Properties

Label 38.2.e.a
Level $38$
Weight $2$
Character orbit 38.e
Analytic conductor $0.303$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [38,2,Mod(5,38)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(38, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("38.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 38.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.303431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{18} q^{2} + ( - \zeta_{18}^{5} - \zeta_{18}^{3}) q^{3} + \zeta_{18}^{2} q^{4} + ( - 2 \zeta_{18}^{4} + 2 \zeta_{18}) q^{5} + (\zeta_{18}^{4} + \zeta_{18}^{3} - 1) q^{6} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 2) q^{7} - \zeta_{18}^{3} q^{8} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} - 1) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{18} q^{2} + ( - \zeta_{18}^{5} - \zeta_{18}^{3}) q^{3} + \zeta_{18}^{2} q^{4} + ( - 2 \zeta_{18}^{4} + 2 \zeta_{18}) q^{5} + (\zeta_{18}^{4} + \zeta_{18}^{3} - 1) q^{6} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 2) q^{7} - \zeta_{18}^{3} q^{8} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} - 1) q^{9} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{2}) q^{10} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} + \zeta_{18}) q^{11} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18}) q^{12} + (2 \zeta_{18}^{5} - 2 \zeta_{18} + 2) q^{13} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18} + 2) q^{14} + ( - 2 \zeta_{18}^{3} - 2 \zeta_{18}) q^{15} + \zeta_{18}^{4} q^{16} + ( - 4 \zeta_{18}^{5} + 4 \zeta_{18}^{3} - \zeta_{18} - 4) q^{17} + ( - \zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} - 1) q^{18} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 2 \zeta_{18} + 4) q^{19} + 2 q^{20} + (4 \zeta_{18}^{2} + 2 \zeta_{18} + 4) q^{21} + ( - \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{22} + ( - 2 \zeta_{18}^{4} - 2) q^{23} + (\zeta_{18}^{5} + \zeta_{18}^{3} - \zeta_{18}^{2} - 1) q^{24} + \zeta_{18}^{5} q^{25} + ( - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2 \zeta_{18} + 2) q^{26} + ( - 3 \zeta_{18}^{4} + \zeta_{18}^{3} - 3 \zeta_{18}^{2}) q^{27} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 2 \zeta_{18} - 2) q^{28} + (4 \zeta_{18}^{5} + 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 2 \zeta_{18} - 2) q^{29} + (2 \zeta_{18}^{4} + 2 \zeta_{18}^{2}) q^{30} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{31} - \zeta_{18}^{5} q^{32} + ( - 3 \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}^{2} + 3 \zeta_{18}) q^{33} + ( - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} + \zeta_{18}^{2} + 4 \zeta_{18} - 4) q^{34} + (4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} + 4 \zeta_{18}^{2} - 4) q^{35} + (\zeta_{18}^{5} - \zeta_{18}^{3} - \zeta_{18}^{2} + \zeta_{18}) q^{36} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 4 \zeta_{18}^{2} + 4 \zeta_{18} - 2) q^{37} + (2 \zeta_{18}^{4} + \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 4 \zeta_{18} - 2) q^{38} + ( - 4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{2} + 2 \zeta_{18} - 2) q^{39} - 2 \zeta_{18} q^{40} + ( - \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{41} + ( - 4 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 4 \zeta_{18}) q^{42} + (2 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 3 \zeta_{18} - 2) q^{43} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - \zeta_{18} - 1) q^{44} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2) q^{45} + (2 \zeta_{18}^{5} + 2 \zeta_{18}) q^{46} + ( - 2 \zeta_{18}^{5} - 6 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + 4 \zeta_{18} + 4) q^{47} + ( - \zeta_{18}^{4} + \zeta_{18} + 1) q^{48} + ( - 4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 5 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 4 \zeta_{18}) q^{49} + ( - \zeta_{18}^{3} + 1) q^{50} + (4 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} - 4 \zeta_{18} + 3) q^{51} + (2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2 \zeta_{18}) q^{52} + (6 \zeta_{18}^{4} - 4 \zeta_{18}^{3} - 4 \zeta_{18} + 6) q^{53} + (3 \zeta_{18}^{5} - \zeta_{18}^{4} + 3 \zeta_{18}^{3}) q^{54} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{3} + 4 \zeta_{18}^{2} - 4 \zeta_{18} + 2) q^{55} + ( - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{56} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} - 4 \zeta_{18}^{2} - \zeta_{18} - 4) q^{57} + ( - 4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{2} + 2 \zeta_{18} + 4) q^{58} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2 \zeta_{18} + 1) q^{59} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{3}) q^{60} + (2 \zeta_{18}^{3} + 6 \zeta_{18}^{2} + 2 \zeta_{18}) q^{61} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 2 \zeta_{18} + 2) q^{62} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18} + 2) q^{63} + (\zeta_{18}^{3} - 1) q^{64} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 4 \zeta_{18}) q^{65} + (3 \zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18}^{3} - 3 \zeta_{18}^{2}) q^{66} + ( - 6 \zeta_{18}^{5} + 3 \zeta_{18}^{3} + 6 \zeta_{18}^{2} - 3 \zeta_{18} - 3) q^{67} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 4 \zeta_{18}) q^{68} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18} - 2) q^{69} + ( - 4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + 4 \zeta_{18}) q^{70} + (2 \zeta_{18}^{5} + 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 4 \zeta_{18} - 2) q^{71} + (\zeta_{18}^{4} - \zeta_{18}^{2} + 1) q^{72} + ( - 7 \zeta_{18}^{5} + 4 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 3) q^{73} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 2 \zeta_{18} - 2) q^{74} + ( - \zeta_{18}^{5} + \zeta_{18}^{2} + \zeta_{18}) q^{75} + ( - 2 \zeta_{18}^{5} - \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 4 \zeta_{18}^{2} + 2 \zeta_{18}) q^{76} + (6 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 2 \zeta_{18}^{2} - 2 \zeta_{18} - 2) q^{77} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2 \zeta_{18} - 4) q^{78} + (2 \zeta_{18}^{5} - 6 \zeta_{18}^{4} + 2 \zeta_{18}^{3}) q^{79} + 2 \zeta_{18}^{2} q^{80} + (5 \zeta_{18}^{5} + 3 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - 3 \zeta_{18} - 5) q^{81} + (\zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}) q^{82} + ( - 3 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - \zeta_{18}^{2} + 4 \zeta_{18} - 2) q^{83} + (4 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 4 \zeta_{18}^{2}) q^{84} + (2 \zeta_{18}^{5} + 8 \zeta_{18}^{4} - 8 \zeta_{18}^{3} - 2 \zeta_{18}^{2}) q^{85} + (3 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 3 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{86} + (4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 6 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + 4 \zeta_{18}) q^{87} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + \zeta_{18}^{2} + \zeta_{18} - 2) q^{88} + ( - 3 \zeta_{18}^{5} + 8 \zeta_{18}^{4} + 8 \zeta_{18}^{3} - 4 \zeta_{18} - 4) q^{89} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 2 \zeta_{18} + 2) q^{90} + ( - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} - 8 \zeta_{18}^{2} + 4 \zeta_{18} - 4) q^{91} + ( - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2) q^{92} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} + 2) q^{93} + (6 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 4 \zeta_{18}^{2} - 4 \zeta_{18} - 2) q^{94} + (4 \zeta_{18}^{5} - 8 \zeta_{18}^{4} - 4 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 4 \zeta_{18} + 2) q^{95} + (\zeta_{18}^{5} - \zeta_{18}^{2} - \zeta_{18}) q^{96} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + \zeta_{18}^{2}) q^{97} + (4 \zeta_{18}^{5} + 5 \zeta_{18}^{4} + 8 \zeta_{18}^{3} + 4 \zeta_{18}^{2} - 4) q^{98} + (4 \zeta_{18}^{4} - \zeta_{18}^{3} - 5 \zeta_{18}^{2} - \zeta_{18} + 4) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 3 q^{6} - 6 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{3} - 3 q^{6} - 6 q^{7} - 3 q^{8} - 3 q^{9} - 6 q^{11} + 12 q^{13} + 12 q^{14} - 6 q^{15} - 12 q^{17} - 6 q^{18} + 18 q^{19} + 12 q^{20} + 24 q^{21} - 12 q^{23} - 3 q^{24} + 6 q^{26} + 3 q^{27} - 6 q^{28} - 18 q^{29} + 6 q^{31} + 3 q^{33} - 12 q^{34} - 12 q^{35} - 3 q^{36} - 12 q^{37} - 9 q^{38} - 12 q^{39} + 3 q^{41} - 12 q^{42} - 6 q^{43} + 6 q^{45} + 30 q^{47} + 6 q^{48} - 15 q^{49} + 3 q^{50} + 21 q^{51} - 6 q^{52} + 24 q^{53} + 9 q^{54} + 18 q^{55} + 12 q^{56} - 24 q^{57} + 24 q^{58} - 3 q^{59} - 6 q^{60} + 6 q^{61} + 18 q^{62} + 12 q^{63} - 3 q^{64} + 12 q^{65} + 3 q^{66} - 9 q^{67} - 3 q^{68} - 6 q^{69} - 12 q^{70} - 18 q^{71} + 6 q^{72} - 30 q^{73} - 18 q^{74} - 6 q^{76} - 12 q^{77} - 18 q^{78} + 6 q^{79} - 33 q^{81} + 3 q^{82} - 6 q^{83} + 6 q^{84} - 24 q^{85} + 12 q^{86} + 18 q^{87} - 6 q^{88} + 12 q^{90} - 12 q^{91} + 6 q^{92} + 6 q^{93} - 12 q^{94} + 3 q^{97} + 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).

\(n\) \(21\)
\(\chi(n)\) \(\zeta_{18}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0.939693 0.342020i
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.766044 0.642788i
−0.939693 + 0.342020i −0.326352 + 1.85083i 0.766044 0.642788i 1.53209 + 1.28558i −0.326352 1.85083i −2.53209 4.38571i −0.500000 + 0.866025i −0.500000 0.181985i −1.87939 0.684040i
9.1 0.173648 + 0.984808i 0.266044 0.223238i −0.939693 + 0.342020i −1.87939 0.684040i 0.266044 + 0.223238i 0.879385 1.52314i −0.500000 0.866025i −0.500000 + 2.83564i 0.347296 1.96962i
17.1 0.173648 0.984808i 0.266044 + 0.223238i −0.939693 0.342020i −1.87939 + 0.684040i 0.266044 0.223238i 0.879385 + 1.52314i −0.500000 + 0.866025i −0.500000 2.83564i 0.347296 + 1.96962i
23.1 −0.939693 0.342020i −0.326352 1.85083i 0.766044 + 0.642788i 1.53209 1.28558i −0.326352 + 1.85083i −2.53209 + 4.38571i −0.500000 0.866025i −0.500000 + 0.181985i −1.87939 + 0.684040i
25.1 0.766044 0.642788i −1.43969 0.524005i 0.173648 0.984808i 0.347296 + 1.96962i −1.43969 + 0.524005i −1.34730 + 2.33359i −0.500000 0.866025i −0.500000 0.419550i 1.53209 + 1.28558i
35.1 0.766044 + 0.642788i −1.43969 + 0.524005i 0.173648 + 0.984808i 0.347296 1.96962i −1.43969 0.524005i −1.34730 2.33359i −0.500000 + 0.866025i −0.500000 + 0.419550i 1.53209 1.28558i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.2.e.a 6
3.b odd 2 1 342.2.u.c 6
4.b odd 2 1 304.2.u.c 6
5.b even 2 1 950.2.l.d 6
5.c odd 4 2 950.2.u.b 12
19.b odd 2 1 722.2.e.k 6
19.c even 3 1 722.2.e.b 6
19.c even 3 1 722.2.e.m 6
19.d odd 6 1 722.2.e.a 6
19.d odd 6 1 722.2.e.l 6
19.e even 9 1 inner 38.2.e.a 6
19.e even 9 1 722.2.a.l 3
19.e even 9 2 722.2.c.k 6
19.e even 9 1 722.2.e.b 6
19.e even 9 1 722.2.e.m 6
19.f odd 18 1 722.2.a.k 3
19.f odd 18 2 722.2.c.l 6
19.f odd 18 1 722.2.e.a 6
19.f odd 18 1 722.2.e.k 6
19.f odd 18 1 722.2.e.l 6
57.j even 18 1 6498.2.a.bq 3
57.l odd 18 1 342.2.u.c 6
57.l odd 18 1 6498.2.a.bl 3
76.k even 18 1 5776.2.a.bo 3
76.l odd 18 1 304.2.u.c 6
76.l odd 18 1 5776.2.a.bn 3
95.p even 18 1 950.2.l.d 6
95.q odd 36 2 950.2.u.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.e.a 6 1.a even 1 1 trivial
38.2.e.a 6 19.e even 9 1 inner
304.2.u.c 6 4.b odd 2 1
304.2.u.c 6 76.l odd 18 1
342.2.u.c 6 3.b odd 2 1
342.2.u.c 6 57.l odd 18 1
722.2.a.k 3 19.f odd 18 1
722.2.a.l 3 19.e even 9 1
722.2.c.k 6 19.e even 9 2
722.2.c.l 6 19.f odd 18 2
722.2.e.a 6 19.d odd 6 1
722.2.e.a 6 19.f odd 18 1
722.2.e.b 6 19.c even 3 1
722.2.e.b 6 19.e even 9 1
722.2.e.k 6 19.b odd 2 1
722.2.e.k 6 19.f odd 18 1
722.2.e.l 6 19.d odd 6 1
722.2.e.l 6 19.f odd 18 1
722.2.e.m 6 19.c even 3 1
722.2.e.m 6 19.e even 9 1
950.2.l.d 6 5.b even 2 1
950.2.l.d 6 95.p even 18 1
950.2.u.b 12 5.c odd 4 2
950.2.u.b 12 95.q odd 36 2
5776.2.a.bn 3 76.l odd 18 1
5776.2.a.bo 3 76.k even 18 1
6498.2.a.bl 3 57.l odd 18 1
6498.2.a.bq 3 57.j even 18 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(38, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} + 8T^{3} + 64 \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{5} + 36 T^{4} + 48 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$11$ \( T^{6} + 6 T^{5} + 33 T^{4} + 56 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$13$ \( T^{6} - 12 T^{5} + 48 T^{4} - 64 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$17$ \( T^{6} + 12 T^{5} + 108 T^{4} + \cdots + 12321 \) Copy content Toggle raw display
$19$ \( T^{6} - 18 T^{5} + 162 T^{4} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} + 12 T^{5} + 60 T^{4} + 152 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$29$ \( T^{6} + 18 T^{5} + 144 T^{4} + \cdots + 23104 \) Copy content Toggle raw display
$31$ \( T^{6} - 6 T^{5} + 60 T^{4} + 160 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( (T^{3} + 6 T^{2} - 24 T - 136)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{6} + 6 T^{5} + 42 T^{4} + 271 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$47$ \( T^{6} - 30 T^{5} + 372 T^{4} + \cdots + 87616 \) Copy content Toggle raw display
$53$ \( T^{6} - 24 T^{5} + 276 T^{4} + \cdots + 18496 \) Copy content Toggle raw display
$59$ \( T^{6} + 3 T^{5} + 54 T^{4} + 24 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} - 12 T^{4} + \cdots + 23104 \) Copy content Toggle raw display
$67$ \( T^{6} + 9 T^{5} + 162 T^{4} + \cdots + 6561 \) Copy content Toggle raw display
$71$ \( T^{6} + 18 T^{5} + 216 T^{4} + \cdots + 23104 \) Copy content Toggle raw display
$73$ \( T^{6} + 30 T^{5} + 279 T^{4} + \cdots + 3249 \) Copy content Toggle raw display
$79$ \( T^{6} - 6 T^{5} - 48 T^{4} + \cdots + 18496 \) Copy content Toggle raw display
$83$ \( T^{6} + 6 T^{5} + 63 T^{4} + \cdots + 2601 \) Copy content Toggle raw display
$89$ \( T^{6} + 36 T^{4} + 315 T^{3} + \cdots + 962361 \) Copy content Toggle raw display
$97$ \( T^{6} - 3 T^{5} + 6 T^{4} - 8 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less