Properties

Label 378.4.g.b.163.3
Level $378$
Weight $4$
Character 378.163
Analytic conductor $22.303$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,4,Mod(109,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 378.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3027219822\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.11184604443.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 43x^{4} - 210x^{3} + 1849x^{2} - 4515x + 11025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.3
Root \(2.16527 - 3.75036i\) of defining polynomial
Character \(\chi\) \(=\) 378.163
Dual form 378.4.g.b.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(6.70319 - 11.6103i) q^{5} +(5.32531 + 17.7381i) q^{7} -8.00000 q^{8} +O(q^{10})\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(6.70319 - 11.6103i) q^{5} +(5.32531 + 17.7381i) q^{7} -8.00000 q^{8} +(-13.4064 - 23.2205i) q^{10} +(-21.8169 - 37.7881i) q^{11} -8.40639 q^{13} +(36.0486 + 8.51443i) q^{14} +(-8.00000 + 13.8564i) q^{16} +(-36.3086 - 62.8883i) q^{17} +(29.8496 - 51.7011i) q^{19} -53.6255 q^{20} -87.2678 q^{22} +(38.9919 - 67.5359i) q^{23} +(-27.3656 - 47.3986i) q^{25} +(-8.40639 + 14.5603i) q^{26} +(50.7961 - 53.9237i) q^{28} -59.0953 q^{29} +(-41.9845 - 72.7193i) q^{31} +(16.0000 + 27.7128i) q^{32} -145.234 q^{34} +(241.641 + 57.0738i) q^{35} +(1.78183 - 3.08622i) q^{37} +(-59.6993 - 103.402i) q^{38} +(-53.6255 + 92.8822i) q^{40} +50.0978 q^{41} -556.622 q^{43} +(-87.2678 + 151.152i) q^{44} +(-77.9838 - 135.072i) q^{46} +(1.82554 - 3.16193i) q^{47} +(-286.282 + 188.922i) q^{49} -109.462 q^{50} +(16.8128 + 29.1206i) q^{52} +(160.893 + 278.675i) q^{53} -584.973 q^{55} +(-42.6024 - 141.905i) q^{56} +(-59.0953 + 102.356i) q^{58} +(-427.740 - 740.867i) q^{59} +(-3.53933 + 6.13030i) q^{61} -167.938 q^{62} +64.0000 q^{64} +(-56.3496 + 97.6004i) q^{65} +(-243.423 - 421.621i) q^{67} +(-145.234 + 251.553i) q^{68} +(340.496 - 361.461i) q^{70} +564.619 q^{71} +(-91.9378 - 159.241i) q^{73} +(-3.56366 - 6.17243i) q^{74} -238.797 q^{76} +(554.108 - 588.225i) q^{77} +(656.542 - 1137.16i) q^{79} +(107.251 + 185.764i) q^{80} +(50.0978 - 86.7719i) q^{82} +941.530 q^{83} -973.534 q^{85} +(-556.622 + 964.097i) q^{86} +(174.536 + 302.305i) q^{88} +(-399.453 + 691.873i) q^{89} +(-44.7666 - 149.114i) q^{91} -311.935 q^{92} +(-3.65109 - 6.32387i) q^{94} +(-400.176 - 693.124i) q^{95} +524.765 q^{97} +(40.9401 + 684.777i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 12 q^{4} + 5 q^{5} + 8 q^{7} - 48 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} - 12 q^{4} + 5 q^{5} + 8 q^{7} - 48 q^{8} - 10 q^{10} - 29 q^{11} + 20 q^{13} + 20 q^{14} - 48 q^{16} - 38 q^{17} + 57 q^{19} - 40 q^{20} - 116 q^{22} - 14 q^{23} + 134 q^{25} + 20 q^{26} + 8 q^{28} + 362 q^{29} - 88 q^{31} + 96 q^{32} - 152 q^{34} + 490 q^{35} + 384 q^{37} - 114 q^{38} - 40 q^{40} - 432 q^{41} - 726 q^{43} - 116 q^{44} + 28 q^{46} - 183 q^{47} + 372 q^{49} + 536 q^{50} - 40 q^{52} - 396 q^{53} - 1268 q^{55} - 64 q^{56} + 362 q^{58} - 427 q^{59} - 427 q^{61} - 352 q^{62} + 384 q^{64} - 216 q^{65} - 32 q^{67} - 152 q^{68} + 1162 q^{70} + 790 q^{71} + 373 q^{73} - 768 q^{74} - 456 q^{76} + 1211 q^{77} + 1364 q^{79} + 80 q^{80} - 432 q^{82} + 154 q^{83} - 2678 q^{85} - 726 q^{86} + 232 q^{88} - 1233 q^{89} + 131 q^{91} + 112 q^{92} + 366 q^{94} - 464 q^{95} + 1180 q^{97} + 720 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 6.70319 11.6103i 0.599552 1.03845i −0.393335 0.919395i \(-0.628679\pi\)
0.992887 0.119059i \(-0.0379878\pi\)
\(6\) 0 0
\(7\) 5.32531 + 17.7381i 0.287539 + 0.957769i
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −13.4064 23.2205i −0.423947 0.734298i
\(11\) −21.8169 37.7881i −0.598005 1.03578i −0.993115 0.117142i \(-0.962627\pi\)
0.395110 0.918634i \(-0.370706\pi\)
\(12\) 0 0
\(13\) −8.40639 −0.179347 −0.0896735 0.995971i \(-0.528582\pi\)
−0.0896735 + 0.995971i \(0.528582\pi\)
\(14\) 36.0486 + 8.51443i 0.688172 + 0.162541i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −36.3086 62.8883i −0.518007 0.897215i −0.999781 0.0209196i \(-0.993341\pi\)
0.481774 0.876296i \(-0.339993\pi\)
\(18\) 0 0
\(19\) 29.8496 51.7011i 0.360420 0.624265i −0.627610 0.778528i \(-0.715967\pi\)
0.988030 + 0.154263i \(0.0493002\pi\)
\(20\) −53.6255 −0.599552
\(21\) 0 0
\(22\) −87.2678 −0.845707
\(23\) 38.9919 67.5359i 0.353494 0.612270i −0.633365 0.773853i \(-0.718327\pi\)
0.986859 + 0.161583i \(0.0516600\pi\)
\(24\) 0 0
\(25\) −27.3656 47.3986i −0.218925 0.379189i
\(26\) −8.40639 + 14.5603i −0.0634088 + 0.109827i
\(27\) 0 0
\(28\) 50.7961 53.9237i 0.342841 0.363950i
\(29\) −59.0953 −0.378404 −0.189202 0.981938i \(-0.560590\pi\)
−0.189202 + 0.981938i \(0.560590\pi\)
\(30\) 0 0
\(31\) −41.9845 72.7193i −0.243246 0.421315i 0.718391 0.695640i \(-0.244879\pi\)
−0.961637 + 0.274325i \(0.911546\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −145.234 −0.732573
\(35\) 241.641 + 57.0738i 1.16699 + 0.275635i
\(36\) 0 0
\(37\) 1.78183 3.08622i 0.00791705 0.0137127i −0.862040 0.506841i \(-0.830813\pi\)
0.869957 + 0.493128i \(0.164147\pi\)
\(38\) −59.6993 103.402i −0.254855 0.441422i
\(39\) 0 0
\(40\) −53.6255 + 92.8822i −0.211974 + 0.367149i
\(41\) 50.0978 0.190828 0.0954141 0.995438i \(-0.469582\pi\)
0.0954141 + 0.995438i \(0.469582\pi\)
\(42\) 0 0
\(43\) −556.622 −1.97405 −0.987023 0.160578i \(-0.948664\pi\)
−0.987023 + 0.160578i \(0.948664\pi\)
\(44\) −87.2678 + 151.152i −0.299003 + 0.517888i
\(45\) 0 0
\(46\) −77.9838 135.072i −0.249958 0.432940i
\(47\) 1.82554 3.16193i 0.00566559 0.00981310i −0.863179 0.504899i \(-0.831530\pi\)
0.868844 + 0.495085i \(0.164863\pi\)
\(48\) 0 0
\(49\) −286.282 + 188.922i −0.834642 + 0.550793i
\(50\) −109.462 −0.309606
\(51\) 0 0
\(52\) 16.8128 + 29.1206i 0.0448368 + 0.0776596i
\(53\) 160.893 + 278.675i 0.416988 + 0.722244i 0.995635 0.0933338i \(-0.0297524\pi\)
−0.578647 + 0.815578i \(0.696419\pi\)
\(54\) 0 0
\(55\) −584.973 −1.43414
\(56\) −42.6024 141.905i −0.101661 0.338622i
\(57\) 0 0
\(58\) −59.0953 + 102.356i −0.133786 + 0.231724i
\(59\) −427.740 740.867i −0.943847 1.63479i −0.758042 0.652205i \(-0.773844\pi\)
−0.185805 0.982587i \(-0.559489\pi\)
\(60\) 0 0
\(61\) −3.53933 + 6.13030i −0.00742894 + 0.0128673i −0.869716 0.493553i \(-0.835698\pi\)
0.862287 + 0.506420i \(0.169031\pi\)
\(62\) −167.938 −0.344002
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −56.3496 + 97.6004i −0.107528 + 0.186244i
\(66\) 0 0
\(67\) −243.423 421.621i −0.443863 0.768793i 0.554109 0.832444i \(-0.313059\pi\)
−0.997972 + 0.0636506i \(0.979726\pi\)
\(68\) −145.234 + 251.553i −0.259004 + 0.448608i
\(69\) 0 0
\(70\) 340.496 361.461i 0.581386 0.617183i
\(71\) 564.619 0.943774 0.471887 0.881659i \(-0.343573\pi\)
0.471887 + 0.881659i \(0.343573\pi\)
\(72\) 0 0
\(73\) −91.9378 159.241i −0.147404 0.255312i 0.782863 0.622194i \(-0.213758\pi\)
−0.930267 + 0.366882i \(0.880425\pi\)
\(74\) −3.56366 6.17243i −0.00559820 0.00969636i
\(75\) 0 0
\(76\) −238.797 −0.360420
\(77\) 554.108 588.225i 0.820083 0.870577i
\(78\) 0 0
\(79\) 656.542 1137.16i 0.935022 1.61950i 0.160426 0.987048i \(-0.448713\pi\)
0.774595 0.632457i \(-0.217954\pi\)
\(80\) 107.251 + 185.764i 0.149888 + 0.259614i
\(81\) 0 0
\(82\) 50.0978 86.7719i 0.0674680 0.116858i
\(83\) 941.530 1.24514 0.622568 0.782565i \(-0.286089\pi\)
0.622568 + 0.782565i \(0.286089\pi\)
\(84\) 0 0
\(85\) −973.534 −1.24229
\(86\) −556.622 + 964.097i −0.697931 + 1.20885i
\(87\) 0 0
\(88\) 174.536 + 302.305i 0.211427 + 0.366202i
\(89\) −399.453 + 691.873i −0.475752 + 0.824027i −0.999614 0.0277760i \(-0.991157\pi\)
0.523862 + 0.851803i \(0.324491\pi\)
\(90\) 0 0
\(91\) −44.7666 149.114i −0.0515694 0.171773i
\(92\) −311.935 −0.353494
\(93\) 0 0
\(94\) −3.65109 6.32387i −0.00400618 0.00693891i
\(95\) −400.176 693.124i −0.432181 0.748559i
\(96\) 0 0
\(97\) 524.765 0.549297 0.274648 0.961545i \(-0.411439\pi\)
0.274648 + 0.961545i \(0.411439\pi\)
\(98\) 40.9401 + 684.777i 0.0421997 + 0.705846i
\(99\) 0 0
\(100\) −109.462 + 189.594i −0.109462 + 0.189594i
\(101\) 337.266 + 584.162i 0.332270 + 0.575508i 0.982957 0.183838i \(-0.0588522\pi\)
−0.650687 + 0.759346i \(0.725519\pi\)
\(102\) 0 0
\(103\) −624.773 + 1082.14i −0.597676 + 1.03521i 0.395487 + 0.918472i \(0.370576\pi\)
−0.993163 + 0.116734i \(0.962757\pi\)
\(104\) 67.2511 0.0634088
\(105\) 0 0
\(106\) 643.572 0.589710
\(107\) −886.082 + 1534.74i −0.800568 + 1.38662i 0.118675 + 0.992933i \(0.462135\pi\)
−0.919243 + 0.393691i \(0.871198\pi\)
\(108\) 0 0
\(109\) 682.211 + 1181.62i 0.599486 + 1.03834i 0.992897 + 0.118978i \(0.0379617\pi\)
−0.393411 + 0.919363i \(0.628705\pi\)
\(110\) −584.973 + 1013.20i −0.507045 + 0.878228i
\(111\) 0 0
\(112\) −288.389 68.1154i −0.243305 0.0574670i
\(113\) 780.182 0.649499 0.324749 0.945800i \(-0.394720\pi\)
0.324749 + 0.945800i \(0.394720\pi\)
\(114\) 0 0
\(115\) −522.740 905.413i −0.423876 0.734175i
\(116\) 118.191 + 204.712i 0.0946011 + 0.163854i
\(117\) 0 0
\(118\) −1710.96 −1.33480
\(119\) 922.167 978.946i 0.710377 0.754116i
\(120\) 0 0
\(121\) −286.459 + 496.161i −0.215221 + 0.372773i
\(122\) 7.07867 + 12.2606i 0.00525305 + 0.00909855i
\(123\) 0 0
\(124\) −167.938 + 290.877i −0.121623 + 0.210658i
\(125\) 942.051 0.674077
\(126\) 0 0
\(127\) 851.395 0.594875 0.297437 0.954741i \(-0.403868\pi\)
0.297437 + 0.954741i \(0.403868\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 112.699 + 195.201i 0.0760337 + 0.131694i
\(131\) 751.502 1301.64i 0.501214 0.868129i −0.498785 0.866726i \(-0.666220\pi\)
0.999999 0.00140275i \(-0.000446511\pi\)
\(132\) 0 0
\(133\) 1076.04 + 254.152i 0.701537 + 0.165698i
\(134\) −973.691 −0.627717
\(135\) 0 0
\(136\) 290.469 + 503.107i 0.183143 + 0.317214i
\(137\) −868.400 1504.11i −0.541551 0.937993i −0.998815 0.0486627i \(-0.984504\pi\)
0.457264 0.889331i \(-0.348829\pi\)
\(138\) 0 0
\(139\) 3116.41 1.90166 0.950828 0.309720i \(-0.100235\pi\)
0.950828 + 0.309720i \(0.100235\pi\)
\(140\) −285.572 951.217i −0.172395 0.574232i
\(141\) 0 0
\(142\) 564.619 977.949i 0.333675 0.577941i
\(143\) 183.402 + 317.661i 0.107250 + 0.185763i
\(144\) 0 0
\(145\) −396.127 + 686.113i −0.226873 + 0.392956i
\(146\) −367.751 −0.208461
\(147\) 0 0
\(148\) −14.2546 −0.00791705
\(149\) 1475.41 2555.49i 0.811211 1.40506i −0.100805 0.994906i \(-0.532142\pi\)
0.912017 0.410153i \(-0.134525\pi\)
\(150\) 0 0
\(151\) 644.154 + 1115.71i 0.347156 + 0.601292i 0.985743 0.168258i \(-0.0538142\pi\)
−0.638587 + 0.769549i \(0.720481\pi\)
\(152\) −238.797 + 413.609i −0.127428 + 0.220711i
\(153\) 0 0
\(154\) −464.728 1547.97i −0.243174 0.809992i
\(155\) −1125.72 −0.583355
\(156\) 0 0
\(157\) 1666.45 + 2886.38i 0.847116 + 1.46725i 0.883771 + 0.467920i \(0.154996\pi\)
−0.0366552 + 0.999328i \(0.511670\pi\)
\(158\) −1313.08 2274.33i −0.661160 1.14516i
\(159\) 0 0
\(160\) 429.004 0.211974
\(161\) 1405.60 + 331.993i 0.688057 + 0.162514i
\(162\) 0 0
\(163\) 1825.57 3161.97i 0.877235 1.51942i 0.0228725 0.999738i \(-0.492719\pi\)
0.854363 0.519677i \(-0.173948\pi\)
\(164\) −100.196 173.544i −0.0477070 0.0826310i
\(165\) 0 0
\(166\) 941.530 1630.78i 0.440222 0.762487i
\(167\) −3389.98 −1.57081 −0.785403 0.618985i \(-0.787544\pi\)
−0.785403 + 0.618985i \(0.787544\pi\)
\(168\) 0 0
\(169\) −2126.33 −0.967835
\(170\) −973.534 + 1686.21i −0.439216 + 0.760744i
\(171\) 0 0
\(172\) 1113.24 + 1928.19i 0.493512 + 0.854787i
\(173\) 314.750 545.164i 0.138324 0.239584i −0.788538 0.614986i \(-0.789162\pi\)
0.926862 + 0.375402i \(0.122495\pi\)
\(174\) 0 0
\(175\) 695.032 737.826i 0.300226 0.318711i
\(176\) 698.142 0.299003
\(177\) 0 0
\(178\) 798.907 + 1383.75i 0.336408 + 0.582675i
\(179\) −121.747 210.872i −0.0508369 0.0880520i 0.839487 0.543380i \(-0.182856\pi\)
−0.890324 + 0.455327i \(0.849522\pi\)
\(180\) 0 0
\(181\) 4216.08 1.73137 0.865687 0.500585i \(-0.166882\pi\)
0.865687 + 0.500585i \(0.166882\pi\)
\(182\) −303.039 71.5755i −0.123422 0.0291513i
\(183\) 0 0
\(184\) −311.935 + 540.287i −0.124979 + 0.216470i
\(185\) −23.8879 41.3750i −0.00949336 0.0164430i
\(186\) 0 0
\(187\) −1584.29 + 2744.06i −0.619542 + 1.07308i
\(188\) −14.6044 −0.00566559
\(189\) 0 0
\(190\) −1600.70 −0.611196
\(191\) 1900.44 3291.66i 0.719953 1.24700i −0.241065 0.970509i \(-0.577497\pi\)
0.961018 0.276486i \(-0.0891700\pi\)
\(192\) 0 0
\(193\) −1923.01 3330.75i −0.717209 1.24224i −0.962101 0.272692i \(-0.912086\pi\)
0.244893 0.969550i \(-0.421247\pi\)
\(194\) 524.765 908.919i 0.194206 0.336374i
\(195\) 0 0
\(196\) 1227.01 + 613.867i 0.447161 + 0.223712i
\(197\) 4739.52 1.71410 0.857048 0.515237i \(-0.172296\pi\)
0.857048 + 0.515237i \(0.172296\pi\)
\(198\) 0 0
\(199\) 2073.53 + 3591.46i 0.738637 + 1.27936i 0.953109 + 0.302627i \(0.0978637\pi\)
−0.214472 + 0.976730i \(0.568803\pi\)
\(200\) 218.925 + 379.189i 0.0774016 + 0.134063i
\(201\) 0 0
\(202\) 1349.07 0.469900
\(203\) −314.701 1048.24i −0.108806 0.362424i
\(204\) 0 0
\(205\) 335.815 581.649i 0.114411 0.198166i
\(206\) 1249.55 + 2164.28i 0.422621 + 0.732001i
\(207\) 0 0
\(208\) 67.2511 116.482i 0.0224184 0.0388298i
\(209\) −2604.91 −0.862131
\(210\) 0 0
\(211\) 226.994 0.0740612 0.0370306 0.999314i \(-0.488210\pi\)
0.0370306 + 0.999314i \(0.488210\pi\)
\(212\) 643.572 1114.70i 0.208494 0.361122i
\(213\) 0 0
\(214\) 1772.16 + 3069.48i 0.566087 + 0.980491i
\(215\) −3731.14 + 6462.53i −1.18354 + 2.04996i
\(216\) 0 0
\(217\) 1066.32 1131.98i 0.333580 0.354119i
\(218\) 2728.84 0.847801
\(219\) 0 0
\(220\) 1169.95 + 2026.41i 0.358535 + 0.621001i
\(221\) 305.224 + 528.664i 0.0929031 + 0.160913i
\(222\) 0 0
\(223\) −4919.61 −1.47732 −0.738658 0.674080i \(-0.764540\pi\)
−0.738658 + 0.674080i \(0.764540\pi\)
\(224\) −406.368 + 431.389i −0.121213 + 0.128676i
\(225\) 0 0
\(226\) 780.182 1351.32i 0.229633 0.397735i
\(227\) 751.565 + 1301.75i 0.219749 + 0.380617i 0.954731 0.297470i \(-0.0961427\pi\)
−0.734982 + 0.678087i \(0.762809\pi\)
\(228\) 0 0
\(229\) 1870.02 3238.98i 0.539628 0.934662i −0.459296 0.888283i \(-0.651898\pi\)
0.998924 0.0463793i \(-0.0147683\pi\)
\(230\) −2090.96 −0.599452
\(231\) 0 0
\(232\) 472.762 0.133786
\(233\) 617.169 1068.97i 0.173528 0.300560i −0.766123 0.642694i \(-0.777817\pi\)
0.939651 + 0.342135i \(0.111150\pi\)
\(234\) 0 0
\(235\) −24.4739 42.3901i −0.00679364 0.0117669i
\(236\) −1710.96 + 2963.47i −0.471924 + 0.817396i
\(237\) 0 0
\(238\) −773.417 2576.19i −0.210644 0.701636i
\(239\) −407.673 −0.110335 −0.0551677 0.998477i \(-0.517569\pi\)
−0.0551677 + 0.998477i \(0.517569\pi\)
\(240\) 0 0
\(241\) −62.5169 108.282i −0.0167098 0.0289422i 0.857550 0.514401i \(-0.171986\pi\)
−0.874259 + 0.485459i \(0.838652\pi\)
\(242\) 572.917 + 992.322i 0.152184 + 0.263590i
\(243\) 0 0
\(244\) 28.3147 0.00742894
\(245\) 274.429 + 4590.19i 0.0715618 + 1.19697i
\(246\) 0 0
\(247\) −250.927 + 434.619i −0.0646402 + 0.111960i
\(248\) 335.876 + 581.754i 0.0860006 + 0.148957i
\(249\) 0 0
\(250\) 942.051 1631.68i 0.238322 0.412786i
\(251\) −4144.15 −1.04214 −0.521068 0.853515i \(-0.674466\pi\)
−0.521068 + 0.853515i \(0.674466\pi\)
\(252\) 0 0
\(253\) −3402.74 −0.845566
\(254\) 851.395 1474.66i 0.210320 0.364285i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −274.649 + 475.706i −0.0666619 + 0.115462i −0.897430 0.441157i \(-0.854568\pi\)
0.830768 + 0.556619i \(0.187902\pi\)
\(258\) 0 0
\(259\) 64.2325 + 15.1712i 0.0154101 + 0.00363975i
\(260\) 450.797 0.107528
\(261\) 0 0
\(262\) −1503.00 2603.28i −0.354412 0.613860i
\(263\) −3079.75 5334.28i −0.722074 1.25067i −0.960167 0.279427i \(-0.909856\pi\)
0.238093 0.971242i \(-0.423478\pi\)
\(264\) 0 0
\(265\) 4313.99 1.00002
\(266\) 1516.24 1609.60i 0.349499 0.371019i
\(267\) 0 0
\(268\) −973.691 + 1686.48i −0.221932 + 0.384397i
\(269\) 3198.75 + 5540.40i 0.725024 + 1.25578i 0.958964 + 0.283528i \(0.0915047\pi\)
−0.233940 + 0.972251i \(0.575162\pi\)
\(270\) 0 0
\(271\) −3215.20 + 5568.89i −0.720700 + 1.24829i 0.240020 + 0.970768i \(0.422846\pi\)
−0.960720 + 0.277521i \(0.910487\pi\)
\(272\) 1161.88 0.259004
\(273\) 0 0
\(274\) −3473.60 −0.765868
\(275\) −1194.07 + 2068.19i −0.261836 + 0.453514i
\(276\) 0 0
\(277\) −2033.41 3521.97i −0.441068 0.763953i 0.556701 0.830713i \(-0.312067\pi\)
−0.997769 + 0.0667605i \(0.978734\pi\)
\(278\) 3116.41 5397.77i 0.672337 1.16452i
\(279\) 0 0
\(280\) −1933.13 456.591i −0.412595 0.0974518i
\(281\) 2270.90 0.482101 0.241050 0.970513i \(-0.422508\pi\)
0.241050 + 0.970513i \(0.422508\pi\)
\(282\) 0 0
\(283\) 3554.58 + 6156.71i 0.746635 + 1.29321i 0.949427 + 0.313988i \(0.101665\pi\)
−0.202792 + 0.979222i \(0.565001\pi\)
\(284\) −1129.24 1955.90i −0.235944 0.408666i
\(285\) 0 0
\(286\) 733.607 0.151675
\(287\) 266.786 + 888.640i 0.0548706 + 0.182769i
\(288\) 0 0
\(289\) −180.128 + 311.991i −0.0366635 + 0.0635031i
\(290\) 792.255 + 1372.23i 0.160423 + 0.277862i
\(291\) 0 0
\(292\) −367.751 + 636.964i −0.0737021 + 0.127656i
\(293\) 1088.93 0.217119 0.108560 0.994090i \(-0.465376\pi\)
0.108560 + 0.994090i \(0.465376\pi\)
\(294\) 0 0
\(295\) −11468.9 −2.26354
\(296\) −14.2546 + 24.6897i −0.00279910 + 0.00484818i
\(297\) 0 0
\(298\) −2950.82 5110.98i −0.573613 0.993527i
\(299\) −327.781 + 567.733i −0.0633982 + 0.109809i
\(300\) 0 0
\(301\) −2964.18 9873.42i −0.567616 1.89068i
\(302\) 2576.62 0.490952
\(303\) 0 0
\(304\) 477.594 + 827.217i 0.0901049 + 0.156066i
\(305\) 47.4497 + 82.1852i 0.00890806 + 0.0154292i
\(306\) 0 0
\(307\) 1736.56 0.322836 0.161418 0.986886i \(-0.448393\pi\)
0.161418 + 0.986886i \(0.448393\pi\)
\(308\) −3145.89 743.035i −0.581992 0.137462i
\(309\) 0 0
\(310\) −1125.72 + 1949.81i −0.206247 + 0.357231i
\(311\) −1164.74 2017.38i −0.212367 0.367830i 0.740088 0.672510i \(-0.234784\pi\)
−0.952455 + 0.304680i \(0.901451\pi\)
\(312\) 0 0
\(313\) −1744.00 + 3020.69i −0.314941 + 0.545494i −0.979425 0.201808i \(-0.935318\pi\)
0.664484 + 0.747303i \(0.268652\pi\)
\(314\) 6665.80 1.19800
\(315\) 0 0
\(316\) −5252.33 −0.935022
\(317\) −1348.77 + 2336.14i −0.238974 + 0.413914i −0.960420 0.278556i \(-0.910144\pi\)
0.721446 + 0.692470i \(0.243478\pi\)
\(318\) 0 0
\(319\) 1289.28 + 2233.10i 0.226288 + 0.391942i
\(320\) 429.004 743.057i 0.0749440 0.129807i
\(321\) 0 0
\(322\) 1980.63 2102.58i 0.342784 0.363890i
\(323\) −4335.19 −0.746800
\(324\) 0 0
\(325\) 230.046 + 398.451i 0.0392635 + 0.0680064i
\(326\) −3651.13 6323.94i −0.620299 1.07439i
\(327\) 0 0
\(328\) −400.782 −0.0674680
\(329\) 65.8084 + 15.5435i 0.0110278 + 0.00260468i
\(330\) 0 0
\(331\) 4985.88 8635.80i 0.827942 1.43404i −0.0717073 0.997426i \(-0.522845\pi\)
0.899650 0.436612i \(-0.143822\pi\)
\(332\) −1883.06 3261.56i −0.311284 0.539160i
\(333\) 0 0
\(334\) −3389.98 + 5871.62i −0.555364 + 0.961918i
\(335\) −6526.84 −1.06448
\(336\) 0 0
\(337\) −8607.45 −1.39133 −0.695664 0.718367i \(-0.744890\pi\)
−0.695664 + 0.718367i \(0.744890\pi\)
\(338\) −2126.33 + 3682.92i −0.342181 + 0.592675i
\(339\) 0 0
\(340\) 1947.07 + 3372.42i 0.310572 + 0.537927i
\(341\) −1831.95 + 3173.03i −0.290925 + 0.503897i
\(342\) 0 0
\(343\) −4875.66 4072.04i −0.767525 0.641019i
\(344\) 4452.97 0.697931
\(345\) 0 0
\(346\) −629.501 1090.33i −0.0978097 0.169411i
\(347\) 2770.44 + 4798.54i 0.428602 + 0.742361i 0.996749 0.0805663i \(-0.0256729\pi\)
−0.568147 + 0.822927i \(0.692340\pi\)
\(348\) 0 0
\(349\) −1450.89 −0.222535 −0.111267 0.993791i \(-0.535491\pi\)
−0.111267 + 0.993791i \(0.535491\pi\)
\(350\) −582.921 1941.66i −0.0890240 0.296531i
\(351\) 0 0
\(352\) 698.142 1209.22i 0.105713 0.183101i
\(353\) 2464.39 + 4268.45i 0.371576 + 0.643588i 0.989808 0.142407i \(-0.0454843\pi\)
−0.618232 + 0.785995i \(0.712151\pi\)
\(354\) 0 0
\(355\) 3784.75 6555.38i 0.565841 0.980066i
\(356\) 3195.63 0.475752
\(357\) 0 0
\(358\) −486.988 −0.0718942
\(359\) −624.930 + 1082.41i −0.0918733 + 0.159129i −0.908299 0.418321i \(-0.862619\pi\)
0.816426 + 0.577450i \(0.195952\pi\)
\(360\) 0 0
\(361\) 1647.50 + 2853.55i 0.240195 + 0.416030i
\(362\) 4216.08 7302.47i 0.612133 1.06025i
\(363\) 0 0
\(364\) −427.011 + 453.303i −0.0614876 + 0.0652734i
\(365\) −2465.11 −0.353506
\(366\) 0 0
\(367\) 1807.17 + 3130.11i 0.257040 + 0.445206i 0.965448 0.260597i \(-0.0839195\pi\)
−0.708408 + 0.705803i \(0.750586\pi\)
\(368\) 623.870 + 1080.57i 0.0883736 + 0.153068i
\(369\) 0 0
\(370\) −95.5515 −0.0134256
\(371\) −4086.37 + 4337.97i −0.571843 + 0.607052i
\(372\) 0 0
\(373\) −2785.71 + 4824.98i −0.386698 + 0.669781i −0.992003 0.126213i \(-0.959718\pi\)
0.605305 + 0.795994i \(0.293051\pi\)
\(374\) 3168.57 + 5488.13i 0.438083 + 0.758781i
\(375\) 0 0
\(376\) −14.6044 + 25.2955i −0.00200309 + 0.00346945i
\(377\) 496.778 0.0678657
\(378\) 0 0
\(379\) 2674.89 0.362533 0.181266 0.983434i \(-0.441980\pi\)
0.181266 + 0.983434i \(0.441980\pi\)
\(380\) −1600.70 + 2772.50i −0.216090 + 0.374279i
\(381\) 0 0
\(382\) −3800.88 6583.32i −0.509084 0.881759i
\(383\) 1675.22 2901.57i 0.223498 0.387111i −0.732369 0.680907i \(-0.761586\pi\)
0.955868 + 0.293797i \(0.0949189\pi\)
\(384\) 0 0
\(385\) −3115.16 10376.3i −0.412372 1.37358i
\(386\) −7692.04 −1.01429
\(387\) 0 0
\(388\) −1049.53 1817.84i −0.137324 0.237852i
\(389\) 3529.71 + 6113.63i 0.460060 + 0.796847i 0.998963 0.0455204i \(-0.0144946\pi\)
−0.538904 + 0.842367i \(0.681161\pi\)
\(390\) 0 0
\(391\) −5662.96 −0.732451
\(392\) 2290.26 1511.38i 0.295091 0.194735i
\(393\) 0 0
\(394\) 4739.52 8209.09i 0.606024 1.04966i
\(395\) −8801.85 15245.3i −1.12119 1.94195i
\(396\) 0 0
\(397\) −5510.26 + 9544.05i −0.696604 + 1.20655i 0.273032 + 0.962005i \(0.411973\pi\)
−0.969637 + 0.244549i \(0.921360\pi\)
\(398\) 8294.13 1.04459
\(399\) 0 0
\(400\) 875.699 0.109462
\(401\) −1458.98 + 2527.02i −0.181690 + 0.314697i −0.942456 0.334330i \(-0.891490\pi\)
0.760766 + 0.649026i \(0.224823\pi\)
\(402\) 0 0
\(403\) 352.938 + 611.307i 0.0436255 + 0.0755617i
\(404\) 1349.07 2336.65i 0.166135 0.287754i
\(405\) 0 0
\(406\) −2130.31 503.163i −0.260407 0.0615063i
\(407\) −155.496 −0.0189377
\(408\) 0 0
\(409\) 1400.02 + 2424.91i 0.169259 + 0.293165i 0.938159 0.346204i \(-0.112529\pi\)
−0.768901 + 0.639368i \(0.779196\pi\)
\(410\) −671.630 1163.30i −0.0809011 0.140125i
\(411\) 0 0
\(412\) 4998.18 0.597676
\(413\) 10863.8 11532.7i 1.29436 1.37405i
\(414\) 0 0
\(415\) 6311.26 10931.4i 0.746524 1.29302i
\(416\) −134.502 232.965i −0.0158522 0.0274568i
\(417\) 0 0
\(418\) −2604.91 + 4511.84i −0.304810 + 0.527946i
\(419\) −7229.43 −0.842913 −0.421456 0.906849i \(-0.638481\pi\)
−0.421456 + 0.906849i \(0.638481\pi\)
\(420\) 0 0
\(421\) −10949.7 −1.26759 −0.633795 0.773501i \(-0.718504\pi\)
−0.633795 + 0.773501i \(0.718504\pi\)
\(422\) 226.994 393.165i 0.0261846 0.0453530i
\(423\) 0 0
\(424\) −1287.14 2229.40i −0.147428 0.255352i
\(425\) −1987.21 + 3441.95i −0.226809 + 0.392845i
\(426\) 0 0
\(427\) −127.588 30.1354i −0.0144600 0.00341535i
\(428\) 7088.66 0.800568
\(429\) 0 0
\(430\) 7462.28 + 12925.1i 0.836891 + 1.44954i
\(431\) −5046.99 8741.64i −0.564048 0.976960i −0.997138 0.0756091i \(-0.975910\pi\)
0.433089 0.901351i \(-0.357423\pi\)
\(432\) 0 0
\(433\) 11040.9 1.22539 0.612694 0.790320i \(-0.290086\pi\)
0.612694 + 0.790320i \(0.290086\pi\)
\(434\) −894.321 2978.91i −0.0989143 0.329475i
\(435\) 0 0
\(436\) 2728.84 4726.50i 0.299743 0.519170i
\(437\) −2327.79 4031.84i −0.254813 0.441348i
\(438\) 0 0
\(439\) −566.206 + 980.697i −0.0615570 + 0.106620i −0.895162 0.445742i \(-0.852940\pi\)
0.833605 + 0.552362i \(0.186273\pi\)
\(440\) 4679.78 0.507045
\(441\) 0 0
\(442\) 1220.90 0.131385
\(443\) 4719.63 8174.65i 0.506177 0.876725i −0.493797 0.869577i \(-0.664391\pi\)
0.999974 0.00714780i \(-0.00227523\pi\)
\(444\) 0 0
\(445\) 5355.22 + 9275.52i 0.570476 + 0.988094i
\(446\) −4919.61 + 8521.01i −0.522310 + 0.904668i
\(447\) 0 0
\(448\) 340.820 + 1135.24i 0.0359424 + 0.119721i
\(449\) −8855.77 −0.930801 −0.465401 0.885100i \(-0.654090\pi\)
−0.465401 + 0.885100i \(0.654090\pi\)
\(450\) 0 0
\(451\) −1092.98 1893.10i −0.114116 0.197655i
\(452\) −1560.36 2702.63i −0.162375 0.281241i
\(453\) 0 0
\(454\) 3006.26 0.310772
\(455\) −2031.33 479.785i −0.209297 0.0494344i
\(456\) 0 0
\(457\) −2650.62 + 4591.01i −0.271315 + 0.469931i −0.969199 0.246280i \(-0.920792\pi\)
0.697884 + 0.716211i \(0.254125\pi\)
\(458\) −3740.05 6477.96i −0.381574 0.660906i
\(459\) 0 0
\(460\) −2090.96 + 3621.65i −0.211938 + 0.367088i
\(461\) 8217.88 0.830249 0.415124 0.909765i \(-0.363738\pi\)
0.415124 + 0.909765i \(0.363738\pi\)
\(462\) 0 0
\(463\) −14957.4 −1.50136 −0.750682 0.660664i \(-0.770275\pi\)
−0.750682 + 0.660664i \(0.770275\pi\)
\(464\) 472.762 818.849i 0.0473005 0.0819269i
\(465\) 0 0
\(466\) −1234.34 2137.94i −0.122703 0.212528i
\(467\) −121.131 + 209.805i −0.0120027 + 0.0207893i −0.871964 0.489569i \(-0.837154\pi\)
0.859962 + 0.510359i \(0.170487\pi\)
\(468\) 0 0
\(469\) 6182.46 6563.12i 0.608698 0.646177i
\(470\) −97.8958 −0.00960765
\(471\) 0 0
\(472\) 3421.92 + 5926.94i 0.333700 + 0.577986i
\(473\) 12143.8 + 21033.7i 1.18049 + 2.04467i
\(474\) 0 0
\(475\) −3267.41 −0.315619
\(476\) −5235.50 1236.59i −0.504136 0.119073i
\(477\) 0 0
\(478\) −407.673 + 706.110i −0.0390095 + 0.0675664i
\(479\) −4879.07 8450.79i −0.465408 0.806110i 0.533812 0.845603i \(-0.320759\pi\)
−0.999220 + 0.0394932i \(0.987426\pi\)
\(480\) 0 0
\(481\) −14.9787 + 25.9439i −0.00141990 + 0.00245934i
\(482\) −250.067 −0.0236312
\(483\) 0 0
\(484\) 2291.67 0.215221
\(485\) 3517.60 6092.66i 0.329332 0.570419i
\(486\) 0 0
\(487\) 6608.98 + 11447.1i 0.614952 + 1.06513i 0.990393 + 0.138282i \(0.0441580\pi\)
−0.375441 + 0.926846i \(0.622509\pi\)
\(488\) 28.3147 49.0424i 0.00262653 0.00454928i
\(489\) 0 0
\(490\) 8224.88 + 4114.87i 0.758290 + 0.379369i
\(491\) −13789.5 −1.26744 −0.633720 0.773562i \(-0.718473\pi\)
−0.633720 + 0.773562i \(0.718473\pi\)
\(492\) 0 0
\(493\) 2145.67 + 3716.41i 0.196016 + 0.339510i
\(494\) 501.855 + 869.238i 0.0457075 + 0.0791678i
\(495\) 0 0
\(496\) 1343.50 0.121623
\(497\) 3006.77 + 10015.3i 0.271372 + 0.903917i
\(498\) 0 0
\(499\) 995.188 1723.72i 0.0892800 0.154638i −0.817927 0.575322i \(-0.804877\pi\)
0.907207 + 0.420684i \(0.138210\pi\)
\(500\) −1884.10 3263.36i −0.168519 0.291884i
\(501\) 0 0
\(502\) −4144.15 + 7177.87i −0.368451 + 0.638176i
\(503\) 221.800 0.0196612 0.00983059 0.999952i \(-0.496871\pi\)
0.00983059 + 0.999952i \(0.496871\pi\)
\(504\) 0 0
\(505\) 9043.04 0.796852
\(506\) −3402.74 + 5893.71i −0.298953 + 0.517801i
\(507\) 0 0
\(508\) −1702.79 2949.32i −0.148719 0.257588i
\(509\) −2603.26 + 4508.99i −0.226695 + 0.392647i −0.956827 0.290659i \(-0.906125\pi\)
0.730132 + 0.683306i \(0.239459\pi\)
\(510\) 0 0
\(511\) 2335.04 2478.81i 0.202145 0.214591i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 549.298 + 951.411i 0.0471371 + 0.0816439i
\(515\) 8375.94 + 14507.6i 0.716676 + 1.24132i
\(516\) 0 0
\(517\) −159.311 −0.0135522
\(518\) 90.5098 96.0827i 0.00767717 0.00814986i
\(519\) 0 0
\(520\) 450.797 780.803i 0.0380168 0.0658471i
\(521\) −6123.38 10606.0i −0.514914 0.891858i −0.999850 0.0173079i \(-0.994490\pi\)
0.484936 0.874550i \(-0.338843\pi\)
\(522\) 0 0
\(523\) 6370.75 11034.5i 0.532646 0.922569i −0.466628 0.884454i \(-0.654531\pi\)
0.999273 0.0381155i \(-0.0121355\pi\)
\(524\) −6012.02 −0.501214
\(525\) 0 0
\(526\) −12319.0 −1.02117
\(527\) −3048.80 + 5280.67i −0.252007 + 0.436489i
\(528\) 0 0
\(529\) 3042.77 + 5270.23i 0.250084 + 0.433157i
\(530\) 4313.99 7472.05i 0.353562 0.612387i
\(531\) 0 0
\(532\) −1271.67 4235.81i −0.103635 0.345199i
\(533\) −421.141 −0.0342245
\(534\) 0 0
\(535\) 11879.2 + 20575.3i 0.959964 + 1.66271i
\(536\) 1947.38 + 3372.97i 0.156929 + 0.271810i
\(537\) 0 0
\(538\) 12795.0 1.02534
\(539\) 13384.8 + 6696.35i 1.06962 + 0.535125i
\(540\) 0 0
\(541\) 1757.33 3043.78i 0.139655 0.241890i −0.787711 0.616045i \(-0.788734\pi\)
0.927366 + 0.374155i \(0.122067\pi\)
\(542\) 6430.40 + 11137.8i 0.509612 + 0.882673i
\(543\) 0 0
\(544\) 1161.88 2012.43i 0.0915717 0.158607i
\(545\) 18292.0 1.43769
\(546\) 0 0
\(547\) 8362.90 0.653696 0.326848 0.945077i \(-0.394013\pi\)
0.326848 + 0.945077i \(0.394013\pi\)
\(548\) −3473.60 + 6016.45i −0.270775 + 0.468997i
\(549\) 0 0
\(550\) 2388.13 + 4136.37i 0.185146 + 0.320683i
\(551\) −1763.97 + 3055.29i −0.136384 + 0.236225i
\(552\) 0 0
\(553\) 23667.4 + 5590.08i 1.81997 + 0.429863i
\(554\) −8133.65 −0.623765
\(555\) 0 0
\(556\) −6232.81 10795.5i −0.475414 0.823441i
\(557\) 6241.84 + 10811.2i 0.474821 + 0.822414i 0.999584 0.0288343i \(-0.00917952\pi\)
−0.524763 + 0.851248i \(0.675846\pi\)
\(558\) 0 0
\(559\) 4679.18 0.354039
\(560\) −2723.97 + 2891.69i −0.205551 + 0.218207i
\(561\) 0 0
\(562\) 2270.90 3933.31i 0.170448 0.295225i
\(563\) 5609.22 + 9715.46i 0.419894 + 0.727278i 0.995928 0.0901473i \(-0.0287338\pi\)
−0.576034 + 0.817426i \(0.695400\pi\)
\(564\) 0 0
\(565\) 5229.71 9058.13i 0.389408 0.674475i
\(566\) 14218.3 1.05590
\(567\) 0 0
\(568\) −4516.95 −0.333675
\(569\) 10878.7 18842.5i 0.801511 1.38826i −0.117110 0.993119i \(-0.537363\pi\)
0.918621 0.395139i \(-0.129304\pi\)
\(570\) 0 0
\(571\) −1353.09 2343.62i −0.0991683 0.171765i 0.812172 0.583418i \(-0.198285\pi\)
−0.911341 + 0.411653i \(0.864952\pi\)
\(572\) 733.607 1270.64i 0.0536252 0.0928817i
\(573\) 0 0
\(574\) 1805.96 + 426.554i 0.131323 + 0.0310174i
\(575\) −4268.14 −0.309555
\(576\) 0 0
\(577\) 3842.52 + 6655.44i 0.277238 + 0.480190i 0.970697 0.240306i \(-0.0772477\pi\)
−0.693460 + 0.720496i \(0.743914\pi\)
\(578\) 360.256 + 623.982i 0.0259250 + 0.0449035i
\(579\) 0 0
\(580\) 3169.02 0.226873
\(581\) 5013.94 + 16701.0i 0.358026 + 1.19255i
\(582\) 0 0
\(583\) 7020.39 12159.7i 0.498722 0.863812i
\(584\) 735.502 + 1273.93i 0.0521153 + 0.0902663i
\(585\) 0 0
\(586\) 1088.93 1886.08i 0.0767632 0.132958i
\(587\) −24730.3 −1.73889 −0.869445 0.494030i \(-0.835523\pi\)
−0.869445 + 0.494030i \(0.835523\pi\)
\(588\) 0 0
\(589\) −5012.89 −0.350683
\(590\) −11468.9 + 19864.7i −0.800283 + 1.38613i
\(591\) 0 0
\(592\) 28.5092 + 49.3795i 0.00197926 + 0.00342818i
\(593\) 8612.12 14916.6i 0.596387 1.03297i −0.396963 0.917835i \(-0.629936\pi\)
0.993350 0.115138i \(-0.0367309\pi\)
\(594\) 0 0
\(595\) −5184.37 17268.7i −0.357207 1.18983i
\(596\) −11803.3 −0.811211
\(597\) 0 0
\(598\) 655.562 + 1135.47i 0.0448293 + 0.0776466i
\(599\) 4841.41 + 8385.56i 0.330241 + 0.571995i 0.982559 0.185951i \(-0.0595366\pi\)
−0.652318 + 0.757946i \(0.726203\pi\)
\(600\) 0 0
\(601\) 16084.7 1.09169 0.545847 0.837885i \(-0.316208\pi\)
0.545847 + 0.837885i \(0.316208\pi\)
\(602\) −20065.5 4739.31i −1.35848 0.320864i
\(603\) 0 0
\(604\) 2576.62 4462.83i 0.173578 0.300646i
\(605\) 3840.37 + 6651.72i 0.258072 + 0.446993i
\(606\) 0 0
\(607\) −3883.60 + 6726.59i −0.259688 + 0.449792i −0.966158 0.257950i \(-0.916953\pi\)
0.706470 + 0.707743i \(0.250286\pi\)
\(608\) 1910.38 0.127428
\(609\) 0 0
\(610\) 189.799 0.0125979
\(611\) −15.3462 + 26.5804i −0.00101611 + 0.00175995i
\(612\) 0 0
\(613\) 14001.4 + 24251.2i 0.922531 + 1.59787i 0.795484 + 0.605974i \(0.207217\pi\)
0.127047 + 0.991897i \(0.459450\pi\)
\(614\) 1736.56 3007.81i 0.114140 0.197696i
\(615\) 0 0
\(616\) −4432.86 + 4705.80i −0.289943 + 0.307795i
\(617\) 10440.8 0.681247 0.340624 0.940200i \(-0.389362\pi\)
0.340624 + 0.940200i \(0.389362\pi\)
\(618\) 0 0
\(619\) 14166.3 + 24536.7i 0.919857 + 1.59324i 0.799630 + 0.600493i \(0.205029\pi\)
0.120227 + 0.992746i \(0.461638\pi\)
\(620\) 2251.44 + 3899.61i 0.145839 + 0.252600i
\(621\) 0 0
\(622\) −4658.95 −0.300332
\(623\) −14399.7 3401.12i −0.926025 0.218720i
\(624\) 0 0
\(625\) 9735.45 16862.3i 0.623069 1.07919i
\(626\) 3488.00 + 6041.39i 0.222697 + 0.385723i
\(627\) 0 0
\(628\) 6665.80 11545.5i 0.423558 0.733624i
\(629\) −258.783 −0.0164044
\(630\) 0 0
\(631\) −6567.27 −0.414325 −0.207162 0.978307i \(-0.566423\pi\)
−0.207162 + 0.978307i \(0.566423\pi\)
\(632\) −5252.33 + 9097.31i −0.330580 + 0.572581i
\(633\) 0 0
\(634\) 2697.55 + 4672.29i 0.168980 + 0.292682i
\(635\) 5707.07 9884.93i 0.356658 0.617750i
\(636\) 0 0
\(637\) 2406.60 1588.15i 0.149691 0.0987831i
\(638\) 5157.12 0.320019
\(639\) 0 0
\(640\) −858.009 1486.11i −0.0529934 0.0917872i
\(641\) −3966.30 6869.84i −0.244399 0.423311i 0.717564 0.696493i \(-0.245257\pi\)
−0.961962 + 0.273182i \(0.911924\pi\)
\(642\) 0 0
\(643\) −21042.2 −1.29055 −0.645274 0.763951i \(-0.723257\pi\)
−0.645274 + 0.763951i \(0.723257\pi\)
\(644\) −1661.15 5533.14i −0.101644 0.338566i
\(645\) 0 0
\(646\) −4335.19 + 7508.77i −0.264034 + 0.457320i
\(647\) −14683.0 25431.7i −0.892193 1.54532i −0.837241 0.546834i \(-0.815833\pi\)
−0.0549522 0.998489i \(-0.517501\pi\)
\(648\) 0 0
\(649\) −18664.0 + 32326.9i −1.12885 + 1.95523i
\(650\) 920.183 0.0555270
\(651\) 0 0
\(652\) −14604.5 −0.877235
\(653\) 12269.9 21252.2i 0.735314 1.27360i −0.219271 0.975664i \(-0.570368\pi\)
0.954585 0.297937i \(-0.0962987\pi\)
\(654\) 0 0
\(655\) −10074.9 17450.3i −0.601008 1.04098i
\(656\) −400.782 + 694.175i −0.0238535 + 0.0413155i
\(657\) 0 0
\(658\) 92.7304 98.4400i 0.00549393 0.00583220i
\(659\) −4246.88 −0.251039 −0.125520 0.992091i \(-0.540060\pi\)
−0.125520 + 0.992091i \(0.540060\pi\)
\(660\) 0 0
\(661\) −10274.9 17796.7i −0.604611 1.04722i −0.992113 0.125348i \(-0.959995\pi\)
0.387502 0.921869i \(-0.373338\pi\)
\(662\) −9971.77 17271.6i −0.585444 1.01402i
\(663\) 0 0
\(664\) −7532.24 −0.440222
\(665\) 10163.7 10789.5i 0.592677 0.629169i
\(666\) 0 0
\(667\) −2304.24 + 3991.06i −0.133764 + 0.231686i
\(668\) 6779.96 + 11743.2i 0.392701 + 0.680179i
\(669\) 0 0
\(670\) −6526.84 + 11304.8i −0.376349 + 0.651856i
\(671\) 308.870 0.0177702
\(672\) 0 0
\(673\) −6712.91 −0.384493 −0.192246 0.981347i \(-0.561577\pi\)
−0.192246 + 0.981347i \(0.561577\pi\)
\(674\) −8607.45 + 14908.5i −0.491909 + 0.852011i
\(675\) 0 0
\(676\) 4252.67 + 7365.83i 0.241959 + 0.419085i
\(677\) 12236.0 21193.3i 0.694632 1.20314i −0.275673 0.961252i \(-0.588901\pi\)
0.970305 0.241886i \(-0.0777661\pi\)
\(678\) 0 0
\(679\) 2794.53 + 9308.34i 0.157944 + 0.526099i
\(680\) 7788.27 0.439216
\(681\) 0 0
\(682\) 3663.90 + 6346.05i 0.205715 + 0.356309i
\(683\) −10284.1 17812.5i −0.576148 0.997918i −0.995916 0.0902863i \(-0.971222\pi\)
0.419768 0.907632i \(-0.362112\pi\)
\(684\) 0 0
\(685\) −23284.2 −1.29875
\(686\) −11928.6 + 4372.85i −0.663904 + 0.243376i
\(687\) 0 0
\(688\) 4452.97 7712.77i 0.246756 0.427394i
\(689\) −1352.53 2342.65i −0.0747856 0.129532i
\(690\) 0 0
\(691\) 3635.32 6296.55i 0.200136 0.346646i −0.748436 0.663207i \(-0.769195\pi\)
0.948572 + 0.316561i \(0.102528\pi\)
\(692\) −2518.00 −0.138324
\(693\) 0 0
\(694\) 11081.8 0.606135
\(695\) 20889.9 36182.3i 1.14014 1.97478i
\(696\) 0 0
\(697\) −1818.98 3150.56i −0.0988504 0.171214i
\(698\) −1450.89 + 2513.02i −0.0786779 + 0.136274i
\(699\) 0 0
\(700\) −3945.97 932.009i −0.213062 0.0503238i
\(701\) 3876.20 0.208848 0.104424 0.994533i \(-0.466700\pi\)
0.104424 + 0.994533i \(0.466700\pi\)
\(702\) 0 0
\(703\) −106.374 184.245i −0.00570692 0.00988467i
\(704\) −1396.28 2418.44i −0.0747507 0.129472i
\(705\) 0 0
\(706\) 9857.56 0.525487
\(707\) −8565.90 + 9093.32i −0.455663 + 0.483719i
\(708\) 0 0
\(709\) −10514.6 + 18211.8i −0.556960 + 0.964682i 0.440789 + 0.897611i \(0.354699\pi\)
−0.997748 + 0.0670713i \(0.978634\pi\)
\(710\) −7569.50 13110.8i −0.400110 0.693011i
\(711\) 0 0
\(712\) 3195.63 5534.99i 0.168204 0.291338i
\(713\) −6548.22 −0.343945
\(714\) 0 0
\(715\) 4917.51 0.257209
\(716\) −486.988 + 843.488i −0.0254184 + 0.0440260i
\(717\) 0 0
\(718\) 1249.86 + 2164.82i 0.0649642 + 0.112521i
\(719\) 5169.58 8953.98i 0.268140 0.464433i −0.700241 0.713906i \(-0.746924\pi\)
0.968382 + 0.249474i \(0.0802576\pi\)
\(720\) 0 0
\(721\) −22522.2 5319.58i −1.16334 0.274773i
\(722\) 6590.00 0.339687
\(723\) 0 0
\(724\) −8432.16 14604.9i −0.432844 0.749707i
\(725\) 1617.18 + 2801.03i 0.0828421 + 0.143487i
\(726\) 0 0
\(727\) 9537.43 0.486552 0.243276 0.969957i \(-0.421778\pi\)
0.243276 + 0.969957i \(0.421778\pi\)
\(728\) 358.133 + 1192.91i 0.0182325 + 0.0607309i
\(729\) 0 0
\(730\) −2465.11 + 4269.69i −0.124983 + 0.216477i
\(731\) 20210.1 + 35005.0i 1.02257 + 1.77114i
\(732\) 0 0
\(733\) 6617.25 11461.4i 0.333443 0.577540i −0.649742 0.760155i \(-0.725123\pi\)
0.983184 + 0.182615i \(0.0584562\pi\)
\(734\) 7228.69 0.363509
\(735\) 0 0
\(736\) 2495.48 0.124979
\(737\) −10621.5 + 18397.0i −0.530865 + 0.919485i
\(738\) 0 0
\(739\) −18675.7 32347.2i −0.929628 1.61016i −0.783943 0.620833i \(-0.786795\pi\)
−0.145685 0.989331i \(-0.546539\pi\)
\(740\) −95.5515 + 165.500i −0.00474668 + 0.00822149i
\(741\) 0 0
\(742\) 3427.22 + 11415.8i 0.169565 + 0.564806i
\(743\) −23.0684 −0.00113903 −0.000569515 1.00000i \(-0.500181\pi\)
−0.000569515 1.00000i \(0.500181\pi\)
\(744\) 0 0
\(745\) −19779.9 34259.9i −0.972727 1.68481i
\(746\) 5571.41 + 9649.97i 0.273437 + 0.473607i
\(747\) 0 0
\(748\) 12674.3 0.619542
\(749\) −31942.0 7544.48i −1.55826 0.368050i
\(750\) 0 0
\(751\) 9842.85 17048.3i 0.478257 0.828365i −0.521433 0.853292i \(-0.674602\pi\)
0.999689 + 0.0249278i \(0.00793559\pi\)
\(752\) 29.2087 + 50.5910i 0.00141640 + 0.00245327i
\(753\) 0 0
\(754\) 496.778 860.445i 0.0239941 0.0415591i
\(755\) 17271.6 0.832552
\(756\) 0 0
\(757\) 5562.94 0.267092 0.133546 0.991043i \(-0.457364\pi\)
0.133546 + 0.991043i \(0.457364\pi\)
\(758\) 2674.89 4633.05i 0.128175 0.222005i
\(759\) 0 0
\(760\) 3201.40 + 5545.00i 0.152799 + 0.264655i
\(761\) −4584.56 + 7940.68i −0.218384 + 0.378252i −0.954314 0.298806i \(-0.903412\pi\)
0.735930 + 0.677057i \(0.236745\pi\)
\(762\) 0 0
\(763\) −17326.8 + 18393.7i −0.822114 + 0.872733i
\(764\) −15203.5 −0.719953
\(765\) 0 0
\(766\) −3350.45 5803.14i −0.158037 0.273729i
\(767\) 3595.75 + 6228.02i 0.169276 + 0.293195i
\(768\) 0 0
\(769\) −12864.9 −0.603277 −0.301638 0.953422i \(-0.597534\pi\)
−0.301638 + 0.953422i \(0.597534\pi\)
\(770\) −21087.5 4980.71i −0.986935 0.233107i
\(771\) 0 0
\(772\) −7692.04 + 13323.0i −0.358604 + 0.621121i
\(773\) −460.408 797.450i −0.0214227 0.0371052i 0.855115 0.518438i \(-0.173486\pi\)
−0.876538 + 0.481333i \(0.840153\pi\)
\(774\) 0 0
\(775\) −2297.86 + 3980.01i −0.106505 + 0.184473i
\(776\) −4198.12 −0.194206
\(777\) 0 0
\(778\) 14118.8 0.650623
\(779\) 1495.40 2590.11i 0.0687782 0.119127i