Properties

Label 38.2.e.a
Level $38$
Weight $2$
Character orbit 38.e
Analytic conductor $0.303$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 38.e (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.303431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{18} q^{2} + ( -\zeta_{18}^{3} - \zeta_{18}^{5} ) q^{3} + \zeta_{18}^{2} q^{4} + ( 2 \zeta_{18} - 2 \zeta_{18}^{4} ) q^{5} + ( -1 + \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{6} + ( -2 - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{7} -\zeta_{18}^{3} q^{8} + ( -1 - \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{9} +O(q^{10})\) \( q -\zeta_{18} q^{2} + ( -\zeta_{18}^{3} - \zeta_{18}^{5} ) q^{3} + \zeta_{18}^{2} q^{4} + ( 2 \zeta_{18} - 2 \zeta_{18}^{4} ) q^{5} + ( -1 + \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{6} + ( -2 - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{7} -\zeta_{18}^{3} q^{8} + ( -1 - \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{9} + ( -2 \zeta_{18}^{2} + 2 \zeta_{18}^{5} ) q^{10} + ( \zeta_{18} + \zeta_{18}^{2} - 2 \zeta_{18}^{3} + \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{11} + ( \zeta_{18} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{12} + ( 2 - 2 \zeta_{18} + 2 \zeta_{18}^{5} ) q^{13} + ( 2 + 2 \zeta_{18} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{14} + ( -2 \zeta_{18} - 2 \zeta_{18}^{3} ) q^{15} + \zeta_{18}^{4} q^{16} + ( -4 - \zeta_{18} + 4 \zeta_{18}^{3} - 4 \zeta_{18}^{5} ) q^{17} + ( -1 + \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{4} ) q^{18} + ( 4 - 2 \zeta_{18} + \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{19} + 2 q^{20} + ( 4 + 2 \zeta_{18} + 4 \zeta_{18}^{2} ) q^{21} + ( 1 - \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{22} + ( -2 - 2 \zeta_{18}^{4} ) q^{23} + ( -1 - \zeta_{18}^{2} + \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{24} + \zeta_{18}^{5} q^{25} + ( 2 - 2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} ) q^{26} + ( -3 \zeta_{18}^{2} + \zeta_{18}^{3} - 3 \zeta_{18}^{4} ) q^{27} + ( -2 - 2 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{28} + ( -2 - 2 \zeta_{18} - 4 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{29} + ( 2 \zeta_{18}^{2} + 2 \zeta_{18}^{4} ) q^{30} + ( 2 + 2 \zeta_{18} - 4 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{31} -\zeta_{18}^{5} q^{32} + ( 3 \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} - 3 \zeta_{18}^{4} ) q^{33} + ( -4 + 4 \zeta_{18} + \zeta_{18}^{2} + 4 \zeta_{18}^{3} - 4 \zeta_{18}^{4} ) q^{34} + ( -4 + 4 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 4 \zeta_{18}^{4} ) q^{35} + ( \zeta_{18} - \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{36} + ( -2 + 4 \zeta_{18} + 4 \zeta_{18}^{2} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{37} + ( -2 - 4 \zeta_{18} + 2 \zeta_{18}^{2} + \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{38} + ( -2 + 2 \zeta_{18} + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{39} -2 \zeta_{18} q^{40} + ( 1 - \zeta_{18}^{2} - \zeta_{18}^{3} ) q^{41} + ( -4 \zeta_{18} - 2 \zeta_{18}^{2} - 4 \zeta_{18}^{3} ) q^{42} + ( -2 + 3 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 3 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{43} + ( -1 - \zeta_{18} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{44} + ( 2 - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{45} + ( 2 \zeta_{18} + 2 \zeta_{18}^{5} ) q^{46} + ( 4 + 4 \zeta_{18} + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 6 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{47} + ( 1 + \zeta_{18} - \zeta_{18}^{4} ) q^{48} + ( -4 \zeta_{18} - 4 \zeta_{18}^{2} - 5 \zeta_{18}^{3} - 4 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{49} + ( 1 - \zeta_{18}^{3} ) q^{50} + ( 3 - 4 \zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{51} + ( -2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{52} + ( 6 - 4 \zeta_{18} - 4 \zeta_{18}^{3} + 6 \zeta_{18}^{4} ) q^{53} + ( 3 \zeta_{18}^{3} - \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{54} + ( 2 - 4 \zeta_{18} + 4 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{55} + ( 2 + 2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{4} ) q^{56} + ( -4 - \zeta_{18} - 4 \zeta_{18}^{2} + \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{57} + ( 4 + 2 \zeta_{18} + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{58} + ( 1 + 2 \zeta_{18} - 2 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 3 \zeta_{18}^{5} ) q^{59} + ( -2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{60} + ( 2 \zeta_{18} + 6 \zeta_{18}^{2} + 2 \zeta_{18}^{3} ) q^{61} + ( 2 - 2 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{62} + ( 2 - 2 \zeta_{18} - 2 \zeta_{18}^{5} ) q^{63} + ( -1 + \zeta_{18}^{3} ) q^{64} + ( 4 \zeta_{18} - 4 \zeta_{18}^{2} + 4 \zeta_{18}^{3} - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{65} + ( -3 \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{66} + ( -3 - 3 \zeta_{18} + 6 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 6 \zeta_{18}^{5} ) q^{67} + ( 4 \zeta_{18} - 4 \zeta_{18}^{2} - \zeta_{18}^{3} - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{68} + ( -2 - 2 \zeta_{18} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{69} + ( 4 \zeta_{18} - 4 \zeta_{18}^{3} - 4 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{70} + ( -2 - 4 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{71} + ( 1 - \zeta_{18}^{2} + \zeta_{18}^{4} ) q^{72} + ( -3 + 3 \zeta_{18}^{2} - 4 \zeta_{18}^{3} + 4 \zeta_{18}^{4} - 7 \zeta_{18}^{5} ) q^{73} + ( -2 + 2 \zeta_{18} - 4 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{74} + ( \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{5} ) q^{75} + ( 2 \zeta_{18} + 4 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{76} + ( -2 - 2 \zeta_{18} - 2 \zeta_{18}^{2} - 4 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{77} + ( -4 + 2 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{78} + ( 2 \zeta_{18}^{3} - 6 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{79} + 2 \zeta_{18}^{2} q^{80} + ( -5 - 3 \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{81} + ( -\zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{82} + ( -2 + 4 \zeta_{18} - \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{83} + ( 4 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 4 \zeta_{18}^{4} ) q^{84} + ( -2 \zeta_{18}^{2} - 8 \zeta_{18}^{3} + 8 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{85} + ( 2 + 2 \zeta_{18} - 3 \zeta_{18}^{2} - 2 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{86} + ( 4 \zeta_{18} + 2 \zeta_{18}^{2} + 6 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{87} + ( -2 + \zeta_{18} + \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{88} + ( -4 - 4 \zeta_{18} + 8 \zeta_{18}^{3} + 8 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{89} + ( 2 - 2 \zeta_{18} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{90} + ( -4 + 4 \zeta_{18} - 8 \zeta_{18}^{2} + 4 \zeta_{18}^{3} - 4 \zeta_{18}^{4} ) q^{91} + ( 2 - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} ) q^{92} + ( 2 - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{93} + ( -2 - 4 \zeta_{18} - 4 \zeta_{18}^{2} - 2 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{94} + ( 2 + 4 \zeta_{18} - 4 \zeta_{18}^{2} - 4 \zeta_{18}^{3} - 8 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{95} + ( -\zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{5} ) q^{96} + ( \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{97} + ( -4 + 4 \zeta_{18}^{2} + 8 \zeta_{18}^{3} + 5 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{98} + ( 4 - \zeta_{18} - 5 \zeta_{18}^{2} - \zeta_{18}^{3} + 4 \zeta_{18}^{4} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{3} - 3q^{6} - 6q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 6q - 3q^{3} - 3q^{6} - 6q^{7} - 3q^{8} - 3q^{9} - 6q^{11} + 12q^{13} + 12q^{14} - 6q^{15} - 12q^{17} - 6q^{18} + 18q^{19} + 12q^{20} + 24q^{21} - 12q^{23} - 3q^{24} + 6q^{26} + 3q^{27} - 6q^{28} - 18q^{29} + 6q^{31} + 3q^{33} - 12q^{34} - 12q^{35} - 3q^{36} - 12q^{37} - 9q^{38} - 12q^{39} + 3q^{41} - 12q^{42} - 6q^{43} + 6q^{45} + 30q^{47} + 6q^{48} - 15q^{49} + 3q^{50} + 21q^{51} - 6q^{52} + 24q^{53} + 9q^{54} + 18q^{55} + 12q^{56} - 24q^{57} + 24q^{58} - 3q^{59} - 6q^{60} + 6q^{61} + 18q^{62} + 12q^{63} - 3q^{64} + 12q^{65} + 3q^{66} - 9q^{67} - 3q^{68} - 6q^{69} - 12q^{70} - 18q^{71} + 6q^{72} - 30q^{73} - 18q^{74} - 6q^{76} - 12q^{77} - 18q^{78} + 6q^{79} - 33q^{81} + 3q^{82} - 6q^{83} + 6q^{84} - 24q^{85} + 12q^{86} + 18q^{87} - 6q^{88} + 12q^{90} - 12q^{91} + 6q^{92} + 6q^{93} - 12q^{94} + 3q^{97} + 21q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).

\(n\) \(21\)
\(\chi(n)\) \(\zeta_{18}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0.939693 0.342020i
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.766044 0.642788i
−0.939693 + 0.342020i −0.326352 + 1.85083i 0.766044 0.642788i 1.53209 + 1.28558i −0.326352 1.85083i −2.53209 4.38571i −0.500000 + 0.866025i −0.500000 0.181985i −1.87939 0.684040i
9.1 0.173648 + 0.984808i 0.266044 0.223238i −0.939693 + 0.342020i −1.87939 0.684040i 0.266044 + 0.223238i 0.879385 1.52314i −0.500000 0.866025i −0.500000 + 2.83564i 0.347296 1.96962i
17.1 0.173648 0.984808i 0.266044 + 0.223238i −0.939693 0.342020i −1.87939 + 0.684040i 0.266044 0.223238i 0.879385 + 1.52314i −0.500000 + 0.866025i −0.500000 2.83564i 0.347296 + 1.96962i
23.1 −0.939693 0.342020i −0.326352 1.85083i 0.766044 + 0.642788i 1.53209 1.28558i −0.326352 + 1.85083i −2.53209 + 4.38571i −0.500000 0.866025i −0.500000 + 0.181985i −1.87939 + 0.684040i
25.1 0.766044 0.642788i −1.43969 0.524005i 0.173648 0.984808i 0.347296 + 1.96962i −1.43969 + 0.524005i −1.34730 + 2.33359i −0.500000 0.866025i −0.500000 0.419550i 1.53209 + 1.28558i
35.1 0.766044 + 0.642788i −1.43969 + 0.524005i 0.173648 + 0.984808i 0.347296 1.96962i −1.43969 0.524005i −1.34730 2.33359i −0.500000 + 0.866025i −0.500000 + 0.419550i 1.53209 1.28558i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 35.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.2.e.a 6
3.b odd 2 1 342.2.u.c 6
4.b odd 2 1 304.2.u.c 6
5.b even 2 1 950.2.l.d 6
5.c odd 4 2 950.2.u.b 12
19.b odd 2 1 722.2.e.k 6
19.c even 3 1 722.2.e.b 6
19.c even 3 1 722.2.e.m 6
19.d odd 6 1 722.2.e.a 6
19.d odd 6 1 722.2.e.l 6
19.e even 9 1 inner 38.2.e.a 6
19.e even 9 1 722.2.a.l 3
19.e even 9 2 722.2.c.k 6
19.e even 9 1 722.2.e.b 6
19.e even 9 1 722.2.e.m 6
19.f odd 18 1 722.2.a.k 3
19.f odd 18 2 722.2.c.l 6
19.f odd 18 1 722.2.e.a 6
19.f odd 18 1 722.2.e.k 6
19.f odd 18 1 722.2.e.l 6
57.j even 18 1 6498.2.a.bq 3
57.l odd 18 1 342.2.u.c 6
57.l odd 18 1 6498.2.a.bl 3
76.k even 18 1 5776.2.a.bo 3
76.l odd 18 1 304.2.u.c 6
76.l odd 18 1 5776.2.a.bn 3
95.p even 18 1 950.2.l.d 6
95.q odd 36 2 950.2.u.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.e.a 6 1.a even 1 1 trivial
38.2.e.a 6 19.e even 9 1 inner
304.2.u.c 6 4.b odd 2 1
304.2.u.c 6 76.l odd 18 1
342.2.u.c 6 3.b odd 2 1
342.2.u.c 6 57.l odd 18 1
722.2.a.k 3 19.f odd 18 1
722.2.a.l 3 19.e even 9 1
722.2.c.k 6 19.e even 9 2
722.2.c.l 6 19.f odd 18 2
722.2.e.a 6 19.d odd 6 1
722.2.e.a 6 19.f odd 18 1
722.2.e.b 6 19.c even 3 1
722.2.e.b 6 19.e even 9 1
722.2.e.k 6 19.b odd 2 1
722.2.e.k 6 19.f odd 18 1
722.2.e.l 6 19.d odd 6 1
722.2.e.l 6 19.f odd 18 1
722.2.e.m 6 19.c even 3 1
722.2.e.m 6 19.e even 9 1
950.2.l.d 6 5.b even 2 1
950.2.l.d 6 95.p even 18 1
950.2.u.b 12 5.c odd 4 2
950.2.u.b 12 95.q odd 36 2
5776.2.a.bn 3 76.l odd 18 1
5776.2.a.bo 3 76.k even 18 1
6498.2.a.bl 3 57.l odd 18 1
6498.2.a.bq 3 57.j even 18 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(38, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{3} + T^{6} \)
$3$ \( 1 - 3 T + 3 T^{2} + 8 T^{3} + 6 T^{4} + 3 T^{5} + T^{6} \)
$5$ \( 64 + 8 T^{3} + T^{6} \)
$7$ \( 576 + 144 T^{2} + 48 T^{3} + 36 T^{4} + 6 T^{5} + T^{6} \)
$11$ \( 361 - 57 T + 123 T^{2} + 56 T^{3} + 33 T^{4} + 6 T^{5} + T^{6} \)
$13$ \( 64 - 96 T + 96 T^{2} - 64 T^{3} + 48 T^{4} - 12 T^{5} + T^{6} \)
$17$ \( 12321 + 11988 T + 4356 T^{2} + 753 T^{3} + 108 T^{4} + 12 T^{5} + T^{6} \)
$19$ \( 6859 - 6498 T + 3078 T^{2} - 883 T^{3} + 162 T^{4} - 18 T^{5} + T^{6} \)
$23$ \( 64 + 96 T + 192 T^{2} + 152 T^{3} + 60 T^{4} + 12 T^{5} + T^{6} \)
$29$ \( 23104 + 16416 T + 5616 T^{2} + 928 T^{3} + 144 T^{4} + 18 T^{5} + T^{6} \)
$31$ \( 64 + 192 T + 528 T^{2} + 160 T^{3} + 60 T^{4} - 6 T^{5} + T^{6} \)
$37$ \( ( -136 - 24 T + 6 T^{2} + T^{3} )^{2} \)
$41$ \( 1 - 6 T + 12 T^{2} - 8 T^{3} + 6 T^{4} - 3 T^{5} + T^{6} \)
$43$ \( 289 + 714 T + 786 T^{2} + 271 T^{3} + 42 T^{4} + 6 T^{5} + T^{6} \)
$47$ \( 87616 - 24864 T + 8736 T^{2} - 2368 T^{3} + 372 T^{4} - 30 T^{5} + T^{6} \)
$53$ \( 18496 - 21216 T + 11136 T^{2} - 2152 T^{3} + 276 T^{4} - 24 T^{5} + T^{6} \)
$59$ \( 9 - 18 T^{2} + 24 T^{3} + 54 T^{4} + 3 T^{5} + T^{6} \)
$61$ \( 23104 + 1824 T + 1920 T^{2} + 512 T^{3} - 12 T^{4} - 6 T^{5} + T^{6} \)
$67$ \( 6561 - 6561 T + 729 T^{2} + 648 T^{3} + 162 T^{4} + 9 T^{5} + T^{6} \)
$71$ \( 23104 + 21888 T + 8352 T^{2} + 1664 T^{3} + 216 T^{4} + 18 T^{5} + T^{6} \)
$73$ \( 3249 - 5643 T + 4140 T^{2} + 645 T^{3} + 279 T^{4} + 30 T^{5} + T^{6} \)
$79$ \( 18496 + 3264 T + 3504 T^{2} + 8 T^{3} - 48 T^{4} - 6 T^{5} + T^{6} \)
$83$ \( 2601 + 1377 T + 1035 T^{2} - 60 T^{3} + 63 T^{4} + 6 T^{5} + T^{6} \)
$89$ \( 962361 + 141264 T + 4860 T^{2} + 315 T^{3} + 36 T^{4} + T^{6} \)
$97$ \( 1 + 3 T + 3 T^{2} - 8 T^{3} + 6 T^{4} - 3 T^{5} + T^{6} \)
show more
show less