Properties

Label 38.2.e
Level $38$
Weight $2$
Character orbit 38.e
Rep. character $\chi_{38}(5,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $6$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 38.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(38, [\chi])\).

Total New Old
Modular forms 42 6 36
Cusp forms 18 6 12
Eisenstein series 24 0 24

Trace form

\( 6 q - 3 q^{3} - 3 q^{6} - 6 q^{7} - 3 q^{8} - 3 q^{9} + O(q^{10}) \) \( 6 q - 3 q^{3} - 3 q^{6} - 6 q^{7} - 3 q^{8} - 3 q^{9} - 6 q^{11} + 12 q^{13} + 12 q^{14} - 6 q^{15} - 12 q^{17} - 6 q^{18} + 18 q^{19} + 12 q^{20} + 24 q^{21} - 12 q^{23} - 3 q^{24} + 6 q^{26} + 3 q^{27} - 6 q^{28} - 18 q^{29} + 6 q^{31} + 3 q^{33} - 12 q^{34} - 12 q^{35} - 3 q^{36} - 12 q^{37} - 9 q^{38} - 12 q^{39} + 3 q^{41} - 12 q^{42} - 6 q^{43} + 6 q^{45} + 30 q^{47} + 6 q^{48} - 15 q^{49} + 3 q^{50} + 21 q^{51} - 6 q^{52} + 24 q^{53} + 9 q^{54} + 18 q^{55} + 12 q^{56} - 24 q^{57} + 24 q^{58} - 3 q^{59} - 6 q^{60} + 6 q^{61} + 18 q^{62} + 12 q^{63} - 3 q^{64} + 12 q^{65} + 3 q^{66} - 9 q^{67} - 3 q^{68} - 6 q^{69} - 12 q^{70} - 18 q^{71} + 6 q^{72} - 30 q^{73} - 18 q^{74} - 6 q^{76} - 12 q^{77} - 18 q^{78} + 6 q^{79} - 33 q^{81} + 3 q^{82} - 6 q^{83} + 6 q^{84} - 24 q^{85} + 12 q^{86} + 18 q^{87} - 6 q^{88} + 12 q^{90} - 12 q^{91} + 6 q^{92} + 6 q^{93} - 12 q^{94} + 3 q^{97} + 21 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(38, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
38.2.e.a 38.e 19.e $6$ $0.303$ \(\Q(\zeta_{18})\) None 38.2.e.a \(0\) \(-3\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{9}]$ \(q-\zeta_{18}q^{2}+(-\zeta_{18}^{3}-\zeta_{18}^{5})q^{3}+\zeta_{18}^{2}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(38, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(38, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)