Defining parameters
Level: | \( N \) | \(=\) | \( 38 = 2 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 38.e (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(38, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 6 | 36 |
Cusp forms | 18 | 6 | 12 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(38, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
38.2.e.a | $6$ | $0.303$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(-3\) | \(0\) | \(-6\) | \(q-\zeta_{18}q^{2}+(-\zeta_{18}^{3}-\zeta_{18}^{5})q^{3}+\zeta_{18}^{2}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(38, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(38, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)