Newspace parameters
Level: | \( N \) | \(=\) | \( 38 = 2 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 38.c (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.303431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{7})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 7x^{2} + 49 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 7x^{2} + 49 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 7 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 7 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 7\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 7\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/38\mathbb{Z}\right)^\times\).
\(n\) | \(21\) |
\(\chi(n)\) | \(-1 - \beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−0.500000 | − | 0.866025i | −1.32288 | − | 2.29129i | −0.500000 | + | 0.866025i | 0.822876 | + | 1.42526i | −1.32288 | + | 2.29129i | 3.64575 | 1.00000 | −2.00000 | + | 3.46410i | 0.822876 | − | 1.42526i | ||||||||||||||||
7.2 | −0.500000 | − | 0.866025i | 1.32288 | + | 2.29129i | −0.500000 | + | 0.866025i | −1.82288 | − | 3.15731i | 1.32288 | − | 2.29129i | −1.64575 | 1.00000 | −2.00000 | + | 3.46410i | −1.82288 | + | 3.15731i | |||||||||||||||||
11.1 | −0.500000 | + | 0.866025i | −1.32288 | + | 2.29129i | −0.500000 | − | 0.866025i | 0.822876 | − | 1.42526i | −1.32288 | − | 2.29129i | 3.64575 | 1.00000 | −2.00000 | − | 3.46410i | 0.822876 | + | 1.42526i | |||||||||||||||||
11.2 | −0.500000 | + | 0.866025i | 1.32288 | − | 2.29129i | −0.500000 | − | 0.866025i | −1.82288 | + | 3.15731i | 1.32288 | + | 2.29129i | −1.64575 | 1.00000 | −2.00000 | − | 3.46410i | −1.82288 | − | 3.15731i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 38.2.c.b | ✓ | 4 |
3.b | odd | 2 | 1 | 342.2.g.f | 4 | ||
4.b | odd | 2 | 1 | 304.2.i.e | 4 | ||
5.b | even | 2 | 1 | 950.2.e.k | 4 | ||
5.c | odd | 4 | 2 | 950.2.j.g | 8 | ||
8.b | even | 2 | 1 | 1216.2.i.l | 4 | ||
8.d | odd | 2 | 1 | 1216.2.i.k | 4 | ||
12.b | even | 2 | 1 | 2736.2.s.v | 4 | ||
19.b | odd | 2 | 1 | 722.2.c.j | 4 | ||
19.c | even | 3 | 1 | inner | 38.2.c.b | ✓ | 4 |
19.c | even | 3 | 1 | 722.2.a.j | 2 | ||
19.d | odd | 6 | 1 | 722.2.a.g | 2 | ||
19.d | odd | 6 | 1 | 722.2.c.j | 4 | ||
19.e | even | 9 | 6 | 722.2.e.n | 12 | ||
19.f | odd | 18 | 6 | 722.2.e.o | 12 | ||
57.f | even | 6 | 1 | 6498.2.a.bg | 2 | ||
57.h | odd | 6 | 1 | 342.2.g.f | 4 | ||
57.h | odd | 6 | 1 | 6498.2.a.ba | 2 | ||
76.f | even | 6 | 1 | 5776.2.a.z | 2 | ||
76.g | odd | 6 | 1 | 304.2.i.e | 4 | ||
76.g | odd | 6 | 1 | 5776.2.a.ba | 2 | ||
95.i | even | 6 | 1 | 950.2.e.k | 4 | ||
95.m | odd | 12 | 2 | 950.2.j.g | 8 | ||
152.k | odd | 6 | 1 | 1216.2.i.k | 4 | ||
152.p | even | 6 | 1 | 1216.2.i.l | 4 | ||
228.m | even | 6 | 1 | 2736.2.s.v | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
38.2.c.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
38.2.c.b | ✓ | 4 | 19.c | even | 3 | 1 | inner |
304.2.i.e | 4 | 4.b | odd | 2 | 1 | ||
304.2.i.e | 4 | 76.g | odd | 6 | 1 | ||
342.2.g.f | 4 | 3.b | odd | 2 | 1 | ||
342.2.g.f | 4 | 57.h | odd | 6 | 1 | ||
722.2.a.g | 2 | 19.d | odd | 6 | 1 | ||
722.2.a.j | 2 | 19.c | even | 3 | 1 | ||
722.2.c.j | 4 | 19.b | odd | 2 | 1 | ||
722.2.c.j | 4 | 19.d | odd | 6 | 1 | ||
722.2.e.n | 12 | 19.e | even | 9 | 6 | ||
722.2.e.o | 12 | 19.f | odd | 18 | 6 | ||
950.2.e.k | 4 | 5.b | even | 2 | 1 | ||
950.2.e.k | 4 | 95.i | even | 6 | 1 | ||
950.2.j.g | 8 | 5.c | odd | 4 | 2 | ||
950.2.j.g | 8 | 95.m | odd | 12 | 2 | ||
1216.2.i.k | 4 | 8.d | odd | 2 | 1 | ||
1216.2.i.k | 4 | 152.k | odd | 6 | 1 | ||
1216.2.i.l | 4 | 8.b | even | 2 | 1 | ||
1216.2.i.l | 4 | 152.p | even | 6 | 1 | ||
2736.2.s.v | 4 | 12.b | even | 2 | 1 | ||
2736.2.s.v | 4 | 228.m | even | 6 | 1 | ||
5776.2.a.z | 2 | 76.f | even | 6 | 1 | ||
5776.2.a.ba | 2 | 76.g | odd | 6 | 1 | ||
6498.2.a.ba | 2 | 57.h | odd | 6 | 1 | ||
6498.2.a.bg | 2 | 57.f | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} + 7T_{3}^{2} + 49 \)
acting on \(S_{2}^{\mathrm{new}}(38, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + T + 1)^{2} \)
$3$
\( T^{4} + 7T^{2} + 49 \)
$5$
\( T^{4} + 2 T^{3} + 10 T^{2} - 12 T + 36 \)
$7$
\( (T^{2} - 2 T - 6)^{2} \)
$11$
\( (T^{2} + 4 T - 3)^{2} \)
$13$
\( (T^{2} + 2 T + 4)^{2} \)
$17$
\( T^{4} \)
$19$
\( T^{4} - 12 T^{3} + 67 T^{2} + \cdots + 361 \)
$23$
\( T^{4} + 2 T^{3} + 10 T^{2} - 12 T + 36 \)
$29$
\( T^{4} - 2 T^{3} + 10 T^{2} + 12 T + 36 \)
$31$
\( (T^{2} + 6 T + 2)^{2} \)
$37$
\( (T^{2} - 6 T + 2)^{2} \)
$41$
\( T^{4} + 10 T^{3} + 103 T^{2} - 30 T + 9 \)
$43$
\( T^{4} + 12 T^{3} + 136 T^{2} + \cdots + 64 \)
$47$
\( T^{4} + 14 T^{3} + 154 T^{2} + \cdots + 1764 \)
$53$
\( T^{4} - 4 T^{3} + 124 T^{2} + \cdots + 11664 \)
$59$
\( T^{4} + 63T^{2} + 3969 \)
$61$
\( T^{4} - 14 T^{3} + 210 T^{2} + \cdots + 196 \)
$67$
\( T^{4} - 4 T^{3} + 19 T^{2} + 12 T + 9 \)
$71$
\( T^{4} - 16 T^{3} + 220 T^{2} + \cdots + 1296 \)
$73$
\( T^{4} + 14 T^{3} + 175 T^{2} + \cdots + 441 \)
$79$
\( (T^{2} - 4 T + 16)^{2} \)
$83$
\( (T^{2} - 63)^{2} \)
$89$
\( T^{4} \)
$97$
\( T^{4} - 18 T^{3} + 271 T^{2} + \cdots + 2809 \)
show more
show less