(-0.435488\pi\)
0.524166 + 0.851616i \(0.324377\pi\)
\(128\) 7.27231 8.66680i 0.0568149 0.0677094i
\(129\) 116.823 + 139.224i 0.905602 + 1.07926i
\(130\) 0.171126 0.970505i 0.00131636 0.00746542i
\(131\) 155.637 56.6473i 1.18807 0.432422i 0.329025 0.944321i \(-0.393280\pi\)
0.859046 + 0.511899i \(0.171058\pi\)
\(132\) 120.478i 0.912711i
\(133\) −37.2416 106.310i −0.280012 0.799320i
\(134\) −52.6482 −0.392897
\(135\) −2.10636 5.78718i −0.0156027 0.0428680i
\(136\) −72.1628 12.7242i −0.530609 0.0935606i
\(137\) 100.767 84.5537i 0.735526 0.617180i −0.196106 0.980583i \(-0.562830\pi\)
0.931632 + 0.363403i \(0.118385\pi\)
\(138\) −169.405 142.148i −1.22757 1.03006i
\(139\) −20.5435 116.508i −0.147795 0.838188i −0.965080 0.261955i \(-0.915633\pi\)
0.817285 0.576234i \(-0.195478\pi\)
\(140\) 2.30474 + 3.99193i 0.0164624 + 0.0285138i
\(141\) 177.705 + 102.598i 1.26032 + 0.727645i
\(142\) 42.0555 + 15.3070i 0.296166 + 0.107796i
\(143\) −9.96915 + 27.3900i −0.0697143 + 0.191539i
\(144\) 9.44718 16.3630i 0.0656054 0.113632i
\(145\) −9.25321 + 5.34235i −0.0638153 + 0.0368438i
\(146\) 103.967 18.3322i 0.712105 0.125563i
\(147\) 32.9833 39.3080i 0.224376 0.267401i
\(148\) 24.9947 + 29.7875i 0.168883 + 0.201267i
\(149\) −22.4518 + 127.331i −0.150683 + 0.854568i 0.811943 + 0.583736i \(0.198410\pi\)
−0.962627 + 0.270832i \(0.912701\pi\)
\(150\) −122.332 + 44.5253i −0.815549 + 0.296836i
\(151\) 288.719i 1.91204i 0.293294 + 0.956022i \(0.405249\pi\)
−0.293294 + 0.956022i \(0.594751\pi\)
\(152\) 40.7459 + 35.0395i 0.268065 + 0.230523i
\(153\) −122.374 −0.799830
\(154\) −46.6299 128.115i −0.302791 0.831912i
\(155\) 7.70484 + 1.35857i 0.0497087 + 0.00876498i
\(156\) −10.1737 + 8.53679i −0.0652163 + 0.0547230i
\(157\) 89.0151 + 74.6926i 0.566975 + 0.475749i 0.880641 0.473785i \(-0.157113\pi\)
−0.313665 + 0.949534i \(0.601557\pi\)
\(158\) 36.6913 + 208.087i 0.232223 + 1.31700i
\(159\) −26.0479 45.1162i −0.163823 0.283750i
\(160\) −1.90447 1.09955i −0.0119029 0.00687216i
\(161\) −235.160 85.5913i −1.46062 0.531623i
\(162\) −48.9494 + 134.487i −0.302157 + 0.830169i
\(163\) −90.4066 + 156.589i −0.554642 + 0.960668i 0.443289 + 0.896379i \(0.353811\pi\)
−0.997931 + 0.0642894i \(0.979522\pi\)
\(164\) 32.7506 18.9086i 0.199699 0.115296i
\(165\) −23.0620 + 4.06645i −0.139770 + 0.0246452i
\(166\) 52.8496 62.9837i 0.318371 0.379420i
\(167\) −134.977 160.860i −0.808247 0.963232i 0.191586 0.981476i \(-0.438637\pi\)
−0.999834 + 0.0182441i \(0.994192\pi\)
\(168\) 10.7871 61.1765i 0.0642087 0.364146i
\(169\) −155.789 + 56.7025i −0.921827 + 0.335517i
\(170\) 14.2430i 0.0837821i
\(171\) 77.1750 + 45.8122i 0.451316 + 0.267907i
\(172\) −98.1196 −0.570463
\(173\) −82.3903 226.365i −0.476244 1.30847i −0.912658 0.408725i \(-0.865974\pi\)
0.436413 0.899746i \(-0.356249\pi\)
\(174\) 141.806 + 25.0042i 0.814976 + 0.143702i
\(175\) −112.853 + 94.6953i −0.644877 + 0.541116i
\(176\) 49.8262 + 41.8091i 0.283103 + 0.237552i
\(177\) 14.2581 + 80.8616i 0.0805541 + 0.456845i
\(178\) 65.9722 + 114.267i 0.370630 + 0.641951i
\(179\) 7.69927 + 4.44517i 0.0430127 + 0.0248334i 0.521352 0.853342i \(-0.325428\pi\)
−0.478339 + 0.878175i \(0.658761\pi\)
\(180\) −3.45109 1.25609i −0.0191727 0.00697830i
\(181\) 46.2352 127.030i 0.255443 0.701824i −0.743991 0.668190i \(-0.767069\pi\)
0.999434 0.0336348i \(-0.0107083\pi\)
\(182\) −7.51454 + 13.0156i −0.0412887 + 0.0715141i
\(183\) −45.7563 + 26.4174i −0.250035 + 0.144357i
\(184\) 117.576 20.7319i 0.639002 0.112673i
\(185\) 4.85832 5.78992i 0.0262612 0.0312969i
\(186\) −67.7736 80.7694i −0.364374 0.434244i
\(187\) 73.1527 414.870i 0.391191 2.21855i
\(188\) −104.100 + 37.8893i −0.553723 + 0.201539i
\(189\) 93.9220i 0.496942i
\(190\) 5.33202 8.98231i 0.0280633 0.0472753i
\(191\) −109.638 −0.574020 −0.287010 0.957928i \(-0.592661\pi\)
−0.287010 + 0.957928i \(0.592661\pi\)
\(192\) 10.1362 + 27.8490i 0.0527928 + 0.145047i
\(193\) 311.671 + 54.9559i 1.61487 + 0.284746i 0.906853 0.421446i \(-0.138477\pi\)
0.708020 + 0.706192i \(0.249589\pi\)
\(194\) 132.064 110.815i 0.680744 0.571212i
\(195\) 1.97751 + 1.65933i 0.0101411 + 0.00850938i
\(196\) 4.81053 + 27.2819i 0.0245435 + 0.139193i
\(197\) −92.7151 160.587i −0.470635 0.815164i 0.528801 0.848746i \(-0.322642\pi\)
−0.999436 + 0.0335821i \(0.989308\pi\)
\(198\) 94.0722 + 54.3126i 0.475112 + 0.274306i
\(199\) 44.3698 + 16.1493i 0.222964 + 0.0811521i 0.451087 0.892480i \(-0.351037\pi\)
−0.228123 + 0.973632i \(0.573259\pi\)
\(200\) 24.0383 66.0446i 0.120191 0.330223i
\(201\) 68.9561 119.435i 0.343065 0.594206i
\(202\) −165.275 + 95.4215i −0.818192 + 0.472384i
\(203\) 160.472 28.2955i 0.790503 0.139387i
\(204\) 123.381 147.040i 0.604809 0.720783i
\(205\) −4.72492 5.63094i −0.0230484 0.0274680i
\(206\) −26.1901 + 148.531i −0.127136 + 0.721027i
\(207\) 187.362 68.1942i 0.905131 0.329441i
\(208\) 7.17007i 0.0344715i
\(209\) −201.445 + 234.252i −0.963853 + 1.12082i
\(210\) −12.0746 −0.0574979
\(211\) 83.5213 + 229.473i 0.395835 + 1.08755i 0.964293 + 0.264837i \(0.0853180\pi\)
−0.568458 + 0.822712i \(0.692460\pi\)
\(212\) 27.6981 + 4.88392i 0.130651 + 0.0230374i
\(213\) −89.8070 + 75.3570i −0.421629 + 0.353789i
\(214\) −8.14997 6.83864i −0.0380840 0.0319563i
\(215\) 3.31180 + 18.7822i 0.0154037 + 0.0873589i
\(216\) −22.4041 38.8051i −0.103723 0.179653i
\(217\) −103.331 59.6579i −0.476178 0.274921i
\(218\) 19.1648 + 6.97542i 0.0879120 + 0.0319973i
\(219\) −94.5836 + 259.866i −0.431889 + 1.18660i
\(220\) 6.32138 10.9489i 0.0287335 0.0497679i
\(221\) −40.2171 + 23.2193i −0.181978 + 0.105065i
\(222\) −100.312 + 17.6876i −0.451854 + 0.0796740i
\(223\) 161.214 192.127i 0.722933 0.861558i −0.271979 0.962303i \(-0.587678\pi\)
0.994912 + 0.100745i \(0.0321227\pi\)
\(224\) 21.5574 + 25.6911i 0.0962384 + 0.114693i
\(225\) 20.3821 115.593i 0.0905872 0.513745i
\(226\) 188.030 68.4372i 0.831989 0.302819i
\(227\) 0.891777i 0.00392853i −0.999998 0.00196427i \(-0.999375\pi\)
0.999998 0.00196427i \(-0.000625246\pi\)
\(228\) −132.856 + 46.5413i −0.582703 + 0.204129i
\(229\) 289.709 1.26510 0.632552 0.774518i \(-0.282007\pi\)
0.632552 + 0.774518i \(0.282007\pi\)
\(230\) −7.93704 21.8068i −0.0345089 0.0948124i
\(231\) 351.708 + 62.0157i 1.52255 + 0.268466i
\(232\) −59.5515 + 49.9696i −0.256687 + 0.215386i
\(233\) −192.719 161.710i −0.827118 0.694034i 0.127509 0.991837i \(-0.459302\pi\)
−0.954627 + 0.297803i \(0.903746\pi\)
\(234\) −2.07932 11.7924i −0.00888597 0.0503948i
\(235\) 10.7665 + 18.6480i 0.0458147 + 0.0793534i
\(236\) −38.3900 22.1645i −0.162669 0.0939172i
\(237\) −520.113 189.306i −2.19457 0.798758i
\(238\) 74.2912 204.114i 0.312148 0.857620i
\(239\) 104.580 181.137i 0.437572 0.757897i −0.559929 0.828540i \(-0.689172\pi\)
0.997502 + 0.0706430i \(0.0225051\pi\)
\(240\) 4.98876 2.88026i 0.0207865 0.0120011i
\(241\) −49.6606 + 8.75651i −0.206061 + 0.0363341i −0.275726 0.961236i \(-0.588918\pi\)
0.0696649 + 0.997570i \(0.477807\pi\)
\(242\) −130.370 + 155.369i −0.538720 + 0.642021i
\(243\) −149.332 177.967i −0.614537 0.732377i
\(244\) 4.95321 28.0911i 0.0203000 0.115127i
\(245\) 5.05996 1.84167i 0.0206529 0.00751704i
\(246\) 99.0622i 0.402692i
\(247\) 34.0553 + 0.412493i 0.137876 + 0.00167001i
\(248\) 56.9232 0.229529
\(249\) 73.6622 + 202.385i 0.295832 + 0.812792i
\(250\) −26.9892 4.75892i −0.107957 0.0190357i
\(251\) 35.2847 29.6073i 0.140576 0.117958i −0.569788 0.821792i \(-0.692975\pi\)
0.710364 + 0.703834i \(0.248530\pi\)
\(252\) 42.9052 + 36.0018i 0.170259 + 0.142864i
\(253\) 119.189 + 675.956i 0.471104 + 2.67176i
\(254\) −66.1523 114.579i −0.260442 0.451099i
\(255\) −32.3109 18.6547i −0.126710 0.0731558i
\(256\) −15.0351 5.47232i −0.0587308 0.0213763i
\(257\) −29.1491 + 80.0866i −0.113421 + 0.311621i −0.983396 0.181475i \(-0.941913\pi\)
0.869975 + 0.493096i \(0.164135\pi\)
\(258\) 128.512 222.590i 0.498110 0.862752i
\(259\) −99.8241 + 57.6335i −0.385421 + 0.222523i
\(260\) −1.37250 + 0.242009i −0.00527885 + 0.000930804i
\(261\) −83.4514 + 99.4535i −0.319737 + 0.381048i
\(262\) −150.560 179.431i −0.574657 0.684850i
\(263\) −13.4824 + 76.4625i −0.0512639 + 0.290732i −0.999652 0.0263800i \(-0.991602\pi\)
0.948388 + 0.317112i \(0.102713\pi\)
\(264\) −160.106 + 58.2739i −0.606463 + 0.220734i
\(265\) 5.46684i 0.0206296i
\(266\) −123.264 + 100.912i −0.463399 + 0.379369i
\(267\) −345.629 −1.29449
\(268\) 25.4654 + 69.9656i 0.0950201 + 0.261066i
\(269\) −313.463 55.2719i −1.16529 0.205472i −0.442648 0.896695i \(-0.645961\pi\)
−0.722641 + 0.691224i \(0.757072\pi\)
\(270\) −6.67191 + 5.59840i −0.0247108 + 0.0207348i
\(271\) 85.7299 + 71.9360i 0.316347 + 0.265446i 0.787109 0.616814i \(-0.211577\pi\)
−0.470763 + 0.882260i \(0.656021\pi\)
\(272\) 17.9948 + 102.054i 0.0661574 + 0.375197i
\(273\) −19.6844 34.0943i −0.0721039 0.124888i
\(274\) −161.106 93.0143i −0.587977 0.339468i
\(275\) 379.696 + 138.198i 1.38071 + 0.502538i
\(276\) −106.964 + 293.882i −0.387552 + 1.06479i
\(277\) 86.2411 149.374i 0.311340 0.539256i −0.667313 0.744777i \(-0.732556\pi\)
0.978653 + 0.205521i \(0.0658890\pi\)
\(278\) −144.894 + 83.6546i −0.521202 + 0.300916i
\(279\) 93.6198 16.5077i 0.335555 0.0591674i
\(280\) 4.19020 4.99369i 0.0149650 0.0178346i
\(281\) −5.93324 7.07097i −0.0211147 0.0251636i 0.755384 0.655283i \(-0.227450\pi\)
−0.776498 + 0.630119i \(0.783006\pi\)
\(282\) 50.3911 285.782i 0.178692 1.01341i
\(283\) 133.243 48.4965i 0.470824 0.171366i −0.0957017 0.995410i \(-0.530510\pi\)
0.566525 + 0.824044i \(0.308287\pi\)
\(284\) 63.2925i 0.222861i
\(285\) 13.3932 + 23.8606i 0.0469938 + 0.0837213i
\(286\) 41.2213 0.144130
\(287\) 38.3411 + 105.341i 0.133593 + 0.367043i
\(288\) −26.3147 4.63999i −0.0913705 0.0161111i
\(289\) 292.760 245.655i 1.01301 0.850018i
\(290\) 11.5753 + 9.71280i 0.0399147 + 0.0334924i
\(291\) 78.4189 + 444.736i 0.269481 + 1.52830i
\(292\) −74.6501 129.298i −0.255651 0.442800i
\(293\) 362.249 + 209.145i 1.23634 + 0.713804i 0.968345 0.249615i \(-0.0803041\pi\)
0.268000 + 0.963419i \(0.413637\pi\)
\(294\) −68.1911 24.8195i −0.231943 0.0844202i
\(295\) −2.94698 + 8.09676i −0.00998976 + 0.0274466i
\(296\) 27.4958 47.6240i 0.0928911 0.160892i
\(297\) 223.094 128.803i 0.751157 0.433681i
\(298\) 180.073 31.7517i 0.604271 0.106549i
\(299\) 48.6356 57.9617i 0.162661 0.193852i
\(300\) 118.342 + 141.034i 0.394473 + 0.470114i
\(301\) 50.5069 286.439i 0.167797 0.951623i
\(302\) 383.686 139.650i 1.27048 0.462418i
\(303\) 499.914i 1.64988i
\(304\) 26.8566 71.0966i 0.0883440 0.233870i
\(305\) −5.54440 −0.0181784
\(306\) 59.1910 + 162.626i 0.193435 + 0.531457i
\(307\) −396.123 69.8472i −1.29030 0.227515i −0.513954 0.857818i \(-0.671820\pi\)
−0.776350 + 0.630302i \(0.782931\pi\)
\(308\) −147.700 + 123.935i −0.479547 + 0.402387i
\(309\) −302.649 253.953i −0.979448 0.821855i
\(310\) −1.92131 10.8963i −0.00619778 0.0351493i
\(311\) 1.92896 + 3.34106i 0.00620244 + 0.0107429i 0.869110 0.494619i \(-0.164692\pi\)
−0.862908 + 0.505362i \(0.831359\pi\)
\(312\) 16.2657 + 9.39100i 0.0521336 + 0.0300994i
\(313\) 317.780 + 115.663i 1.01527 + 0.369529i 0.795455 0.606012i \(-0.207232\pi\)
0.219817 + 0.975541i \(0.429454\pi\)
\(314\) 56.2052 154.423i 0.178997 0.491792i
\(315\) 5.44333 9.42812i 0.0172804 0.0299305i
\(316\) 258.785 149.409i 0.818939 0.472815i
\(317\) 10.5173 1.85448i 0.0331775 0.00585009i −0.157035 0.987593i \(-0.550193\pi\)
0.190212 + 0.981743i \(0.439082\pi\)
\(318\) −47.3570 + 56.4379i −0.148922 + 0.177478i
\(319\) −287.279 342.366i −0.900563 1.07325i
\(320\) −0.540043 + 3.06274i −0.00168763 + 0.00957105i
\(321\) 26.1883 9.53175i 0.0815834 0.0296939i
\(322\) 353.910i 1.09910i
\(323\) −485.754 + 79.5979i −1.50388 + 0.246433i
\(324\) 202.400 0.624691
\(325\) −15.2343 41.8558i −0.0468747 0.128787i
\(326\) 251.824 + 44.4033i 0.772466 + 0.136207i
\(327\) −40.9253 + 34.3404i −0.125154 + 0.105016i
\(328\) −40.9693 34.3773i −0.124906 0.104809i
\(329\) −57.0242 323.400i −0.173326 0.982979i
\(330\) 16.5589 + 28.6808i 0.0501784 + 0.0869115i
\(331\) −148.405 85.6815i −0.448353 0.258857i 0.258782 0.965936i \(-0.416679\pi\)
−0.707134 + 0.707079i \(0.750012\pi\)
\(332\) −109.263 39.7686i −0.329107 0.119785i
\(333\) 31.4105 86.2996i 0.0943258 0.259158i
\(334\) −148.484 + 257.181i −0.444561 + 0.770003i
\(335\) 12.5334 7.23614i 0.0374130 0.0216004i
\(336\) −86.5166 + 15.2552i −0.257490 + 0.0454024i
\(337\) −3.21424 + 3.83059i −0.00953782 + 0.0113667i −0.770792 0.637087i \(-0.780139\pi\)
0.761254 + 0.648453i \(0.224584\pi\)
\(338\) 150.707 + 179.605i 0.445878 + 0.531377i
\(339\) −91.0185 + 516.191i −0.268491 + 1.52269i
\(340\) 18.9278 6.88917i 0.0556701 0.0202623i
\(341\) 327.256i 0.959695i
\(342\) 23.5522 124.719i 0.0688662 0.364675i
\(343\) −372.622 −1.08636
\(344\) 47.4594 + 130.394i 0.137963 + 0.379052i
\(345\) 59.8656 + 10.5559i 0.173523 + 0.0305969i
\(346\) −260.972 + 218.981i −0.754253 + 0.632894i
\(347\) 32.3482 + 27.1434i 0.0932226 + 0.0782231i 0.688208 0.725514i \(-0.258398\pi\)
−0.594985 + 0.803737i \(0.702842\pi\)
\(348\) −35.3613 200.544i −0.101613 0.576275i
\(349\) 68.5275 + 118.693i 0.196354 + 0.340095i 0.947344 0.320219i \(-0.103757\pi\)
−0.750990 + 0.660314i \(0.770423\pi\)
\(350\) 180.429 + 104.171i 0.515512 + 0.297631i
\(351\) −26.6847 9.71243i −0.0760248 0.0276707i
\(352\) 31.4608 86.4379i 0.0893773 0.245562i
\(353\) 179.947 311.677i 0.509765 0.882938i −0.490171 0.871626i \(-0.663066\pi\)
0.999936 0.0113122i \(-0.00360086\pi\)
\(354\) 100.563 58.0598i 0.284075 0.164011i
\(355\) −12.1155 + 2.13629i −0.0341282 + 0.00601773i
\(356\) 119.943 142.942i 0.336918 0.401523i
\(357\) 365.740 + 435.872i 1.02448 + 1.22093i
\(358\) 2.18325 12.3818i 0.00609847 0.0345861i
\(359\) −322.462 + 117.367i −0.898224 + 0.326927i −0.749541 0.661958i \(-0.769726\pi\)
−0.148683 + 0.988885i \(0.547503\pi\)
\(360\) 5.19380i 0.0144272i
\(361\) 336.139 + 131.650i 0.931133 + 0.364680i
\(362\) −191.177 −0.528114
\(363\) −181.711 499.247i −0.500581 1.37534i
\(364\) 20.9314 + 3.69077i 0.0575039 + 0.0101395i
\(365\) −22.2307 + 18.6537i −0.0609059 + 0.0511061i
\(366\) 57.2386 + 48.0289i 0.156390 + 0.131227i
\(367\) −31.2479 177.216i −0.0851441 0.482876i −0.997325 0.0730895i \(-0.976714\pi\)
0.912181 0.409787i \(-0.134397\pi\)
\(368\) −84.4216 146.223i −0.229407 0.397344i
\(369\) −77.3503 44.6582i −0.209621 0.121025i
\(370\) −10.0443 3.65583i −0.0271468 0.00988061i
\(371\) −28.5150 + 78.3444i −0.0768600 + 0.211171i
\(372\) −74.5552 + 129.133i −0.200417 + 0.347133i
\(373\) −614.242 + 354.633i −1.64676 + 0.950757i −0.668412 + 0.743791i \(0.733026\pi\)
−0.978348 + 0.206966i \(0.933641\pi\)
\(374\) −586.714 + 103.454i −1.56875 + 0.276614i
\(375\) 46.1450 54.9935i 0.123053 0.146649i
\(376\) 100.704 + 120.014i 0.267830 + 0.319187i
\(377\) −8.55514 + 48.5186i −0.0226927 + 0.128697i
\(378\) 124.815 45.4291i 0.330199 0.120183i
\(379\) 36.9284i 0.0974365i −0.998813 0.0487183i \(-0.984486\pi\)
0.998813 0.0487183i \(-0.0155136\pi\)
\(380\) −14.5159 2.74122i −0.0381996 0.00721373i
\(381\) 346.572 0.909639
\(382\) 53.0307 + 145.701i 0.138824 + 0.381415i
\(383\) 289.583 + 51.0612i 0.756090 + 0.133319i 0.538389 0.842696i \(-0.319033\pi\)
0.217701 + 0.976015i \(0.430144\pi\)
\(384\) 32.1065 26.9405i 0.0836106 0.0701577i
\(385\) 28.7091 + 24.0898i 0.0745691 + 0.0625709i
\(386\) −77.7194 440.769i −0.201346 1.14189i
\(387\) 115.869 + 200.691i 0.299404 + 0.518582i
\(388\) −211.143 121.904i −0.544184 0.314185i
\(389\) −29.3487 10.6820i −0.0754464 0.0274602i 0.304021 0.952665i \(-0.401671\pi\)
−0.379468 + 0.925205i \(0.623893\pi\)
\(390\) 1.24862 3.43057i 0.00320160 0.00879633i
\(391\) −546.777 + 947.046i −1.39841 + 2.42211i
\(392\) 33.9288 19.5888i 0.0865531 0.0499715i
\(393\) 604.245 106.545i 1.53752 0.271106i
\(394\) −168.563 + 200.886i −0.427826 + 0.509863i
\(395\) −37.3348 44.4939i −0.0945185 0.112643i
\(396\) 26.6757 151.285i 0.0673629 0.382034i
\(397\) −383.480 + 139.575i −0.965945 + 0.351575i −0.776361 0.630289i \(-0.782936\pi\)
−0.189585 + 0.981864i \(0.560714\pi\)
\(398\) 66.7754i 0.167777i
\(399\) −67.4796 411.801i −0.169122 1.03208i
\(400\) −99.3955 −0.248489
\(401\) −85.5142 234.948i −0.213252 0.585906i 0.786235 0.617928i \(-0.212028\pi\)
−0.999487 + 0.0320219i \(0.989805\pi\)
\(402\) −192.074 33.8679i −0.477796 0.0842484i
\(403\) 27.6351 23.1886i 0.0685735 0.0575400i
\(404\) 206.750 + 173.484i 0.511757 + 0.429415i
\(405\) −6.83155 38.7436i −0.0168680 0.0956633i
\(406\) −115.221 199.569i −0.283796 0.491550i
\(407\) 273.794 + 158.075i 0.672714 + 0.388391i
\(408\) −255.083 92.8426i −0.625203 0.227555i
\(409\) 226.429 622.110i 0.553617 1.52105i −0.275118 0.961410i \(-0.588717\pi\)
0.828735 0.559641i \(-0.189061\pi\)
\(410\) −5.19771 + 9.00270i −0.0126773 + 0.0219578i
\(411\) 422.016 243.651i 1.02680 0.592826i
\(412\) 210.055 37.0384i 0.509843 0.0898991i
\(413\) 84.4654 100.662i 0.204517 0.243733i
\(414\) −181.250 216.006i −0.437802 0.521753i
\(415\) −3.92462 + 22.2576i −0.00945691 + 0.0536328i
\(416\) −9.52849 + 3.46809i −0.0229050 + 0.00833674i
\(417\) 438.267i 1.05100i
\(418\) 408.740 + 154.401i 0.977847 + 0.369380i
\(419\) 587.978 1.40329 0.701645 0.712527i \(-0.252449\pi\)
0.701645 + 0.712527i \(0.252449\pi\)
\(420\) 5.84034 + 16.0462i 0.0139056 + 0.0382052i
\(421\) −641.015 113.028i −1.52260 0.268476i −0.651147 0.758952i \(-0.725712\pi\)
−0.871455 + 0.490476i \(0.836823\pi\)
\(422\) 264.554 221.987i 0.626905 0.526036i
\(423\) 200.429 + 168.180i 0.473828 + 0.397589i
\(424\) −6.90690 39.1710i −0.0162899 0.0923844i
\(425\) 321.880 + 557.512i 0.757364 + 1.31179i
\(426\) 143.583 + 82.8975i 0.337048 + 0.194595i
\(427\) 79.4560 + 28.9196i 0.186080 + 0.0677274i
\(428\) −5.14599 + 14.1385i −0.0120233 + 0.0330338i
\(429\) −53.9896 + 93.5128i −0.125850 + 0.217979i
\(430\) 23.3582 13.4859i 0.0543215 0.0313625i
\(431\) −216.189 + 38.1199i −0.501599 + 0.0884453i −0.418722 0.908114i \(-0.637522\pi\)
−0.0828765 + 0.996560i \(0.526411\pi\)
\(432\) −40.7325 + 48.5431i −0.0942881 + 0.112368i
\(433\) 178.919 + 213.227i 0.413207 + 0.492441i 0.932000 0.362459i \(-0.118063\pi\)
−0.518793 + 0.854900i \(0.673618\pi\)
\(434\) −29.3011 + 166.175i −0.0675140 + 0.382891i
\(435\) −37.1947 + 13.5378i −0.0855052 + 0.0311213i
\(436\) 28.8425i 0.0661526i
\(437\) 699.363 392.561i 1.60037 0.898309i
\(438\) 391.092 0.892904
\(439\) −126.632 347.918i −0.288455 0.792525i −0.996283 0.0861396i \(-0.972547\pi\)
0.707828 0.706385i \(-0.249675\pi\)
\(440\) −17.6079 3.10475i −0.0400180 0.00705625i
\(441\) 50.1209 42.0565i 0.113653 0.0953661i
\(442\) 50.3094 + 42.2146i 0.113822 + 0.0955081i
\(443\) −97.2235 551.382i −0.219466 1.24465i −0.872986 0.487745i \(-0.837820\pi\)
0.653520 0.756909i \(-0.273292\pi\)
\(444\) 72.0252 + 124.751i 0.162219 + 0.280971i
\(445\) −31.4105 18.1349i −0.0705854 0.0407525i
\(446\) −333.301 121.312i −0.747311 0.271999i
\(447\) −163.820 + 450.092i −0.366488 + 1.00692i
\(448\) 23.7145 41.0747i 0.0529342 0.0916847i
\(449\) −127.703 + 73.7296i −0.284417 + 0.164208i −0.635422 0.772165i \(-0.719174\pi\)
0.351004 + 0.936374i \(0.385840\pi\)
\(450\) −163.473 + 28.8247i −0.363273 + 0.0640548i
\(451\) 197.638 235.536i 0.438221 0.522252i
\(452\) −181.896 216.775i −0.402425 0.479591i
\(453\) −185.729 + 1053.32i −0.409997 + 2.32521i
\(454\) −1.18511 + 0.431343i −0.00261037 + 0.000950095i
\(455\) 4.13129i 0.00907975i
\(456\) 126.111 + 154.045i 0.276559 + 0.337817i
\(457\) −448.874 −0.982219 −0.491110 0.871098i \(-0.663409\pi\)
−0.491110 + 0.871098i \(0.663409\pi\)
\(458\) −140.129 385.002i −0.305959 0.840615i
\(459\) 404.186 + 71.2689i 0.880580 + 0.155270i
\(460\) −25.1406 + 21.0955i −0.0546535 + 0.0458597i
\(461\) −93.2749 78.2670i −0.202332 0.169776i 0.535992 0.844223i \(-0.319938\pi\)
−0.738324 + 0.674447i \(0.764382\pi\)
\(462\) −87.7034 497.391i −0.189834 1.07660i
\(463\) 309.579 + 536.206i 0.668636 + 1.15811i 0.978286 + 0.207261i \(0.0664551\pi\)
−0.309649 + 0.950851i \(0.600212\pi\)
\(464\) 95.2104 + 54.9697i 0.205195 + 0.118469i
\(465\) 27.2353 + 9.91284i 0.0585705 + 0.0213179i
\(466\) −121.685 + 334.326i −0.261126 + 0.717438i
\(467\) 161.988 280.572i 0.346870 0.600796i −0.638822 0.769355i \(-0.720578\pi\)
0.985692 + 0.168558i \(0.0539112\pi\)
\(468\) −14.6655 + 8.46711i −0.0313365 + 0.0180921i
\(469\) −217.357 + 38.3259i −0.463448 + 0.0817184i
\(470\) 19.5743 23.3277i 0.0416474 0.0496334i
\(471\) 276.701 + 329.760i 0.587476 + 0.700127i
\(472\) −10.8861 + 61.7381i −0.0230638 + 0.130801i
\(473\) −749.644 + 272.848i −1.58487 + 0.576846i
\(474\) 782.757i 1.65139i
\(475\) 5.71821 472.094i 0.0120383 0.993882i
\(476\) −307.186 −0.645348
\(477\) −22.7192 62.4204i −0.0476292 0.130860i
\(478\) −291.302 51.3645i −0.609419 0.107457i
\(479\) 56.2520 47.2011i 0.117436 0.0985408i −0.582178 0.813061i \(-0.697799\pi\)
0.699615 + 0.714520i \(0.253355\pi\)
\(480\) −6.24067 5.23654i −0.0130014 0.0109095i
\(481\) −6.05179 34.3214i −0.0125817 0.0713543i
\(482\) 35.6571 + 61.7599i 0.0739774 + 0.128133i
\(483\) −802.865 463.534i −1.66225 0.959698i
\(484\) 269.533 + 98.1019i 0.556886 + 0.202690i
\(485\) −16.2083 + 44.5319i −0.0334191 + 0.0918183i
\(486\) −164.275 + 284.533i −0.338015 + 0.585458i
\(487\) −16.2303 + 9.37057i −0.0333271 + 0.0192414i −0.516571 0.856244i \(-0.672792\pi\)
0.483244 + 0.875486i \(0.339458\pi\)
\(488\) −39.7267 + 7.00490i −0.0814073 + 0.0143543i
\(489\) −430.558 + 513.119i −0.880487 + 1.04932i
\(490\) −4.89490 5.83351i −0.00998959 0.0119051i
\(491\) −58.4551 + 331.515i −0.119053 + 0.675184i 0.865610 + 0.500718i \(0.166931\pi\)
−0.984663 + 0.174465i \(0.944180\pi\)
\(492\) 131.646 47.9153i 0.267574 0.0973889i
\(493\) 712.050i 1.44432i
\(494\) −15.9240 45.4565i −0.0322349 0.0920172i
\(495\) −29.8596 −0.0603224
\(496\) −27.5331 75.6467i −0.0555104 0.152513i
\(497\) 184.769 + 32.5797i 0.371768 + 0.0655527i
\(498\) 233.325 195.783i 0.468525 0.393139i
\(499\) 234.470 + 196.743i 0.469879 + 0.394275i 0.846750 0.531990i \(-0.178556\pi\)
−0.376872 + 0.926266i \(0.623000\pi\)
\(500\) 6.73014 + 38.1685i 0.0134603 + 0.0763370i
\(501\) −388.953 673.686i −0.776353 1.34468i
\(502\) −56.4128 32.5699i −0.112376 0.0648804i
\(503\) 466.415 + 169.761i 0.927267 + 0.337498i 0.761126 0.648604i \(-0.224647\pi\)
0.166141 + 0.986102i \(0.446869\pi\)
\(504\) 27.0909 74.4316i 0.0537517 0.147682i
\(505\) 26.2301 45.4318i 0.0519407 0.0899640i
\(506\) 840.645 485.347i 1.66135 0.959183i
\(507\) −604.833 + 106.648i −1.19296 + 0.210352i
\(508\) −120.270 + 143.332i −0.236752 + 0.282150i
\(509\) 277.084 + 330.215i 0.544369 + 0.648753i 0.966161 0.257939i \(-0.0830434\pi\)
−0.421793 + 0.906692i \(0.638599\pi\)
\(510\) −9.16229 + 51.9619i −0.0179653 + 0.101886i
\(511\) 415.882 151.369i 0.813859 0.296221i
\(512\) 22.6274i 0.0441942i
\(513\) −228.219 196.258i −0.444872 0.382569i
\(514\) 120.528 0.234491
\(515\) −14.1799 38.9589i −0.0275337 0.0756483i
\(516\) −357.966 63.1190i −0.693732 0.122324i
\(517\) −689.973 + 578.956i −1.33457 + 1.11984i
\(518\) 124.875 + 104.782i 0.241070 + 0.202282i
\(519\) −154.963 878.840i −0.298580 1.69333i
\(520\) 0.985477 + 1.70690i 0.00189515 + 0.00328249i
\(521\) 15.6249 + 9.02106i 0.0299903 + 0.0173149i 0.514920 0.857238i \(-0.327822\pi\)
−0.484930 + 0.874553i \(0.661155\pi\)
\(522\) 172.531 + 62.7961i 0.330519 + 0.120299i
\(523\) 43.7031 120.073i 0.0835624 0.229586i −0.890874 0.454251i \(-0.849907\pi\)
0.974436 + 0.224666i \(0.0721290\pi\)
\(524\) −165.626 + 286.872i −0.316080 + 0.547466i
\(525\) −472.634 + 272.876i −0.900256 + 0.519763i
\(526\) 108.134 19.0670i 0.205579 0.0362490i
\(527\) −335.142 + 399.406i −0.635942 + 0.757887i
\(528\) 154.883 + 184.583i 0.293340 + 0.349589i
\(529\) 217.538 1233.72i 0.411226 2.33218i
\(530\) −7.26503 + 2.64425i −0.0137076 + 0.00498916i
\(531\) 104.696i 0.197167i
\(532\) 193.726 + 114.999i 0.364147 + 0.216163i
\(533\) −33.8939 −0.0635909
\(534\) 167.177 + 459.315i 0.313066 + 0.860141i
\(535\) 2.88010 + 0.507838i 0.00538336 + 0.000949231i
\(536\) 80.6617 67.6832i 0.150488 0.126275i
\(537\) 25.2294 + 21.1700i 0.0469821 + 0.0394226i
\(538\) 78.1663 + 443.303i 0.145291 + 0.823984i
\(539\) 112.618 + 195.059i 0.208938 + 0.361891i
\(540\) 10.6670 + 6.15859i 0.0197537 + 0.0114048i
\(541\) 640.195 + 233.012i 1.18335 + 0.430706i 0.857386 0.514675i \(-0.172087\pi\)
0.325969 + 0.945380i \(0.394309\pi\)
\(542\) 54.1309 148.723i 0.0998725 0.274397i
\(543\) 250.395 433.696i 0.461132 0.798704i
\(544\) 126.918 73.2760i 0.233305 0.134699i
\(545\) −5.52107 + 0.973514i −0.0101304 + 0.00178626i
\(546\) −35.7877 + 42.6501i −0.0655452 + 0.0781137i
\(547\) 181.686 + 216.525i 0.332151 + 0.395842i 0.906110 0.423042i \(-0.139038\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(548\) −45.6841 + 259.087i −0.0833652 + 0.472787i
\(549\) −63.3060 + 23.0415i −0.115311 + 0.0419699i
\(550\) 571.433i 1.03897i
\(551\) −266.565 + 449.054i −0.483783 + 0.814980i
\(552\) 442.285 0.801242
\(553\) 302.959 + 832.373i 0.547846 + 1.50520i
\(554\) −240.221 42.3574i −0.433611 0.0764574i
\(555\) 21.4490 17.9978i 0.0386468 0.0324285i
\(556\) 181.255 + 152.091i 0.325997 + 0.273544i
\(557\) −23.2813 132.035i −0.0417977 0.237047i 0.956751 0.290909i \(-0.0939578\pi\)
−0.998548 + 0.0538627i \(0.982847\pi\)
\(558\) −67.2204 116.429i −0.120467 0.208655i
\(559\) 76.1587 + 43.9703i 0.136241 + 0.0786588i
\(560\) −8.66300 3.15307i −0.0154696 0.00563049i
\(561\) 533.760 1466.49i 0.951443 2.61407i
\(562\) −6.52694 + 11.3050i −0.0116138 + 0.0201157i
\(563\) −65.0895 + 37.5795i −0.115612 + 0.0667486i −0.556691 0.830720i \(-0.687929\pi\)
0.441079 + 0.897468i \(0.354596\pi\)
\(564\) −404.157 + 71.2637i −0.716590 + 0.126354i
\(565\) −35.3558 + 42.1354i −0.0625767 + 0.0745760i
\(566\) −128.897 153.613i −0.227733 0.271401i
\(567\) −104.185 + 590.862i −0.183748 + 1.04208i
\(568\) −84.1111 + 30.6139i −0.148083 + 0.0538978i
\(569\) 184.239i 0.323794i 0.986808 + 0.161897i \(0.0517612\pi\)
−0.986808 + 0.161897i \(0.948239\pi\)
\(570\) 25.2308 29.3397i 0.0442645 0.0514732i
\(571\) 90.1138 0.157818 0.0789088 0.996882i \(-0.474856\pi\)
0.0789088 + 0.996882i \(0.474856\pi\)
\(572\) −19.9383 54.7800i −0.0348572 0.0957693i
\(573\) −399.987 70.5285i −0.698058 0.123086i
\(574\) 121.446 101.905i 0.211578 0.177535i
\(575\) −803.497 674.214i −1.39739 1.17255i
\(576\) 6.56194 + 37.2146i 0.0113923 + 0.0646087i
\(577\) 162.882 + 282.120i 0.282291 + 0.488943i 0.971949 0.235193i \(-0.0755722\pi\)
−0.689657 + 0.724136i \(0.742239\pi\)
\(578\) −468.063 270.236i −0.809797 0.467537i
\(579\) 1101.70 + 400.987i 1.90277 + 0.692550i
\(580\) 7.30876 20.0806i 0.0126013 0.0346218i
\(581\) 172.339 298.500i 0.296625 0.513769i
\(582\) 553.091 319.327i 0.950327 0.548672i
\(583\) 225.197 39.7083i 0.386273 0.0681104i
\(584\) −135.720 + 161.744i −0.232397 + 0.276960i
\(585\) 2.11578 + 2.52149i 0.00361672 + 0.00431024i
\(586\) 102.722 582.563i 0.175293 0.994135i
\(587\) 835.717 304.176i 1.42371 0.518188i 0.488587 0.872515i \(-0.337512\pi\)
0.935121 + 0.354327i \(0.115290\pi\)
\(588\) 102.626i 0.174534i
\(589\) 360.879 126.421i 0.612699 0.214637i
\(590\) 12.1854 0.0206532
\(591\) −234.945 645.506i −0.397538 1.09223i
\(592\) −76.5882 13.5046i −0.129372 0.0228118i
\(593\) −267.026 + 224.062i −0.450297 + 0.377844i −0.839546 0.543288i \(-0.817179\pi\)
0.389249 + 0.921133i \(0.372735\pi\)
\(594\) −279.078 234.174i −0.469828 0.394233i
\(595\) 10.3683 + 58.8018i 0.0174258 + 0.0988266i
\(596\) −129.295 223.945i −0.216938 0.375747i
\(597\) 151.484 + 87.4592i 0.253742 + 0.146498i
\(598\) −100.551 36.5977i −0.168146 0.0612001i
\(599\) −392.697 + 1078.93i −0.655588 + 1.80121i −0.0595953 + 0.998223i \(0.518981\pi\)
−0.595993 + 0.802990i \(0.703241\pi\)
\(600\) 130.183 225.484i 0.216972 0.375807i
\(601\) 197.455 114.000i 0.328543 0.189685i −0.326651 0.945145i \(-0.605920\pi\)
0.655194 + 0.755460i \(0.272587\pi\)
\(602\) −405.085 + 71.4275i −0.672899 + 0.118650i
\(603\) 113.034 134.708i 0.187452 0.223397i
\(604\) −371.170 442.343i −0.614519 0.732356i
\(605\) 9.68131 54.9055i 0.0160022 0.0907528i
\(606\) −664.348 + 241.803i −1.09628 + 0.399015i
\(607\) 1077.82i 1.77566i −0.460174 0.887829i \(-0.652213\pi\)
0.460174 0.887829i \(-0.347787\pi\)
\(608\) −107.472 1.30175i −0.176764 0.00214104i
\(609\) 603.645 0.991207
\(610\) 2.68177 + 7.36810i 0.00439634 + 0.0120789i
\(611\) 97.7798 + 17.2412i 0.160032 + 0.0282180i
\(612\) 187.488 157.321i 0.306353 0.257060i
\(613\) 664.095 + 557.242i 1.08335 + 0.909041i 0.996195 0.0871532i \(-0.0277770\pi\)
0.0871583 + 0.996194i \(0.472221\pi\)
\(614\) 98.7789 + 560.203i 0.160878 + 0.912383i
\(615\) −13.6154 23.5826i −0.0221389 0.0383457i
\(616\) 236.142 + 136.337i 0.383347 + 0.221326i
\(617\) −572.032 208.203i −0.927119 0.337444i −0.166052 0.986117i \(-0.553102\pi\)
−0.761067 + 0.648673i \(0.775324\pi\)
\(618\) −191.096 + 525.033i −0.309218 + 0.849568i
\(619\) 91.1210 157.826i 0.147207 0.254970i −0.782987 0.622038i \(-0.786305\pi\)
0.930194 + 0.367068i \(0.119638\pi\)
\(620\) −13.5511 + 7.82370i −0.0218565 + 0.0126189i
\(621\) −658.549 + 116.120i −1.06047 + 0.186989i
\(622\) 3.50700 4.17948i 0.00563826 0.00671942i
\(623\) 355.548 + 423.725i 0.570702 + 0.680137i
\(624\) 4.61240 26.1582i 0.00739167 0.0419202i
\(625\) −576.679 + 209.894i −0.922686 + 0.335830i
\(626\) 478.251i 0.763979i
\(627\) −885.614 + 725.023i −1.41246 + 1.15634i
\(628\) −232.402 −0.370067
\(629\) 172.274 + 473.318i 0.273885 + 0.752493i
\(630\) −15.1622 2.67350i −0.0240669 0.00424365i
\(631\) 205.728 172.626i 0.326035 0.273576i −0.465047 0.885286i \(-0.653963\pi\)
0.791082 + 0.611710i \(0.209518\pi\)
\(632\) −323.726 271.638i −0.512224 0.429807i
\(633\) 157.090 + 890.904i 0.248168 + 1.40743i
\(634\) −7.55156 13.0797i −0.0119110 0.0206304i
\(635\) 31.4963 + 18.1844i 0.0496004 + 0.0286368i
\(636\) 97.9079 + 35.6356i 0.153943 + 0.0560308i
\(637\) 8.49196 23.3315i 0.0133312 0.0366271i
\(638\) −316.025 + 547.372i −0.495338 + 0.857950i
\(639\) −129.457 + 74.7420i −0.202593 + 0.116967i
\(640\) 4.33136 0.763736i 0.00676776 0.00119334i
\(641\) −786.917 + 937.811i −1.22764 + 1.46304i −0.386443 + 0.922313i \(0.626296\pi\)
−0.841196 + 0.540730i \(0.818148\pi\)
\(642\) −25.3340 30.1919i −0.0394610 0.0470278i
\(643\) −73.9991 + 419.670i −0.115084 + 0.652675i 0.871624 + 0.490174i \(0.163067\pi\)
−0.986709 + 0.162500i \(0.948044\pi\)
\(644\) 470.320 171.183i 0.730311 0.265811i
\(645\) 70.6526i 0.109539i
\(646\) 340.734 + 607.031i 0.527452 + 0.939676i
\(647\) 546.821 0.845163 0.422582 0.906325i \(-0.361124\pi\)
0.422582 + 0.906325i \(0.361124\pi\)
\(648\) −97.8988 268.975i −0.151078 0.415084i
\(649\) −354.937 62.5850i −0.546899 0.0964330i
\(650\) −48.2546 + 40.4904i −0.0742379 + 0.0622930i
\(651\) −338.599 284.119i −0.520122 0.436434i
\(652\) −62.7958 356.133i −0.0963126 0.546216i
\(653\) −485.458 840.838i −0.743428 1.28765i −0.950926 0.309419i \(-0.899865\pi\)
0.207498 0.978235i \(-0.433468\pi\)
\(654\) 65.4309 + 37.7766i 0.100047 + 0.0577623i
\(655\) 60.5037 + 22.0215i 0.0923720 + 0.0336207i
\(656\) −25.8685 + 71.0730i −0.0394336 + 0.108343i
\(657\) −176.308 + 305.375i −0.268353 + 0.464802i
\(658\) −402.193 + 232.206i −0.611235 + 0.352897i
\(659\) 57.2312 10.0914i 0.0868456 0.0153132i −0.130056 0.991507i \(-0.541516\pi\)
0.216902 + 0.976193i \(0.430405\pi\)
\(660\) 30.1053 35.8781i 0.0456141 0.0543608i
\(661\) −675.405 804.917i −1.02179 1.21773i −0.975773 0.218786i \(-0.929790\pi\)
−0.0460205 0.998940i \(-0.514654\pi\)
\(662\) −42.0826 + 238.662i −0.0635689 + 0.360517i
\(663\) −161.659 + 58.8390i −0.243829 + 0.0887466i
\(664\) 164.439i 0.247649i
\(665\) 15.4744 40.9648i 0.0232697 0.0616012i
\(666\) −129.879 −0.195013
\(667\) 396.798 + 1090.19i 0.594899 + 1.63447i
\(668\) 413.594 + 72.9279i 0.619153 + 0.109173i
\(669\) 711.743 597.223i 1.06389 0.892710i
\(670\) −15.6785 13.1559i −0.0234008 0.0196356i
\(671\) −40.2717 228.392i −0.0600175 0.340376i
\(672\) 62.1202 + 107.595i 0.0924408 + 0.160112i
\(673\) −561.669 324.280i −0.834576 0.481842i 0.0208412 0.999783i \(-0.493366\pi\)
−0.855417 + 0.517940i \(0.826699\pi\)
\(674\) 6.64526 + 2.41868i 0.00985944 + 0.00358854i
\(675\) −134.639 + 369.918i −0.199466 + 0.548027i
\(676\) 165.787 287.151i 0.245247 0.424780i
\(677\) −291.669 + 168.395i −0.430826 + 0.248737i −0.699698 0.714438i \(-0.746682\pi\)
0.268873 + 0.963176i \(0.413349\pi\)
\(678\) 730.005 128.720i 1.07670 0.189852i
\(679\) 464.556 553.637i 0.684177 0.815371i
\(680\) −18.3104 21.8215i −0.0269270 0.0320904i
\(681\) 0.573668 3.25343i 0.000842390 0.00477743i
\(682\) 434.899 158.290i 0.637682 0.232097i
\(683\) 914.053i 1.33829i −0.743131 0.669146i \(-0.766660\pi\)
0.743131 0.669146i \(-0.233340\pi\)
\(684\) −177.134 + 29.0260i −0.258968 + 0.0424357i
\(685\) 51.1368 0.0746522
\(686\) 180.234 + 495.188i 0.262731 + 0.721848i
\(687\) 1056.93 + 186.366i 1.53847 + 0.271275i
\(688\) 150.328 126.140i 0.218500 0.183343i
\(689\) −19.3101 16.2031i −0.0280263 0.0235169i
\(690\) −14.9283 84.6627i −0.0216353 0.122700i
\(691\) −112.767 195.319i −0.163195 0.282661i 0.772818 0.634628i \(-0.218846\pi\)
−0.936013 + 0.351966i \(0.885513\pi\)
\(692\) 417.239 + 240.893i 0.602947 + 0.348111i
\(693\) 427.913 + 155.748i 0.617479 + 0.224744i
\(694\) 20.4251 56.1174i 0.0294309 0.0808608i
\(695\) 22.9955 39.8294i 0.0330871 0.0573085i
\(696\) −249.404 + 143.993i −0.358339 + 0.206887i
\(697\) 482.422 85.0641i 0.692141 0.122043i
\(698\) 124.588 148.479i 0.178493 0.212720i
\(699\) −599.061 713.933i −0.857025 1.02136i
\(700\) 51.1636 290.163i 0.0730909 0.414519i
\(701\) 597.024 217.299i 0.851674 0.309984i 0.120951 0.992658i \(-0.461405\pi\)
0.730723 + 0.682674i \(0.239183\pi\)
\(702\) 40.1598i 0.0572077i
\(703\) 68.5481 362.991i 0.0975080 0.516345i
\(704\) −130.087 −0.184782
\(705\) 27.2828 + 74.9588i 0.0386990 + 0.106325i
\(706\) −501.234 88.3811i −0.709964 0.125186i
\(707\) −612.871 + 514.260i −0.866862 + 0.727383i
\(708\) −125.798 105.557i −0.177681 0.149092i
\(709\) 119.189 + 675.954i 0.168108 + 0.953390i 0.945801 + 0.324746i \(0.105279\pi\)
−0.777693 + 0.628644i \(0.783610\pi\)
\(710\) 8.69913 + 15.0673i 0.0122523 + 0.0212216i
\(711\) −611.196 352.874i −0.859629 0.496307i
\(712\) −247.974 90.2553i −0.348279 0.126763i
\(713\) 290.549 798.277i 0.407502 1.11960i
\(714\) 402.337 696.868i 0.563497 0.976005i
\(715\) −9.81308 + 5.66558i −0.0137246 + 0.00792389i
\(716\) −17.5106 + 3.08758i −0.0244561 + 0.00431227i
\(717\) 498.057 593.561i 0.694640 0.827840i
\(718\) 311.943 + 371.760i 0.434462 + 0.517771i
\(719\) 146.800 832.545i 0.204173 1.15792i −0.694564 0.719431i \(-0.744402\pi\)
0.898736 0.438490i \(-0.144486\pi\)
\(720\) 6.90218 2.51219i 0.00958636 0.00348915i
\(721\) 632.275i 0.876942i
\(722\) 12.3657 510.381i 0.0171271 0.706899i
\(723\) −186.808 −0.258379
\(724\) 92.4704 + 254.060i 0.127722 + 0.350912i
\(725\) 672.592 + 118.596i 0.927713 + 0.163581i
\(726\) −575.571 + 482.961i −0.792797 + 0.665236i
\(727\) 697.047 + 584.892i 0.958799 + 0.804528i 0.980757 0.195231i \(-0.0625457\pi\)
−0.0219584 + 0.999759i \(0.506990\pi\)
\(728\) −5.21954 29.6015i −0.00716970 0.0406614i
\(729\) 25.0810 + 43.4415i 0.0344046 + 0.0595905i
\(730\) 35.5422 + 20.5203i 0.0486879 + 0.0281100i
\(731\) −1194.34 434.705i −1.63385 0.594671i
\(732\) 36.1412 99.2970i 0.0493732 0.135652i
\(733\) 99.4128 172.188i 0.135625 0.234909i −0.790211 0.612834i \(-0.790029\pi\)
0.925836 + 0.377926i \(0.123363\pi\)
\(734\) −220.392 + 127.244i −0.300262 + 0.173356i
\(735\) 19.6448 3.46390i 0.0267276 0.00471279i
\(736\) −153.485 + 182.916i −0.208540 + 0.248528i
\(737\) 389.116 + 463.731i 0.527973 + 0.629214i
\(738\) −21.9339 + 124.394i −0.0297208 + 0.168555i
\(739\) −570.980 + 207.820i −0.772639 + 0.281218i −0.698100 0.716000i \(-0.745971\pi\)
−0.0745393 + 0.997218i \(0.523749\pi\)
\(740\) 15.1164i 0.0204276i
\(741\) 123.977 + 23.4122i 0.167311 + 0.0315954i
\(742\) 117.906 0.158903
\(743\) −470.492 1292.66i −0.633232 1.73979i −0.672008 0.740543i \(-0.734568\pi\)
0.0387762 0.999248i \(-0.487654\pi\)
\(744\) 207.670 + 36.6179i 0.279127 + 0.0492176i
\(745\) −38.5038 + 32.3085i −0.0516829 + 0.0433671i
\(746\) 768.383 + 644.750i 1.03000 + 0.864275i
\(747\) 47.6872 + 270.447i 0.0638382 + 0.362045i
\(748\) 421.270 + 729.660i 0.563195 + 0.975482i
\(749\) −38.6253 22.3003i −0.0515692 0.0297735i
\(750\) −95.4022 34.7236i −0.127203 0.0462981i
\(751\) −198.529 + 545.453i −0.264352 + 0.726302i 0.734509 + 0.678599i \(0.237412\pi\)
−0.998862 + 0.0477032i \(0.984810\pi\)
\(752\) 110.781 191.878i 0.147315 0.255157i
\(753\) 147.773 85.3171i 0.196246 0.113303i
\(754\) 68.6157 12.0988i 0.0910022 0.0160461i
\(755\) −72.1457 + 85.9799i −0.0955573 + 0.113881i
\(756\) −120.744 143.897i −0.159714 0.190340i
\(757\) 160.240 908.768i 0.211678 1.20049i −0.674901 0.737909i \(-0.735813\pi\)
0.886579 0.462578i \(-0.153075\pi\)
\(758\) −49.0752 + 17.8619i −0.0647430 + 0.0235645i
\(759\) 2542.73i 3.35011i
\(760\) 3.37830 + 20.6164i 0.00444513 + 0.0271269i
\(761\) −514.855 −0.676550 −0.338275 0.941047i \(-0.609843\pi\)
−0.338275 + 0.941047i \(0.609843\pi\)
\(762\) −167.633 460.569i −0.219991 0.604422i
\(763\) 84.1994 + 14.8466i 0.110353 + 0.0194582i
\(764\) 167.975 140.948i 0.219863 0.184487i
\(765\) −36.4428 30.5791i −0.0476376 0.0399727i
\(766\) −72.2115 409.532i −0.0942709 0.534637i
\(767\) 19.8651 + 34.4073i 0.0258997 + 0.0448596i
\(768\) −51.3316 29.6363i −0.0668380 0.0385889i
\(769\) −728.967 265.322i −0.947941 0.345022i −0.178644 0.983914i \(-0.557171\pi\)
−0.769297 + 0.638891i \(0.779393\pi\)
\(770\) 18.1273 49.8043i 0.0235419 0.0646809i
\(771\) −157.862 + 273.425i −0.204750 + 0.354637i
\(772\) −548.157 + 316.479i −0.710048 + 0.409946i
\(773\) 1143.59 201.645i 1.47941 0.260860i 0.625069 0.780570i \(-0.285071\pi\)
0.854343 + 0.519710i \(0.173960\pi\)
\(774\) 210.659 251.054i 0.272170 0.324359i
\(775\) −321.454 383.094i −0.414779 0.494314i
\(776\) −59.8731 + 339.557i −0.0771561 + 0.437574i
\(777\) −401.259 + 146.046i −0.516421 + 0.187962i
\(778\) 44.1690i 0.0567725i
\(779\) −336.084 126.955i −0.431430 0.162972i
\(780\) −5.16292 −0.00661913
\(781\) −176.002 483.561i −0.225355 0.619157i
\(782\) 1523.02 + 268.550i 1.94760 + 0.343415i
\(783\) 333.550 279.882i 0.425990 0.357448i
\(784\) −42.4431 35.6140i −0.0541366 0.0454260i
\(785\) 7.84420 + 44.4866i 0.00999261 + 0.0566709i
\(786\) −433.857 751.462i −0.551981 0.956059i
\(787\) 1036.38 + 598.354i 1.31687 + 0.760297i 0.983224 0.182401i \(-0.0583868\pi\)
0.333649 + 0.942698i \(0.391720\pi\)
\(788\) 348.495 + 126.842i 0.442252 + 0.160967i
\(789\) −98.3745 + 270.282i −0.124683 + 0.342562i
\(790\) −41.0706 + 71.1364i −0.0519881 + 0.0900461i
\(791\) 726.457 419.420i 0.918404 0.530241i
\(792\) −213.950 + 37.7251i −0.270139 + 0.0476327i
\(793\) −16.4330 + 19.5841i −0.0207226 + 0.0246962i
\(794\) 370.971 + 442.106i 0.467218 + 0.556808i
\(795\) 3.51674 19.9444i 0.00442358 0.0250873i
\(796\) −88.7395 + 32.2986i −0.111482 + 0.0405761i
\(797\) 461.365i 0.578877i 0.957197 + 0.289438i \(0.0934685\pi\)
−0.957197 + 0.289438i \(0.906532\pi\)
\(798\) −514.614 + 288.859i −0.644880 + 0.361979i
\(799\) −1435.00 −1.79599
\(800\) 48.0766 + 132.089i 0.0600957 + 0.165112i
\(801\) −434.010 76.5277i −0.541835 0.0955402i
\(802\) −270.867 + 227.284i −0.337739 + 0.283396i
\(803\) −929.881 780.263i −1.15801 0.971685i
\(804\) 47.8964 + 271.634i 0.0595726 + 0.337853i
\(805\) −48.6425 84.2513i −0.0604255 0.104660i
\(806\) −44.1828 25.5089i −0.0548173 0.0316488i
\(807\) −1108.04 403.292i −1.37303 0.499743i
\(808\) 130.544 358.667i 0.161565 0.443895i
\(809\) 105.585 182.878i 0.130513 0.226055i −0.793362 0.608751i \(-0.791671\pi\)
0.923874 + 0.382696i \(0.125004\pi\)
\(810\) −48.1831 + 27.8185i −0.0594853 + 0.0343438i
\(811\) −112.676 + 19.8677i −0.138934 + 0.0244978i −0.242683 0.970106i \(-0.578027\pi\)
0.103749 + 0.994604i \(0.466916\pi\)
\(812\) −209.481 + 249.650i −0.257982 + 0.307451i
\(813\) 266.489 + 317.590i 0.327785 + 0.390639i
\(814\) 77.6389 440.312i 0.0953795 0.540924i
\(815\) −66.0518 + 24.0409i −0.0810451 + 0.0294980i
\(816\) 383.893i 0.470458i
\(817\) 590.474 + 721.263i 0.722734 + 0.882818i
\(818\) −936.260 −1.14457
\(819\) −17.1688 47.1710i −0.0209632 0.0575959i
\(820\) 14.4780 + 2.55286i 0.0176561 + 0.00311325i
\(821\) 579.086 485.910i 0.705342 0.591852i −0.217946 0.975961i \(-0.569936\pi\)
0.923288 + 0.384109i \(0.125491\pi\)
\(822\) −527.920 442.977i −0.642238 0.538902i
\(823\) 80.5969 + 457.088i 0.0979307 + 0.555392i 0.993810 + 0.111095i \(0.0354357\pi\)
−0.895879 + 0.444298i \(0.853453\pi\)
\(824\) −150.823 261.233i −0.183037 0.317030i
\(825\) 1296.33 + 748.435i 1.57131 + 0.907194i
\(826\) −174.627 63.5591i −0.211413 0.0769481i
\(827\) −451.994 + 1241.84i −0.546546 + 1.50162i 0.291797 + 0.956480i \(0.405747\pi\)
−0.838343 + 0.545143i \(0.816475\pi\)
\(828\) −199.387 + 345.348i −0.240805 + 0.417087i
\(829\) −882.290 + 509.390i −1.06428 + 0.614464i −0.926614 0.376015i \(-0.877294\pi\)
−0.137669 + 0.990478i \(0.543961\pi\)
\(830\) 31.4770 5.55025i 0.0379241 0.00668705i
\(831\) 410.720 489.477i 0.494247 0.589021i
\(832\) 9.21766 + 10.9852i 0.0110789 + 0.0132033i
\(833\) −62.3132 + 353.396i −0.0748058 + 0.424245i
\(834\) −582.424 + 211.985i −0.698351 + 0.254179i
\(835\) 81.6322i 0.0977631i
\(836\) 7.48388 617.867i 0.00895201 0.739076i
\(837\) −318.829 −0.380918
\(838\) −284.399 781.379i −0.339378 0.932434i
\(839\) −495.619 87.3910i −0.590726 0.104161i −0.129709 0.991552i \(-0.541404\pi\)
−0.461017 + 0.887391i \(0.652515\pi\)
\(840\) 18.4993 15.5228i 0.0220230 0.0184795i
\(841\) 65.5595 + 55.0110i 0.0779543 + 0.0654114i
\(842\) 159.846 + 906.533i 0.189841 + 1.07664i
\(843\) −17.0973 29.6135i −0.0202815 0.0351287i
\(844\) −422.967 244.200i −0.501145 0.289336i
\(845\) −60.5626 22.0430i −0.0716717 0.0260864i
\(846\) 126.553 347.702i 0.149590 0.410996i
\(847\) −425.128 + 736.344i −0.501922 + 0.869355i
\(848\) −48.7146 + 28.1254i −0.0574464 + 0.0331667i
\(849\) 517.302 91.2143i 0.609308 0.107437i
\(850\) 585.202 697.417i 0.688473 0.820491i
\(851\) −527.524 628.678i −0.619887 0.738752i
\(852\) 40.7152 230.907i 0.0477878 0.271018i
\(853\) 805.856 293.307i 0.944731 0.343854i 0.176699 0.984265i \(-0.443458\pi\)
0.768032 + 0.640411i \(0.221236\pi\)
\(854\) 119.579i 0.140022i
\(855\) 11.5349 + 32.9275i 0.0134912 + 0.0385117i
\(856\) 21.2781 0.0248576
\(857\) −166.727 458.079i −0.194547 0.534514i 0.803612 0.595153i \(-0.202909\pi\)
−0.998160 + 0.0606385i \(0.980686\pi\)
\(858\) 150.386 + 26.5171i 0.175275 + 0.0309057i
\(859\) −29.8375 + 25.0366i −0.0347351 + 0.0291462i −0.659990 0.751274i \(-0.729439\pi\)
0.625255 + 0.780421i \(0.284995\pi\)
\(860\) −29.2199 24.5184i −0.0339766 0.0285097i
\(861\) 72.1136 + 408.977i 0.0837557 + 0.475002i
\(862\) 155.227 + 268.861i 0.180078 + 0.311904i
\(863\) 107.887 + 62.2886i 0.125014 + 0.0721768i 0.561203 0.827678i \(-0.310339\pi\)
−0.436189 + 0.899855i \(0.643672\pi\)
\(864\) 84.2120 + 30.6507i 0.0974676 + 0.0354753i
\(865\) 32.0291 87.9991i 0.0370278 0.101733i
\(866\) 196.822 340.905i 0.227277 0.393655i
\(867\) 1226.09 707.884i 1.41418 0.816476i
\(868\) 235.006 41.4380i 0.270745 0.0477396i
\(869\) 1561.67 1861.12i 1.79709 2.14168i
\(870\) 35.9814 + 42.8810i 0.0413580 + 0.0492885i
\(871\) 11.5878 65.7178i 0.0133040 0.0754510i
\(872\) −38.3296 + 13.9508i −0.0439560 + 0.0159987i
\(873\) 575.823i 0.659591i
\(874\) −859.959 739.524i −0.983935 0.846137i
\(875\) −114.889 −0.131302
\(876\) −189.167 519.733i −0.215944 0.593302i
\(877\) −90.8962 16.0275i −0.103644 0.0182753i 0.121585 0.992581i \(-0.461202\pi\)
−0.225230 + 0.974306i \(0.572313\pi\)
\(878\) −401.107 + 336.569i −0.456842 + 0.383336i
\(879\) 1187.04 + 996.043i 1.35044 + 1.13315i
\(880\) 4.39078 + 24.9014i 0.00498952 + 0.0282970i
\(881\) 749.201 + 1297.65i 0.850398 + 1.47293i 0.880850 + 0.473396i \(0.156972\pi\)
−0.0304516 + 0.999536i \(0.509695\pi\)
\(882\) −80.1329 46.2648i −0.0908536 0.0524544i
\(883\) 277.285 + 100.923i 0.314026 + 0.114296i 0.494225 0.869334i \(-0.335452\pi\)
−0.180199 + 0.983630i \(0.557674\pi\)
\(884\) 31.7659 87.2762i 0.0359343 0.0987287i
\(885\) −15.9599 + 27.6433i −0.0180337 + 0.0312354i
\(886\) −685.720 + 395.900i −0.773950 + 0.446840i
\(887\) 42.6298 7.51679i 0.0480607 0.00847439i −0.149566 0.988752i \(-0.547788\pi\)
0.197627 + 0.980277i \(0.436677\pi\)
\(888\) 130.947 156.057i 0.147463 0.175740i
\(889\) −356.518 424.882i −0.401033 0.477933i
\(890\) −8.90696 + 50.5139i −0.0100078 + 0.0567572i
\(891\) 1546.36 562.828i 1.73553 0.631681i
\(892\) 501.609i 0.562342i
\(893\) 904.980 + 537.209i 1.01342 + 0.601578i
\(894\) 677.377 0.757692
\(895\) 1.18206 + 3.24768i 0.00132073 + 0.00362869i
\(896\) −66.0557 11.6474i −0.0737229 0.0129993i
\(897\) 214.721 180.172i 0.239377 0.200861i
\(898\) 159.750 + 134.046i 0.177895 + 0.149272i
\(899\) 96.0524 + 544.740i 0.106844 + 0.605940i
\(900\) 117.376 + 203.301i 0.130418 + 0.225890i
\(901\) 315.512 + 182.161i 0.350180 + 0.202176i
\(902\) −408.605 148.720i −0.452998 0.164878i
\(903\) 368.524 1012.51i 0.408111 1.12127i
\(904\) −200.097 + 346.578i −0.221346 + 0.383383i
\(905\) 45.5114 26.2760i 0.0502888 0.0290343i
\(906\) 1489.62 262.660i 1.64417 0.289912i
\(907\) −480.494 + 572.630i −0.529762 + 0.631346i −0.962860 0.270001i \(-0.912976\pi\)
0.433098 + 0.901347i \(0.357420\pi\)
\(908\) 1.14645 + 1.36628i 0.00126261 + 0.00150472i
\(909\) 110.689 627.747i 0.121770 0.690591i
\(910\) −5.49018 + 1.99826i −0.00603316 + 0.00219589i
\(911\) 384.631i 0.422207i 0.977464 + 0.211104i \(0.0677058\pi\)
−0.977464 + 0.211104i \(0.932294\pi\)
\(912\) 143.715 242.102i 0.157582 0.265463i
\(913\) −945.371 −1.03546
\(914\) 217.116 + 596.521i 0.237545 + 0.652648i
\(915\) −20.2274 3.56664i −0.0221065 0.00389796i
\(916\) −443.860 + 372.443i −0.484563 + 0.406597i
\(917\) −752.204 631.174i −0.820288 0.688304i
\(918\) −100.789 571.606i −0.109792 0.622664i
\(919\) −438.220 759.020i −0.476845 0.825920i 0.522803 0.852453i \(-0.324886\pi\)
−0.999648 + 0.0265340i \(0.991553\pi\)
\(920\) 40.1946 + 23.2064i 0.0436898 + 0.0252243i
\(921\) −1400.23 509.641i −1.52033 0.553356i
\(922\) −58.8949 + 161.812i −0.0638773 + 0.175501i
\(923\) −28.3632 + 49.1265i −0.0307294 + 0.0532249i
\(924\) −618.575 + 357.134i −0.669453 + 0.386509i
\(925\) −475.783 + 83.8934i −0.514360 + 0.0906955i
\(926\) 562.838 670.764i 0.607817 0.724368i
\(927\) −323.811 385.903i −0.349311 0.416292i
\(928\) 26.9985 153.116i 0.0290932 0.164996i
\(929\) −851.650 + 309.975i −0.916739 + 0.333666i −0.756940 0.653484i \(-0.773307\pi\)
−0.159798 + 0.987150i \(0.551084\pi\)
\(930\) 40.9884i 0.0440736i
\(931\) 171.596 199.541i 0.184313 0.214330i
\(932\) 503.152 0.539863
\(933\) 4.88808 + 13.4299i 0.00523910 + 0.0143943i
\(934\) −451.211 79.5607i −0.483096 0.0851828i
\(935\) 125.453 105.268i 0.134175 0.112586i
\(936\) 18.3457 + 15.3939i 0.0196001 + 0.0164464i
\(937\) −144.397 818.914i −0.154105 0.873974i −0.959599 0.281370i \(-0.909211\pi\)
0.805494 0.592604i \(-0.201900\pi\)
\(938\) 156.066 + 270.314i 0.166381 + 0.288181i
\(939\) 1084.94 + 626.390i 1.15542 + 0.667082i
\(940\) −40.4686 14.7294i −0.0430517 0.0156696i
\(941\) −474.163 + 1302.75i −0.503892 + 1.38443i 0.383553 + 0.923519i \(0.374700\pi\)
−0.887445 + 0.460913i \(0.847522\pi\)
\(942\) 304.389 527.217i 0.323130 0.559678i
\(943\) −691.215 + 399.073i −0.732996 + 0.423196i
\(944\) 87.3109 15.3953i 0.0924904 0.0163085i
\(945\) −23.4695 + 27.9698i −0.0248354 + 0.0295977i
\(946\) 725.190 + 864.248i 0.766586 + 0.913581i
\(947\) 2.34633 13.3067i 0.00247764 0.0140514i −0.983544 0.180669i \(-0.942174\pi\)
0.986022 + 0.166618i \(0.0532847\pi\)
\(948\) 1040.23 378.611i 1.09728 0.399379i
\(949\) 133.811i 0.141003i
\(950\) −630.144 + 220.748i −0.663309 + 0.232366i
\(951\) 39.5627 0.0416011
\(952\) 148.582 + 408.227i 0.156074 + 0.428810i
\(953\) −555.176 97.8925i −0.582556 0.102720i −0.125399 0.992106i \(-0.540021\pi\)
−0.457157 + 0.889386i \(0.651132\pi\)
\(954\) −71.9630 + 60.3841i −0.0754329 + 0.0632957i
\(955\) −32.6500 27.3966i −0.0341885 0.0286875i
\(956\) 72.6403 + 411.964i 0.0759836 + 0.430925i
\(957\) −827.830 1433.84i −0.865026 1.49827i
\(958\) −89.9352 51.9241i −0.0938781 0.0542006i
\(959\) −732.833 266.729i −0.764163 0.278133i
\(960\) −3.94043 + 10.8262i −0.00410462 + 0.0112773i
\(961\) −277.984 + 481.483i −0.289266 + 0.501023i
\(962\) −42.6834 + 24.6433i −0.0443695 + 0.0256167i
\(963\) 34.9954 6.17063i 0.0363400 0.00640772i
\(964\) 64.8274 77.2582i 0.0672483 0.0801434i
\(965\) 79.0824 + 94.2468i 0.0819507 + 0.0976651i
\(966\) −227.665 + 1291.15i −0.235678 + 1.33660i
\(967\) 603.875 219.792i 0.624482 0.227293i −0.0103456 0.999946i \(-0.503293\pi\)
0.634828 + 0.772653i \(0.281071\pi\)
\(968\) 405.640i 0.419050i
\(969\) −1823.36 22.0853i −1.88169 0.0227919i
\(970\) 67.0193 0.0690921
\(971\) 593.190 + 1629.78i 0.610906 + 1.67845i 0.728210 + 0.685354i \(0.240353\pi\)
−0.117304 + 0.993096i \(0.537425\pi\)
\(972\) 457.581 + 80.6839i 0.470763 + 0.0830081i
\(973\) −537.295 + 450.844i −0.552205 + 0.463355i
\(974\) 20.3032 + 17.0364i 0.0208452 + 0.0174912i
\(975\) −28.6533 162.501i −0.0293880 0.166667i
\(976\) 28.5244 + 49.4057i 0.0292258 + 0.0506206i
\(977\) −718.452 414.798i −0.735365 0.424563i 0.0850166 0.996380i \(-0.472906\pi\)
−0.820382 + 0.571816i \(0.806239\pi\)
\(978\) 890.154 + 323.989i 0.910178 + 0.331278i
\(979\) 518.885 1425.63i 0.530015 1.45621i
\(980\) −5.38470 + 9.32657i −0.00549459 + 0.00951691i
\(981\) −58.9938 + 34.0601i −0.0601364 + 0.0347198i
\(982\) 468.833 82.6679i 0.477427 0.0841832i
\(983\) −123.720 + 147.444i −0.125860 + 0.149994i −0.825294 0.564703i \(-0.808991\pi\)
0.699435 + 0.714697i \(0.253435\pi\)
\(984\) −127.352 151.772i −0.129423 0.154240i
\(985\) 12.5175 70.9905i 0.0127082 0.0720716i
\(986\) −946.262 + 344.411i −0.959698 + 0.349301i
\(987\) 1216.53i 1.23255i
\(988\) −52.7061 + 43.1487i −0.0533462 + 0.0436728i
\(989\) 2070.86 2.09389
\(990\) 14.4428 + 39.6812i 0.0145887 + 0.0400820i
\(991\) 1012.91 + 178.603i 1.02211 + 0.180225i 0.659491 0.751712i \(-0.270772\pi\)
0.362618 + 0.931938i \(0.381883\pi\)
\(992\) −87.2114 + 73.1790i −0.0879147 + 0.0737692i
\(993\) −486.301 408.055i −0.489729 0.410931i
\(994\) −46.0746 261.302i −0.0463527 0.262879i
\(995\) 9.17782 + 15.8965i 0.00922394 + 0.0159763i
\(996\) −373.038 215.374i −0.374537 0.216239i
\(997\) −1235.15 449.559i −1.23887 0.450912i −0.362244 0.932083i \(-0.617989\pi\)
−0.876627 + 0.481171i \(0.840211\pi\)
\(998\) 148.047 406.755i 0.148344 0.407570i
\(999\) −154.005 + 266.744i −0.154159 + 0.267011i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 38.3.f.a.33.2 yes 24
3.2 odd 2 342.3.z.b.109.3 24
4.3 odd 2 304.3.z.c.33.2 24
19.2 odd 18 722.3.b.f.721.4 24
19.15 odd 18 inner 38.3.f.a.15.2 24
19.17 even 9 722.3.b.f.721.21 24
57.53 even 18 342.3.z.b.91.3 24
76.15 even 18 304.3.z.c.129.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.3.f.a.15.2 24 19.15 odd 18 inner
38.3.f.a.33.2 yes 24 1.1 even 1 trivial
304.3.z.c.33.2 24 4.3 odd 2
304.3.z.c.129.2 24 76.15 even 18
342.3.z.b.91.3 24 57.53 even 18
342.3.z.b.109.3 24 3.2 odd 2
722.3.b.f.721.4 24 19.2 odd 18
722.3.b.f.721.21 24 19.17 even 9