# Properties

 Label 38.2.e Level $38$ Weight $2$ Character orbit 38.e Rep. character $\chi_{38}(5,\cdot)$ Character field $\Q(\zeta_{9})$ Dimension $6$ Newform subspaces $1$ Sturm bound $10$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$38 = 2 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 38.e (of order $$9$$ and degree $$6$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$19$$ Character field: $$\Q(\zeta_{9})$$ Newform subspaces: $$1$$ Sturm bound: $$10$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(38, [\chi])$$.

Total New Old
Modular forms 42 6 36
Cusp forms 18 6 12
Eisenstein series 24 0 24

## Trace form

 $$6 q - 3 q^{3} - 3 q^{6} - 6 q^{7} - 3 q^{8} - 3 q^{9} + O(q^{10})$$ $$6 q - 3 q^{3} - 3 q^{6} - 6 q^{7} - 3 q^{8} - 3 q^{9} - 6 q^{11} + 12 q^{13} + 12 q^{14} - 6 q^{15} - 12 q^{17} - 6 q^{18} + 18 q^{19} + 12 q^{20} + 24 q^{21} - 12 q^{23} - 3 q^{24} + 6 q^{26} + 3 q^{27} - 6 q^{28} - 18 q^{29} + 6 q^{31} + 3 q^{33} - 12 q^{34} - 12 q^{35} - 3 q^{36} - 12 q^{37} - 9 q^{38} - 12 q^{39} + 3 q^{41} - 12 q^{42} - 6 q^{43} + 6 q^{45} + 30 q^{47} + 6 q^{48} - 15 q^{49} + 3 q^{50} + 21 q^{51} - 6 q^{52} + 24 q^{53} + 9 q^{54} + 18 q^{55} + 12 q^{56} - 24 q^{57} + 24 q^{58} - 3 q^{59} - 6 q^{60} + 6 q^{61} + 18 q^{62} + 12 q^{63} - 3 q^{64} + 12 q^{65} + 3 q^{66} - 9 q^{67} - 3 q^{68} - 6 q^{69} - 12 q^{70} - 18 q^{71} + 6 q^{72} - 30 q^{73} - 18 q^{74} - 6 q^{76} - 12 q^{77} - 18 q^{78} + 6 q^{79} - 33 q^{81} + 3 q^{82} - 6 q^{83} + 6 q^{84} - 24 q^{85} + 12 q^{86} + 18 q^{87} - 6 q^{88} + 12 q^{90} - 12 q^{91} + 6 q^{92} + 6 q^{93} - 12 q^{94} + 3 q^{97} + 21 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(38, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
38.2.e.a $6$ $0.303$ $$\Q(\zeta_{18})$$ None $$0$$ $$-3$$ $$0$$ $$-6$$ $$q-\zeta_{18}q^{2}+(-\zeta_{18}^{3}-\zeta_{18}^{5})q^{3}+\zeta_{18}^{2}q^{4}+\cdots$$

## Decomposition of $$S_{2}^{\mathrm{old}}(38, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(38, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(19, [\chi])$$$$^{\oplus 2}$$