Properties

Label 38.3.b.a
Level $38$
Weight $3$
Character orbit 38.b
Analytic conductor $1.035$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [38,3,Mod(37,38)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("38.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(38, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 38.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03542500457\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 2 \beta q^{3} - 2 q^{4} - q^{5} - 4 q^{6} + 5 q^{7} - 2 \beta q^{8} + q^{9} - \beta q^{10} + 5 q^{11} - 4 \beta q^{12} - 12 \beta q^{13} + 5 \beta q^{14} - 2 \beta q^{15} + 4 q^{16} + \cdots + 5 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 2 q^{5} - 8 q^{6} + 10 q^{7} + 2 q^{9} + 10 q^{11} + 8 q^{16} - 50 q^{17} + 38 q^{19} + 4 q^{20} - 20 q^{23} + 16 q^{24} - 48 q^{25} + 48 q^{26} - 20 q^{28} + 8 q^{30} - 10 q^{35} - 4 q^{36}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).

\(n\) \(21\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
1.41421i
1.41421i
1.41421i 2.82843i −2.00000 −1.00000 −4.00000 5.00000 2.82843i 1.00000 1.41421i
37.2 1.41421i 2.82843i −2.00000 −1.00000 −4.00000 5.00000 2.82843i 1.00000 1.41421i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.3.b.a 2
3.b odd 2 1 342.3.d.a 2
4.b odd 2 1 304.3.e.c 2
5.b even 2 1 950.3.c.a 2
5.c odd 4 2 950.3.d.a 4
8.b even 2 1 1216.3.e.j 2
8.d odd 2 1 1216.3.e.i 2
12.b even 2 1 2736.3.o.h 2
19.b odd 2 1 inner 38.3.b.a 2
57.d even 2 1 342.3.d.a 2
76.d even 2 1 304.3.e.c 2
95.d odd 2 1 950.3.c.a 2
95.g even 4 2 950.3.d.a 4
152.b even 2 1 1216.3.e.i 2
152.g odd 2 1 1216.3.e.j 2
228.b odd 2 1 2736.3.o.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.3.b.a 2 1.a even 1 1 trivial
38.3.b.a 2 19.b odd 2 1 inner
304.3.e.c 2 4.b odd 2 1
304.3.e.c 2 76.d even 2 1
342.3.d.a 2 3.b odd 2 1
342.3.d.a 2 57.d even 2 1
950.3.c.a 2 5.b even 2 1
950.3.c.a 2 95.d odd 2 1
950.3.d.a 4 5.c odd 4 2
950.3.d.a 4 95.g even 4 2
1216.3.e.i 2 8.d odd 2 1
1216.3.e.i 2 152.b even 2 1
1216.3.e.j 2 8.b even 2 1
1216.3.e.j 2 152.g odd 2 1
2736.3.o.h 2 12.b even 2 1
2736.3.o.h 2 228.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(38, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2 \) Copy content Toggle raw display
$3$ \( T^{2} + 8 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 5)^{2} \) Copy content Toggle raw display
$11$ \( (T - 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 288 \) Copy content Toggle raw display
$17$ \( (T + 25)^{2} \) Copy content Toggle raw display
$19$ \( (T - 19)^{2} \) Copy content Toggle raw display
$23$ \( (T + 10)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 1800 \) Copy content Toggle raw display
$31$ \( T^{2} + 1800 \) Copy content Toggle raw display
$37$ \( T^{2} + 648 \) Copy content Toggle raw display
$41$ \( T^{2} + 1800 \) Copy content Toggle raw display
$43$ \( (T - 5)^{2} \) Copy content Toggle raw display
$47$ \( (T - 5)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 648 \) Copy content Toggle raw display
$59$ \( T^{2} + 7200 \) Copy content Toggle raw display
$61$ \( (T - 95)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 12168 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 25)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 1800 \) Copy content Toggle raw display
$83$ \( (T + 130)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 16200 \) Copy content Toggle raw display
$97$ \( T^{2} + 288 \) Copy content Toggle raw display
show more
show less