Properties

Label 378.3.r.a.305.10
Level $378$
Weight $3$
Character 378.305
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(233,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.233"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.10
Character \(\chi\) \(=\) 378.305
Dual form 378.3.r.a.233.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +(-2.90307 - 1.67609i) q^{5} +(5.64984 + 4.13271i) q^{7} -2.82843i q^{8} +(2.37035 - 4.10556i) q^{10} +(-12.2880 + 7.09448i) q^{11} +(-8.31908 - 14.4091i) q^{13} +(-5.84453 + 7.99008i) q^{14} +4.00000 q^{16} +(-13.5532 - 7.82495i) q^{17} +(17.3162 + 29.9925i) q^{19} +(5.80614 + 3.35218i) q^{20} +(-10.0331 - 17.3779i) q^{22} +(-22.7453 - 13.1320i) q^{23} +(-6.88146 - 11.9190i) q^{25} +(20.3775 - 11.7650i) q^{26} +(-11.2997 - 8.26542i) q^{28} +(-18.2368 - 10.5290i) q^{29} -33.7477 q^{31} +5.65685i q^{32} +(11.0662 - 19.1671i) q^{34} +(-9.47510 - 21.4672i) q^{35} +(-31.9815 - 55.3936i) q^{37} +(-42.4158 + 24.4888i) q^{38} +(-4.74069 + 8.21112i) q^{40} +(-5.44200 + 3.14194i) q^{41} +(0.0742627 - 0.128627i) q^{43} +(24.5760 - 14.1890i) q^{44} +(18.5715 - 32.1667i) q^{46} -41.9794i q^{47} +(14.8414 + 46.6983i) q^{49} +(16.8561 - 9.73185i) q^{50} +(16.6382 + 28.8182i) q^{52} +(38.6074 + 22.2900i) q^{53} +47.5639 q^{55} +(11.6891 - 15.9802i) q^{56} +(14.8903 - 25.7907i) q^{58} +41.4581i q^{59} +15.9995 q^{61} -47.7264i q^{62} -8.00000 q^{64} +55.7741i q^{65} -85.3249 q^{67} +(27.1064 + 15.6499i) q^{68} +(30.3592 - 13.3998i) q^{70} +56.4376i q^{71} +(4.42855 - 7.67047i) q^{73} +(78.3383 - 45.2287i) q^{74} +(-34.6324 - 59.9850i) q^{76} +(-98.7447 - 10.7001i) q^{77} +29.1408 q^{79} +(-11.6123 - 6.70435i) q^{80} +(-4.44338 - 7.69616i) q^{82} +(48.8531 + 28.2054i) q^{83} +(26.2306 + 45.4328i) q^{85} +(0.181906 + 0.105023i) q^{86} +(20.0662 + 34.7557i) q^{88} +(5.43082 - 3.13549i) q^{89} +(12.5470 - 115.789i) q^{91} +(45.4906 + 26.2640i) q^{92} +59.3679 q^{94} -116.094i q^{95} +(-32.1934 + 55.7605i) q^{97} +(-66.0414 + 20.9889i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 2 q^{7} + 36 q^{11} + 10 q^{13} - 36 q^{14} + 128 q^{16} + 54 q^{17} + 28 q^{19} + 126 q^{23} + 80 q^{25} + 72 q^{26} - 4 q^{28} - 36 q^{29} + 16 q^{31} + 90 q^{35} + 22 q^{37} - 72 q^{41}+ \cdots - 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) −2.90307 1.67609i −0.580614 0.335218i 0.180763 0.983527i \(-0.442143\pi\)
−0.761377 + 0.648309i \(0.775477\pi\)
\(6\) 0 0
\(7\) 5.64984 + 4.13271i 0.807120 + 0.590387i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 2.37035 4.10556i 0.237035 0.410556i
\(11\) −12.2880 + 7.09448i −1.11709 + 0.644953i −0.940657 0.339360i \(-0.889790\pi\)
−0.176434 + 0.984312i \(0.556456\pi\)
\(12\) 0 0
\(13\) −8.31908 14.4091i −0.639930 1.10839i −0.985448 0.169978i \(-0.945630\pi\)
0.345518 0.938412i \(-0.387703\pi\)
\(14\) −5.84453 + 7.99008i −0.417467 + 0.570720i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −13.5532 7.82495i −0.797248 0.460291i 0.0452601 0.998975i \(-0.485588\pi\)
−0.842508 + 0.538684i \(0.818922\pi\)
\(18\) 0 0
\(19\) 17.3162 + 29.9925i 0.911378 + 1.57855i 0.812120 + 0.583491i \(0.198314\pi\)
0.0992583 + 0.995062i \(0.468353\pi\)
\(20\) 5.80614 + 3.35218i 0.290307 + 0.167609i
\(21\) 0 0
\(22\) −10.0331 17.3779i −0.456050 0.789903i
\(23\) −22.7453 13.1320i −0.988926 0.570956i −0.0839727 0.996468i \(-0.526761\pi\)
−0.904953 + 0.425512i \(0.860094\pi\)
\(24\) 0 0
\(25\) −6.88146 11.9190i −0.275258 0.476761i
\(26\) 20.3775 11.7650i 0.783750 0.452499i
\(27\) 0 0
\(28\) −11.2997 8.26542i −0.403560 0.295194i
\(29\) −18.2368 10.5290i −0.628855 0.363069i 0.151454 0.988464i \(-0.451605\pi\)
−0.780308 + 0.625395i \(0.784938\pi\)
\(30\) 0 0
\(31\) −33.7477 −1.08863 −0.544317 0.838879i \(-0.683211\pi\)
−0.544317 + 0.838879i \(0.683211\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 11.0662 19.1671i 0.325475 0.563739i
\(35\) −9.47510 21.4672i −0.270717 0.613348i
\(36\) 0 0
\(37\) −31.9815 55.3936i −0.864365 1.49712i −0.867677 0.497129i \(-0.834388\pi\)
0.00331203 0.999995i \(-0.498946\pi\)
\(38\) −42.4158 + 24.4888i −1.11621 + 0.644441i
\(39\) 0 0
\(40\) −4.74069 + 8.21112i −0.118517 + 0.205278i
\(41\) −5.44200 + 3.14194i −0.132732 + 0.0766328i −0.564896 0.825162i \(-0.691084\pi\)
0.432164 + 0.901795i \(0.357750\pi\)
\(42\) 0 0
\(43\) 0.0742627 0.128627i 0.00172704 0.00299132i −0.865161 0.501495i \(-0.832784\pi\)
0.866888 + 0.498504i \(0.166117\pi\)
\(44\) 24.5760 14.1890i 0.558545 0.322476i
\(45\) 0 0
\(46\) 18.5715 32.1667i 0.403727 0.699276i
\(47\) 41.9794i 0.893179i −0.894739 0.446590i \(-0.852638\pi\)
0.894739 0.446590i \(-0.147362\pi\)
\(48\) 0 0
\(49\) 14.8414 + 46.6983i 0.302886 + 0.953027i
\(50\) 16.8561 9.73185i 0.337121 0.194637i
\(51\) 0 0
\(52\) 16.6382 + 28.8182i 0.319965 + 0.554195i
\(53\) 38.6074 + 22.2900i 0.728442 + 0.420566i 0.817852 0.575429i \(-0.195165\pi\)
−0.0894100 + 0.995995i \(0.528498\pi\)
\(54\) 0 0
\(55\) 47.5639 0.864798
\(56\) 11.6891 15.9802i 0.208733 0.285360i
\(57\) 0 0
\(58\) 14.8903 25.7907i 0.256729 0.444667i
\(59\) 41.4581i 0.702679i 0.936248 + 0.351340i \(0.114274\pi\)
−0.936248 + 0.351340i \(0.885726\pi\)
\(60\) 0 0
\(61\) 15.9995 0.262287 0.131144 0.991363i \(-0.458135\pi\)
0.131144 + 0.991363i \(0.458135\pi\)
\(62\) 47.7264i 0.769781i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 55.7741i 0.858063i
\(66\) 0 0
\(67\) −85.3249 −1.27351 −0.636753 0.771068i \(-0.719723\pi\)
−0.636753 + 0.771068i \(0.719723\pi\)
\(68\) 27.1064 + 15.6499i 0.398624 + 0.230146i
\(69\) 0 0
\(70\) 30.3592 13.3998i 0.433702 0.191426i
\(71\) 56.4376i 0.794896i 0.917625 + 0.397448i \(0.130104\pi\)
−0.917625 + 0.397448i \(0.869896\pi\)
\(72\) 0 0
\(73\) 4.42855 7.67047i 0.0606650 0.105075i −0.834098 0.551617i \(-0.814011\pi\)
0.894763 + 0.446542i \(0.147345\pi\)
\(74\) 78.3383 45.2287i 1.05863 0.611198i
\(75\) 0 0
\(76\) −34.6324 59.9850i −0.455689 0.789276i
\(77\) −98.7447 10.7001i −1.28240 0.138962i
\(78\) 0 0
\(79\) 29.1408 0.368870 0.184435 0.982845i \(-0.440954\pi\)
0.184435 + 0.982845i \(0.440954\pi\)
\(80\) −11.6123 6.70435i −0.145153 0.0838044i
\(81\) 0 0
\(82\) −4.44338 7.69616i −0.0541875 0.0938556i
\(83\) 48.8531 + 28.2054i 0.588592 + 0.339824i 0.764540 0.644576i \(-0.222966\pi\)
−0.175949 + 0.984399i \(0.556299\pi\)
\(84\) 0 0
\(85\) 26.2306 + 45.4328i 0.308595 + 0.534503i
\(86\) 0.181906 + 0.105023i 0.00211518 + 0.00122120i
\(87\) 0 0
\(88\) 20.0662 + 34.7557i 0.228025 + 0.394951i
\(89\) 5.43082 3.13549i 0.0610205 0.0352302i −0.469179 0.883103i \(-0.655450\pi\)
0.530200 + 0.847873i \(0.322117\pi\)
\(90\) 0 0
\(91\) 12.5470 115.789i 0.137879 1.27241i
\(92\) 45.4906 + 26.2640i 0.494463 + 0.285478i
\(93\) 0 0
\(94\) 59.3679 0.631573
\(95\) 116.094i 1.22204i
\(96\) 0 0
\(97\) −32.1934 + 55.7605i −0.331890 + 0.574851i −0.982883 0.184233i \(-0.941020\pi\)
0.650992 + 0.759084i \(0.274353\pi\)
\(98\) −66.0414 + 20.9889i −0.673892 + 0.214173i
\(99\) 0 0
\(100\) 13.7629 + 23.8381i 0.137629 + 0.238381i
\(101\) −80.7285 + 46.6086i −0.799292 + 0.461472i −0.843224 0.537563i \(-0.819345\pi\)
0.0439314 + 0.999035i \(0.486012\pi\)
\(102\) 0 0
\(103\) −64.5523 + 111.808i −0.626721 + 1.08551i 0.361484 + 0.932378i \(0.382270\pi\)
−0.988205 + 0.153135i \(0.951063\pi\)
\(104\) −40.7550 + 23.5299i −0.391875 + 0.226249i
\(105\) 0 0
\(106\) −31.5228 + 54.5991i −0.297385 + 0.515086i
\(107\) −92.8758 + 53.6219i −0.867998 + 0.501139i −0.866682 0.498860i \(-0.833752\pi\)
−0.00131550 + 0.999999i \(0.500419\pi\)
\(108\) 0 0
\(109\) −16.5505 + 28.6662i −0.151839 + 0.262993i −0.931904 0.362706i \(-0.881853\pi\)
0.780064 + 0.625699i \(0.215186\pi\)
\(110\) 67.2655i 0.611505i
\(111\) 0 0
\(112\) 22.5994 + 16.5308i 0.201780 + 0.147597i
\(113\) 146.122 84.3635i 1.29311 0.746580i 0.313909 0.949453i \(-0.398361\pi\)
0.979205 + 0.202874i \(0.0650280\pi\)
\(114\) 0 0
\(115\) 44.0208 + 76.2462i 0.382789 + 0.663011i
\(116\) 36.4736 + 21.0580i 0.314427 + 0.181535i
\(117\) 0 0
\(118\) −58.6306 −0.496869
\(119\) −44.2353 100.221i −0.371725 0.842195i
\(120\) 0 0
\(121\) 40.1633 69.5649i 0.331928 0.574916i
\(122\) 22.6267i 0.185465i
\(123\) 0 0
\(124\) 67.4954 0.544317
\(125\) 129.940i 1.03952i
\(126\) 0 0
\(127\) 75.2845 0.592792 0.296396 0.955065i \(-0.404215\pi\)
0.296396 + 0.955065i \(0.404215\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −78.8765 −0.606742
\(131\) 135.527 + 78.2467i 1.03456 + 0.597303i 0.918288 0.395914i \(-0.129572\pi\)
0.116272 + 0.993217i \(0.462906\pi\)
\(132\) 0 0
\(133\) −26.1166 + 241.016i −0.196366 + 1.81215i
\(134\) 120.668i 0.900505i
\(135\) 0 0
\(136\) −22.1323 + 38.3343i −0.162738 + 0.281870i
\(137\) 71.6146 41.3467i 0.522734 0.301801i −0.215318 0.976544i \(-0.569079\pi\)
0.738053 + 0.674743i \(0.235746\pi\)
\(138\) 0 0
\(139\) 50.4535 + 87.3880i 0.362975 + 0.628690i 0.988449 0.151554i \(-0.0484279\pi\)
−0.625474 + 0.780245i \(0.715095\pi\)
\(140\) 18.9502 + 42.9344i 0.135359 + 0.306674i
\(141\) 0 0
\(142\) −79.8148 −0.562076
\(143\) 204.450 + 118.039i 1.42972 + 0.825449i
\(144\) 0 0
\(145\) 35.2951 + 61.1329i 0.243415 + 0.421606i
\(146\) 10.8477 + 6.26291i 0.0742992 + 0.0428967i
\(147\) 0 0
\(148\) 63.9630 + 110.787i 0.432182 + 0.748562i
\(149\) −104.181 60.1490i −0.699203 0.403685i 0.107848 0.994167i \(-0.465604\pi\)
−0.807050 + 0.590483i \(0.798937\pi\)
\(150\) 0 0
\(151\) −36.8571 63.8384i −0.244087 0.422771i 0.717788 0.696262i \(-0.245155\pi\)
−0.961875 + 0.273491i \(0.911822\pi\)
\(152\) 84.8316 48.9776i 0.558103 0.322221i
\(153\) 0 0
\(154\) 15.1322 139.646i 0.0982608 0.906793i
\(155\) 97.9719 + 56.5641i 0.632077 + 0.364930i
\(156\) 0 0
\(157\) −263.591 −1.67893 −0.839463 0.543417i \(-0.817130\pi\)
−0.839463 + 0.543417i \(0.817130\pi\)
\(158\) 41.2113i 0.260831i
\(159\) 0 0
\(160\) 9.48139 16.4222i 0.0592587 0.102639i
\(161\) −74.2365 168.193i −0.461097 1.04468i
\(162\) 0 0
\(163\) −36.3832 63.0176i −0.223210 0.386611i 0.732571 0.680691i \(-0.238320\pi\)
−0.955781 + 0.294080i \(0.904987\pi\)
\(164\) 10.8840 6.28389i 0.0663659 0.0383164i
\(165\) 0 0
\(166\) −39.8884 + 69.0887i −0.240292 + 0.416197i
\(167\) 172.653 99.6811i 1.03385 0.596893i 0.115764 0.993277i \(-0.463068\pi\)
0.918085 + 0.396384i \(0.129735\pi\)
\(168\) 0 0
\(169\) −53.9143 + 93.3824i −0.319020 + 0.552558i
\(170\) −64.2516 + 37.0957i −0.377951 + 0.218210i
\(171\) 0 0
\(172\) −0.148525 + 0.257253i −0.000863519 + 0.00149566i
\(173\) 249.497i 1.44218i 0.692841 + 0.721090i \(0.256359\pi\)
−0.692841 + 0.721090i \(0.743641\pi\)
\(174\) 0 0
\(175\) 10.3788 95.7797i 0.0593072 0.547313i
\(176\) −49.1520 + 28.3779i −0.279273 + 0.161238i
\(177\) 0 0
\(178\) 4.43425 + 7.68034i 0.0249115 + 0.0431480i
\(179\) −178.420 103.011i −0.996760 0.575479i −0.0894717 0.995989i \(-0.528518\pi\)
−0.907288 + 0.420510i \(0.861851\pi\)
\(180\) 0 0
\(181\) −68.0662 −0.376056 −0.188028 0.982164i \(-0.560210\pi\)
−0.188028 + 0.982164i \(0.560210\pi\)
\(182\) 163.751 + 17.7442i 0.899730 + 0.0974955i
\(183\) 0 0
\(184\) −37.1429 + 64.3334i −0.201864 + 0.349638i
\(185\) 214.415i 1.15900i
\(186\) 0 0
\(187\) 222.056 1.18746
\(188\) 83.9588i 0.446590i
\(189\) 0 0
\(190\) 164.181 0.864113
\(191\) 258.142i 1.35153i −0.737117 0.675765i \(-0.763813\pi\)
0.737117 0.675765i \(-0.236187\pi\)
\(192\) 0 0
\(193\) 159.600 0.826945 0.413473 0.910516i \(-0.364316\pi\)
0.413473 + 0.910516i \(0.364316\pi\)
\(194\) −78.8573 45.5283i −0.406481 0.234682i
\(195\) 0 0
\(196\) −29.6828 93.3966i −0.151443 0.476513i
\(197\) 173.797i 0.882219i 0.897453 + 0.441109i \(0.145415\pi\)
−0.897453 + 0.441109i \(0.854585\pi\)
\(198\) 0 0
\(199\) 48.3082 83.6723i 0.242755 0.420464i −0.718743 0.695276i \(-0.755282\pi\)
0.961498 + 0.274812i \(0.0886156\pi\)
\(200\) −33.7121 + 19.4637i −0.168561 + 0.0973185i
\(201\) 0 0
\(202\) −65.9146 114.167i −0.326310 0.565185i
\(203\) −59.5216 134.855i −0.293210 0.664308i
\(204\) 0 0
\(205\) 21.0647 0.102755
\(206\) −158.120 91.2907i −0.767574 0.443159i
\(207\) 0 0
\(208\) −33.2763 57.6363i −0.159982 0.277098i
\(209\) −425.562 245.699i −2.03618 1.17559i
\(210\) 0 0
\(211\) 8.68169 + 15.0371i 0.0411455 + 0.0712660i 0.885865 0.463944i \(-0.153566\pi\)
−0.844719 + 0.535210i \(0.820233\pi\)
\(212\) −77.2148 44.5800i −0.364221 0.210283i
\(213\) 0 0
\(214\) −75.8328 131.346i −0.354359 0.613767i
\(215\) −0.431179 + 0.248942i −0.00200549 + 0.00115787i
\(216\) 0 0
\(217\) −190.669 139.469i −0.878659 0.642716i
\(218\) −40.5402 23.4059i −0.185964 0.107366i
\(219\) 0 0
\(220\) −95.1278 −0.432399
\(221\) 260.386i 1.17822i
\(222\) 0 0
\(223\) 147.273 255.085i 0.660418 1.14388i −0.320088 0.947388i \(-0.603713\pi\)
0.980506 0.196489i \(-0.0629541\pi\)
\(224\) −23.3781 + 31.9603i −0.104367 + 0.142680i
\(225\) 0 0
\(226\) 119.308 + 206.648i 0.527912 + 0.914370i
\(227\) 194.224 112.135i 0.855612 0.493988i −0.00692812 0.999976i \(-0.502205\pi\)
0.862541 + 0.505988i \(0.168872\pi\)
\(228\) 0 0
\(229\) 51.7349 89.6074i 0.225916 0.391299i −0.730678 0.682723i \(-0.760796\pi\)
0.956594 + 0.291424i \(0.0941290\pi\)
\(230\) −107.828 + 62.2548i −0.468819 + 0.270673i
\(231\) 0 0
\(232\) −29.7805 + 51.5814i −0.128364 + 0.222334i
\(233\) 187.439 108.218i 0.804457 0.464454i −0.0405700 0.999177i \(-0.512917\pi\)
0.845027 + 0.534723i \(0.179584\pi\)
\(234\) 0 0
\(235\) −70.3612 + 121.869i −0.299409 + 0.518592i
\(236\) 82.9162i 0.351340i
\(237\) 0 0
\(238\) 141.734 62.5581i 0.595522 0.262849i
\(239\) 387.074 223.477i 1.61956 0.935052i 0.632524 0.774541i \(-0.282019\pi\)
0.987034 0.160511i \(-0.0513144\pi\)
\(240\) 0 0
\(241\) 41.3755 + 71.6645i 0.171683 + 0.297363i 0.939008 0.343895i \(-0.111746\pi\)
−0.767326 + 0.641258i \(0.778413\pi\)
\(242\) 98.3796 + 56.7995i 0.406527 + 0.234709i
\(243\) 0 0
\(244\) −31.9991 −0.131144
\(245\) 35.1848 160.444i 0.143611 0.654873i
\(246\) 0 0
\(247\) 288.110 499.020i 1.16644 2.02033i
\(248\) 95.4529i 0.384891i
\(249\) 0 0
\(250\) −183.763 −0.735052
\(251\) 228.368i 0.909831i 0.890535 + 0.454916i \(0.150331\pi\)
−0.890535 + 0.454916i \(0.849669\pi\)
\(252\) 0 0
\(253\) 372.659 1.47296
\(254\) 106.468i 0.419167i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −66.3878 38.3290i −0.258318 0.149140i 0.365249 0.930910i \(-0.380984\pi\)
−0.623567 + 0.781770i \(0.714317\pi\)
\(258\) 0 0
\(259\) 48.2352 445.135i 0.186236 1.71867i
\(260\) 111.548i 0.429031i
\(261\) 0 0
\(262\) −110.658 + 191.665i −0.422357 + 0.731544i
\(263\) −306.958 + 177.222i −1.16714 + 0.673849i −0.953005 0.302955i \(-0.902027\pi\)
−0.214136 + 0.976804i \(0.568694\pi\)
\(264\) 0 0
\(265\) −74.7200 129.419i −0.281962 0.488373i
\(266\) −340.848 36.9345i −1.28138 0.138852i
\(267\) 0 0
\(268\) 170.650 0.636753
\(269\) 87.8658 + 50.7294i 0.326639 + 0.188585i 0.654348 0.756194i \(-0.272943\pi\)
−0.327709 + 0.944779i \(0.606277\pi\)
\(270\) 0 0
\(271\) −37.9220 65.6829i −0.139934 0.242372i 0.787538 0.616267i \(-0.211356\pi\)
−0.927471 + 0.373894i \(0.878022\pi\)
\(272\) −54.2129 31.2998i −0.199312 0.115073i
\(273\) 0 0
\(274\) 58.4731 + 101.278i 0.213405 + 0.369629i
\(275\) 169.119 + 97.6407i 0.614977 + 0.355057i
\(276\) 0 0
\(277\) −134.061 232.200i −0.483973 0.838266i 0.515857 0.856674i \(-0.327473\pi\)
−0.999831 + 0.0184083i \(0.994140\pi\)
\(278\) −123.585 + 71.3520i −0.444551 + 0.256662i
\(279\) 0 0
\(280\) −60.7183 + 26.7996i −0.216851 + 0.0957130i
\(281\) −423.951 244.768i −1.50872 0.871060i −0.999948 0.0101594i \(-0.996766\pi\)
−0.508773 0.860901i \(-0.669901\pi\)
\(282\) 0 0
\(283\) −523.237 −1.84889 −0.924446 0.381312i \(-0.875472\pi\)
−0.924446 + 0.381312i \(0.875472\pi\)
\(284\) 112.875i 0.397448i
\(285\) 0 0
\(286\) −166.933 + 289.136i −0.583680 + 1.01096i
\(287\) −43.7312 4.73875i −0.152374 0.0165113i
\(288\) 0 0
\(289\) −22.0403 38.1749i −0.0762639 0.132093i
\(290\) −86.4550 + 49.9148i −0.298121 + 0.172120i
\(291\) 0 0
\(292\) −8.85710 + 15.3409i −0.0303325 + 0.0525375i
\(293\) −64.1639 + 37.0450i −0.218989 + 0.126434i −0.605482 0.795859i \(-0.707020\pi\)
0.386493 + 0.922292i \(0.373686\pi\)
\(294\) 0 0
\(295\) 69.4874 120.356i 0.235551 0.407985i
\(296\) −156.677 + 90.4573i −0.529313 + 0.305599i
\(297\) 0 0
\(298\) 85.0636 147.334i 0.285448 0.494411i
\(299\) 436.985i 1.46149i
\(300\) 0 0
\(301\) 0.951149 0.419815i 0.00315996 0.00139473i
\(302\) 90.2811 52.1238i 0.298944 0.172596i
\(303\) 0 0
\(304\) 69.2647 + 119.970i 0.227844 + 0.394638i
\(305\) −46.4477 26.8166i −0.152288 0.0879233i
\(306\) 0 0
\(307\) −159.112 −0.518280 −0.259140 0.965840i \(-0.583439\pi\)
−0.259140 + 0.965840i \(0.583439\pi\)
\(308\) 197.489 + 21.4001i 0.641199 + 0.0694808i
\(309\) 0 0
\(310\) −79.9937 + 138.553i −0.258044 + 0.446946i
\(311\) 446.556i 1.43587i 0.696109 + 0.717936i \(0.254913\pi\)
−0.696109 + 0.717936i \(0.745087\pi\)
\(312\) 0 0
\(313\) −196.307 −0.627178 −0.313589 0.949559i \(-0.601531\pi\)
−0.313589 + 0.949559i \(0.601531\pi\)
\(314\) 372.774i 1.18718i
\(315\) 0 0
\(316\) −58.2815 −0.184435
\(317\) 340.779i 1.07501i −0.843260 0.537506i \(-0.819367\pi\)
0.843260 0.537506i \(-0.180633\pi\)
\(318\) 0 0
\(319\) 298.791 0.936650
\(320\) 23.2246 + 13.4087i 0.0725767 + 0.0419022i
\(321\) 0 0
\(322\) 237.861 104.986i 0.738700 0.326044i
\(323\) 541.993i 1.67800i
\(324\) 0 0
\(325\) −114.495 + 198.311i −0.352292 + 0.610187i
\(326\) 89.1204 51.4537i 0.273375 0.157833i
\(327\) 0 0
\(328\) 8.88676 + 15.3923i 0.0270938 + 0.0469278i
\(329\) 173.489 237.177i 0.527322 0.720903i
\(330\) 0 0
\(331\) −563.578 −1.70265 −0.851326 0.524638i \(-0.824201\pi\)
−0.851326 + 0.524638i \(0.824201\pi\)
\(332\) −97.7062 56.4107i −0.294296 0.169912i
\(333\) 0 0
\(334\) 140.970 + 244.168i 0.422067 + 0.731041i
\(335\) 247.704 + 143.012i 0.739416 + 0.426902i
\(336\) 0 0
\(337\) 303.340 + 525.401i 0.900119 + 1.55905i 0.827338 + 0.561704i \(0.189854\pi\)
0.0727808 + 0.997348i \(0.476813\pi\)
\(338\) −132.063 76.2464i −0.390718 0.225581i
\(339\) 0 0
\(340\) −52.4612 90.8655i −0.154298 0.267252i
\(341\) 414.692 239.422i 1.21610 0.702118i
\(342\) 0 0
\(343\) −109.139 + 325.173i −0.318189 + 0.948027i
\(344\) −0.363811 0.210047i −0.00105759 0.000610600i
\(345\) 0 0
\(346\) −352.842 −1.01978
\(347\) 52.3842i 0.150963i −0.997147 0.0754816i \(-0.975951\pi\)
0.997147 0.0754816i \(-0.0240494\pi\)
\(348\) 0 0
\(349\) −4.33946 + 7.51616i −0.0124340 + 0.0215363i −0.872175 0.489193i \(-0.837291\pi\)
0.859741 + 0.510729i \(0.170625\pi\)
\(350\) 135.453 + 14.6778i 0.387008 + 0.0419365i
\(351\) 0 0
\(352\) −40.1324 69.5114i −0.114013 0.197476i
\(353\) −103.990 + 60.0388i −0.294590 + 0.170082i −0.640010 0.768367i \(-0.721070\pi\)
0.345420 + 0.938448i \(0.387736\pi\)
\(354\) 0 0
\(355\) 94.5944 163.842i 0.266463 0.461528i
\(356\) −10.8616 + 6.27097i −0.0305102 + 0.0176151i
\(357\) 0 0
\(358\) 145.679 252.324i 0.406925 0.704816i
\(359\) −101.066 + 58.3503i −0.281520 + 0.162536i −0.634111 0.773242i \(-0.718634\pi\)
0.352591 + 0.935777i \(0.385301\pi\)
\(360\) 0 0
\(361\) −419.200 + 726.076i −1.16122 + 2.01129i
\(362\) 96.2602i 0.265912i
\(363\) 0 0
\(364\) −25.0940 + 231.579i −0.0689397 + 0.636205i
\(365\) −25.7128 + 14.8453i −0.0704459 + 0.0406720i
\(366\) 0 0
\(367\) −148.299 256.861i −0.404085 0.699895i 0.590130 0.807308i \(-0.299077\pi\)
−0.994214 + 0.107413i \(0.965743\pi\)
\(368\) −90.9812 52.5280i −0.247231 0.142739i
\(369\) 0 0
\(370\) −303.229 −0.819538
\(371\) 126.008 + 285.488i 0.339643 + 0.769510i
\(372\) 0 0
\(373\) 208.053 360.359i 0.557783 0.966109i −0.439898 0.898048i \(-0.644985\pi\)
0.997681 0.0680609i \(-0.0216812\pi\)
\(374\) 314.034i 0.839664i
\(375\) 0 0
\(376\) −118.736 −0.315787
\(377\) 350.367i 0.929355i
\(378\) 0 0
\(379\) 315.897 0.833501 0.416750 0.909021i \(-0.363169\pi\)
0.416750 + 0.909021i \(0.363169\pi\)
\(380\) 232.188i 0.611020i
\(381\) 0 0
\(382\) 365.068 0.955676
\(383\) −348.813 201.387i −0.910740 0.525816i −0.0300707 0.999548i \(-0.509573\pi\)
−0.880669 + 0.473732i \(0.842907\pi\)
\(384\) 0 0
\(385\) 268.729 + 196.568i 0.697996 + 0.510566i
\(386\) 225.709i 0.584739i
\(387\) 0 0
\(388\) 64.3867 111.521i 0.165945 0.287425i
\(389\) −314.791 + 181.745i −0.809232 + 0.467210i −0.846689 0.532088i \(-0.821408\pi\)
0.0374573 + 0.999298i \(0.488074\pi\)
\(390\) 0 0
\(391\) 205.515 + 355.962i 0.525613 + 0.910388i
\(392\) 132.083 41.9779i 0.336946 0.107086i
\(393\) 0 0
\(394\) −245.786 −0.623823
\(395\) −84.5977 48.8425i −0.214171 0.123652i
\(396\) 0 0
\(397\) 32.4146 + 56.1437i 0.0816489 + 0.141420i 0.903958 0.427621i \(-0.140648\pi\)
−0.822309 + 0.569041i \(0.807315\pi\)
\(398\) 118.330 + 68.3181i 0.297313 + 0.171654i
\(399\) 0 0
\(400\) −27.5258 47.6761i −0.0688146 0.119190i
\(401\) −430.383 248.482i −1.07328 0.619656i −0.144201 0.989548i \(-0.546061\pi\)
−0.929074 + 0.369893i \(0.879394\pi\)
\(402\) 0 0
\(403\) 280.750 + 486.273i 0.696650 + 1.20663i
\(404\) 161.457 93.2173i 0.399646 0.230736i
\(405\) 0 0
\(406\) 190.713 84.1762i 0.469737 0.207331i
\(407\) 785.977 + 453.784i 1.93115 + 1.11495i
\(408\) 0 0
\(409\) 493.994 1.20781 0.603905 0.797056i \(-0.293611\pi\)
0.603905 + 0.797056i \(0.293611\pi\)
\(410\) 29.7900i 0.0726585i
\(411\) 0 0
\(412\) 129.105 223.616i 0.313361 0.542757i
\(413\) −171.334 + 234.232i −0.414853 + 0.567147i
\(414\) 0 0
\(415\) −94.5493 163.764i −0.227830 0.394613i
\(416\) 81.5100 47.0598i 0.195938 0.113125i
\(417\) 0 0
\(418\) 347.470 601.836i 0.831269 1.43980i
\(419\) −229.187 + 132.321i −0.546987 + 0.315803i −0.747906 0.663805i \(-0.768940\pi\)
0.200919 + 0.979608i \(0.435607\pi\)
\(420\) 0 0
\(421\) −41.2156 + 71.3876i −0.0978994 + 0.169567i −0.910815 0.412815i \(-0.864546\pi\)
0.812916 + 0.582382i \(0.197879\pi\)
\(422\) −21.2657 + 12.2778i −0.0503927 + 0.0290942i
\(423\) 0 0
\(424\) 63.0456 109.198i 0.148693 0.257543i
\(425\) 215.388i 0.506796i
\(426\) 0 0
\(427\) 90.3948 + 66.1214i 0.211697 + 0.154851i
\(428\) 185.752 107.244i 0.433999 0.250569i
\(429\) 0 0
\(430\) −0.352057 0.609780i −0.000818736 0.00141809i
\(431\) 409.848 + 236.626i 0.950924 + 0.549016i 0.893368 0.449326i \(-0.148336\pi\)
0.0575561 + 0.998342i \(0.481669\pi\)
\(432\) 0 0
\(433\) 140.867 0.325328 0.162664 0.986681i \(-0.447991\pi\)
0.162664 + 0.986681i \(0.447991\pi\)
\(434\) 197.239 269.647i 0.454469 0.621306i
\(435\) 0 0
\(436\) 33.1009 57.3325i 0.0759195 0.131497i
\(437\) 909.584i 2.08143i
\(438\) 0 0
\(439\) −255.155 −0.581218 −0.290609 0.956842i \(-0.593858\pi\)
−0.290609 + 0.956842i \(0.593858\pi\)
\(440\) 134.531i 0.305752i
\(441\) 0 0
\(442\) −368.241 −0.833124
\(443\) 466.380i 1.05278i −0.850244 0.526388i \(-0.823546\pi\)
0.850244 0.526388i \(-0.176454\pi\)
\(444\) 0 0
\(445\) −21.0214 −0.0472391
\(446\) 360.744 + 208.276i 0.808843 + 0.466986i
\(447\) 0 0
\(448\) −45.1987 33.0617i −0.100890 0.0737984i
\(449\) 383.226i 0.853509i 0.904367 + 0.426755i \(0.140343\pi\)
−0.904367 + 0.426755i \(0.859657\pi\)
\(450\) 0 0
\(451\) 44.5809 77.2164i 0.0988490 0.171212i
\(452\) −292.244 + 168.727i −0.646557 + 0.373290i
\(453\) 0 0
\(454\) 158.583 + 274.674i 0.349302 + 0.605009i
\(455\) −230.498 + 315.115i −0.506589 + 0.692560i
\(456\) 0 0
\(457\) −483.494 −1.05797 −0.528987 0.848630i \(-0.677428\pi\)
−0.528987 + 0.848630i \(0.677428\pi\)
\(458\) 126.724 + 73.1641i 0.276690 + 0.159747i
\(459\) 0 0
\(460\) −88.0416 152.492i −0.191395 0.331505i
\(461\) 391.665 + 226.128i 0.849599 + 0.490516i 0.860516 0.509424i \(-0.170142\pi\)
−0.0109166 + 0.999940i \(0.503475\pi\)
\(462\) 0 0
\(463\) −157.167 272.221i −0.339454 0.587951i 0.644876 0.764287i \(-0.276909\pi\)
−0.984330 + 0.176336i \(0.943575\pi\)
\(464\) −72.9471 42.1160i −0.157214 0.0907673i
\(465\) 0 0
\(466\) 153.043 + 265.078i 0.328418 + 0.568837i
\(467\) −258.779 + 149.406i −0.554130 + 0.319927i −0.750786 0.660545i \(-0.770325\pi\)
0.196656 + 0.980473i \(0.436992\pi\)
\(468\) 0 0
\(469\) −482.072 352.623i −1.02787 0.751862i
\(470\) −172.349 99.5058i −0.366700 0.211714i
\(471\) 0 0
\(472\) 117.261 0.248435
\(473\) 2.10742i 0.00445543i
\(474\) 0 0
\(475\) 238.321 412.784i 0.501729 0.869019i
\(476\) 88.4705 + 200.442i 0.185862 + 0.421098i
\(477\) 0 0
\(478\) 316.045 + 547.406i 0.661182 + 1.14520i
\(479\) 436.436 251.976i 0.911139 0.526047i 0.0303418 0.999540i \(-0.490340\pi\)
0.880798 + 0.473493i \(0.157007\pi\)
\(480\) 0 0
\(481\) −532.113 + 921.648i −1.10626 + 1.91611i
\(482\) −101.349 + 58.5138i −0.210267 + 0.121398i
\(483\) 0 0
\(484\) −80.3266 + 139.130i −0.165964 + 0.287458i
\(485\) 186.919 107.918i 0.385400 0.222511i
\(486\) 0 0
\(487\) 146.436 253.634i 0.300690 0.520810i −0.675603 0.737266i \(-0.736116\pi\)
0.976292 + 0.216456i \(0.0694498\pi\)
\(488\) 45.2535i 0.0927326i
\(489\) 0 0
\(490\) 226.902 + 49.7588i 0.463065 + 0.101549i
\(491\) 370.452 213.881i 0.754485 0.435602i −0.0728274 0.997345i \(-0.523202\pi\)
0.827312 + 0.561743i \(0.189869\pi\)
\(492\) 0 0
\(493\) 164.778 + 285.404i 0.334235 + 0.578913i
\(494\) 705.721 + 407.448i 1.42859 + 0.824794i
\(495\) 0 0
\(496\) −134.991 −0.272159
\(497\) −233.240 + 318.864i −0.469296 + 0.641577i
\(498\) 0 0
\(499\) −103.195 + 178.740i −0.206804 + 0.358196i −0.950706 0.310093i \(-0.899640\pi\)
0.743902 + 0.668289i \(0.232973\pi\)
\(500\) 259.880i 0.519760i
\(501\) 0 0
\(502\) −322.961 −0.643348
\(503\) 415.249i 0.825546i −0.910834 0.412773i \(-0.864560\pi\)
0.910834 0.412773i \(-0.135440\pi\)
\(504\) 0 0
\(505\) 312.481 0.618774
\(506\) 527.019i 1.04154i
\(507\) 0 0
\(508\) −150.569 −0.296396
\(509\) −333.324 192.445i −0.654860 0.378084i 0.135455 0.990783i \(-0.456750\pi\)
−0.790316 + 0.612700i \(0.790084\pi\)
\(510\) 0 0
\(511\) 56.7204 25.0350i 0.110999 0.0489922i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 54.2054 93.8865i 0.105458 0.182659i
\(515\) 374.800 216.391i 0.727766 0.420176i
\(516\) 0 0
\(517\) 297.822 + 515.843i 0.576058 + 0.997762i
\(518\) 629.516 + 68.2149i 1.21528 + 0.131689i
\(519\) 0 0
\(520\) 157.753 0.303371
\(521\) −191.141 110.355i −0.366874 0.211815i 0.305218 0.952282i \(-0.401271\pi\)
−0.672092 + 0.740468i \(0.734604\pi\)
\(522\) 0 0
\(523\) 389.796 + 675.146i 0.745308 + 1.29091i 0.950051 + 0.312095i \(0.101031\pi\)
−0.204743 + 0.978816i \(0.565636\pi\)
\(524\) −271.055 156.493i −0.517280 0.298652i
\(525\) 0 0
\(526\) −250.630 434.104i −0.476483 0.825293i
\(527\) 457.390 + 264.074i 0.867912 + 0.501089i
\(528\) 0 0
\(529\) 80.3988 + 139.255i 0.151983 + 0.263242i
\(530\) 183.026 105.670i 0.345332 0.199377i
\(531\) 0 0
\(532\) 52.2333 482.031i 0.0981829 0.906074i
\(533\) 90.5450 + 52.2762i 0.169878 + 0.0980791i
\(534\) 0 0
\(535\) 359.500 0.671962
\(536\) 241.335i 0.450253i
\(537\) 0 0
\(538\) −71.7422 + 124.261i −0.133350 + 0.230969i
\(539\) −513.672 468.537i −0.953009 0.869270i
\(540\) 0 0
\(541\) 108.437 + 187.818i 0.200437 + 0.347168i 0.948669 0.316269i \(-0.102430\pi\)
−0.748232 + 0.663437i \(0.769097\pi\)
\(542\) 92.8896 53.6299i 0.171383 0.0989481i
\(543\) 0 0
\(544\) 44.2646 76.6686i 0.0813688 0.140935i
\(545\) 96.0943 55.4801i 0.176320 0.101798i
\(546\) 0 0
\(547\) −330.752 + 572.879i −0.604665 + 1.04731i 0.387440 + 0.921895i \(0.373360\pi\)
−0.992104 + 0.125415i \(0.959974\pi\)
\(548\) −143.229 + 82.6934i −0.261367 + 0.150900i
\(549\) 0 0
\(550\) −138.085 + 239.170i −0.251063 + 0.434854i
\(551\) 729.289i 1.32357i
\(552\) 0 0
\(553\) 164.641 + 120.430i 0.297723 + 0.217776i
\(554\) 328.380 189.590i 0.592744 0.342221i
\(555\) 0 0
\(556\) −100.907 174.776i −0.181487 0.314345i
\(557\) −159.762 92.2387i −0.286826 0.165599i 0.349684 0.936868i \(-0.386289\pi\)
−0.636510 + 0.771269i \(0.719622\pi\)
\(558\) 0 0
\(559\) −2.47119 −0.00442073
\(560\) −37.9004 85.8687i −0.0676793 0.153337i
\(561\) 0 0
\(562\) 346.154 599.557i 0.615933 1.06683i
\(563\) 1043.84i 1.85407i 0.374981 + 0.927033i \(0.377649\pi\)
−0.374981 + 0.927033i \(0.622351\pi\)
\(564\) 0 0
\(565\) −565.603 −1.00107
\(566\) 739.968i 1.30736i
\(567\) 0 0
\(568\) 159.630 0.281038
\(569\) 75.8394i 0.133285i −0.997777 0.0666427i \(-0.978771\pi\)
0.997777 0.0666427i \(-0.0212288\pi\)
\(570\) 0 0
\(571\) −770.837 −1.34998 −0.674988 0.737829i \(-0.735851\pi\)
−0.674988 + 0.737829i \(0.735851\pi\)
\(572\) −408.900 236.078i −0.714860 0.412724i
\(573\) 0 0
\(574\) 6.70160 61.8453i 0.0116753 0.107744i
\(575\) 361.469i 0.628642i
\(576\) 0 0
\(577\) 435.383 754.105i 0.754563 1.30694i −0.191028 0.981585i \(-0.561182\pi\)
0.945591 0.325357i \(-0.105484\pi\)
\(578\) 53.9874 31.1697i 0.0934039 0.0539267i
\(579\) 0 0
\(580\) −70.5902 122.266i −0.121707 0.210803i
\(581\) 159.448 + 361.252i 0.274437 + 0.621775i
\(582\) 0 0
\(583\) −632.544 −1.08498
\(584\) −21.6954 12.5258i −0.0371496 0.0214483i
\(585\) 0 0
\(586\) −52.3896 90.7414i −0.0894020 0.154849i
\(587\) −520.453 300.484i −0.886633 0.511898i −0.0137932 0.999905i \(-0.504391\pi\)
−0.872840 + 0.488007i \(0.837724\pi\)
\(588\) 0 0
\(589\) −584.381 1012.18i −0.992158 1.71847i
\(590\) 170.209 + 98.2700i 0.288489 + 0.166559i
\(591\) 0 0
\(592\) −127.926 221.574i −0.216091 0.374281i
\(593\) 288.796 166.736i 0.487008 0.281174i −0.236324 0.971674i \(-0.575943\pi\)
0.723332 + 0.690500i \(0.242609\pi\)
\(594\) 0 0
\(595\) −39.5616 + 365.091i −0.0664901 + 0.613599i
\(596\) 208.362 + 120.298i 0.349601 + 0.201842i
\(597\) 0 0
\(598\) −617.990 −1.03343
\(599\) 410.366i 0.685086i −0.939502 0.342543i \(-0.888712\pi\)
0.939502 0.342543i \(-0.111288\pi\)
\(600\) 0 0
\(601\) 204.315 353.884i 0.339958 0.588825i −0.644466 0.764633i \(-0.722920\pi\)
0.984424 + 0.175808i \(0.0562538\pi\)
\(602\) 0.593707 + 1.34513i 0.000986225 + 0.00223443i
\(603\) 0 0
\(604\) 73.7142 + 127.677i 0.122043 + 0.211385i
\(605\) −233.194 + 134.634i −0.385444 + 0.222536i
\(606\) 0 0
\(607\) 114.081 197.594i 0.187942 0.325526i −0.756622 0.653853i \(-0.773152\pi\)
0.944564 + 0.328327i \(0.106485\pi\)
\(608\) −169.663 + 97.9551i −0.279051 + 0.161110i
\(609\) 0 0
\(610\) 37.9244 65.6870i 0.0621712 0.107684i
\(611\) −604.885 + 349.230i −0.989991 + 0.571572i
\(612\) 0 0
\(613\) −59.5738 + 103.185i −0.0971840 + 0.168328i −0.910518 0.413469i \(-0.864317\pi\)
0.813334 + 0.581797i \(0.197650\pi\)
\(614\) 225.018i 0.366479i
\(615\) 0 0
\(616\) −30.2643 + 279.292i −0.0491304 + 0.453396i
\(617\) −1004.18 + 579.761i −1.62751 + 0.939645i −0.642682 + 0.766133i \(0.722178\pi\)
−0.984832 + 0.173512i \(0.944488\pi\)
\(618\) 0 0
\(619\) 382.915 + 663.228i 0.618603 + 1.07145i 0.989741 + 0.142873i \(0.0456342\pi\)
−0.371138 + 0.928578i \(0.621032\pi\)
\(620\) −195.944 113.128i −0.316038 0.182465i
\(621\) 0 0
\(622\) −631.526 −1.01531
\(623\) 43.6413 + 4.72901i 0.0700503 + 0.00759071i
\(624\) 0 0
\(625\) 45.7547 79.2494i 0.0732075 0.126799i
\(626\) 277.620i 0.443482i
\(627\) 0 0
\(628\) 527.183 0.839463
\(629\) 1001.01i 1.59144i
\(630\) 0 0
\(631\) −562.217 −0.890994 −0.445497 0.895283i \(-0.646973\pi\)
−0.445497 + 0.895283i \(0.646973\pi\)
\(632\) 82.4225i 0.130415i
\(633\) 0 0
\(634\) 481.934 0.760148
\(635\) −218.556 126.184i −0.344183 0.198714i
\(636\) 0 0
\(637\) 549.413 602.338i 0.862500 0.945586i
\(638\) 422.555i 0.662312i
\(639\) 0 0
\(640\) −18.9628 + 32.8445i −0.0296293 + 0.0513195i
\(641\) −608.106 + 351.090i −0.948684 + 0.547723i −0.892672 0.450707i \(-0.851172\pi\)
−0.0560121 + 0.998430i \(0.517839\pi\)
\(642\) 0 0
\(643\) 110.674 + 191.694i 0.172122 + 0.298124i 0.939161 0.343476i \(-0.111604\pi\)
−0.767040 + 0.641600i \(0.778271\pi\)
\(644\) 148.473 + 336.387i 0.230548 + 0.522340i
\(645\) 0 0
\(646\) 766.494 1.18652
\(647\) −501.744 289.682i −0.775494 0.447731i 0.0593372 0.998238i \(-0.481101\pi\)
−0.834831 + 0.550507i \(0.814435\pi\)
\(648\) 0 0
\(649\) −294.124 509.437i −0.453195 0.784957i
\(650\) −280.454 161.920i −0.431468 0.249108i
\(651\) 0 0
\(652\) 72.7665 + 126.035i 0.111605 + 0.193306i
\(653\) 926.464 + 534.894i 1.41878 + 0.819134i 0.996192 0.0871874i \(-0.0277879\pi\)
0.422589 + 0.906321i \(0.361121\pi\)
\(654\) 0 0
\(655\) −262.297 454.311i −0.400453 0.693605i
\(656\) −21.7680 + 12.5678i −0.0331830 + 0.0191582i
\(657\) 0 0
\(658\) 335.419 + 245.350i 0.509755 + 0.372873i
\(659\) −740.124 427.311i −1.12310 0.648423i −0.180911 0.983499i \(-0.557905\pi\)
−0.942191 + 0.335076i \(0.891238\pi\)
\(660\) 0 0
\(661\) −1180.67 −1.78619 −0.893094 0.449870i \(-0.851470\pi\)
−0.893094 + 0.449870i \(0.851470\pi\)
\(662\) 797.019i 1.20396i
\(663\) 0 0
\(664\) 79.7768 138.177i 0.120146 0.208099i
\(665\) 479.782 655.911i 0.721477 0.986333i
\(666\) 0 0
\(667\) 276.534 + 478.971i 0.414594 + 0.718097i
\(668\) −345.305 + 199.362i −0.516924 + 0.298446i
\(669\) 0 0
\(670\) −202.250 + 350.307i −0.301865 + 0.522846i
\(671\) −196.602 + 113.508i −0.292999 + 0.169163i
\(672\) 0 0
\(673\) 232.243 402.257i 0.345086 0.597707i −0.640283 0.768139i \(-0.721183\pi\)
0.985369 + 0.170432i \(0.0545163\pi\)
\(674\) −743.029 + 428.988i −1.10242 + 0.636480i
\(675\) 0 0
\(676\) 107.829 186.765i 0.159510 0.276279i
\(677\) 182.958i 0.270248i 0.990829 + 0.135124i \(0.0431433\pi\)
−0.990829 + 0.135124i \(0.956857\pi\)
\(678\) 0 0
\(679\) −412.330 + 181.992i −0.607260 + 0.268030i
\(680\) 128.503 74.1914i 0.188975 0.109105i
\(681\) 0 0
\(682\) 338.594 + 586.462i 0.496472 + 0.859916i
\(683\) −878.043 506.938i −1.28557 0.742223i −0.307708 0.951481i \(-0.599562\pi\)
−0.977861 + 0.209258i \(0.932895\pi\)
\(684\) 0 0
\(685\) −277.203 −0.404676
\(686\) −459.865 154.346i −0.670356 0.224994i
\(687\) 0 0
\(688\) 0.297051 0.514507i 0.000431760 0.000747830i
\(689\) 741.730i 1.07653i
\(690\) 0 0
\(691\) 1002.41 1.45066 0.725331 0.688400i \(-0.241687\pi\)
0.725331 + 0.688400i \(0.241687\pi\)
\(692\) 498.995i 0.721090i
\(693\) 0 0
\(694\) 74.0825 0.106747
\(695\) 338.258i 0.486702i
\(696\) 0 0
\(697\) 98.3422 0.141094
\(698\) −10.6295 6.13692i −0.0152285 0.00879215i
\(699\) 0 0
\(700\) −20.7575 + 191.559i −0.0296536 + 0.273656i
\(701\) 77.0590i 0.109927i 0.998488 + 0.0549636i \(0.0175043\pi\)
−0.998488 + 0.0549636i \(0.982496\pi\)
\(702\) 0 0
\(703\) 1107.59 1918.41i 1.57553 2.72889i
\(704\) 98.3040 56.7558i 0.139636 0.0806191i
\(705\) 0 0
\(706\) −84.9077 147.064i −0.120266 0.208306i
\(707\) −648.723 70.2962i −0.917572 0.0994288i
\(708\) 0 0
\(709\) 906.235 1.27819 0.639093 0.769129i \(-0.279310\pi\)
0.639093 + 0.769129i \(0.279310\pi\)
\(710\) 231.708 + 133.777i 0.326349 + 0.188418i
\(711\) 0 0
\(712\) −8.86850 15.3607i −0.0124558 0.0215740i
\(713\) 767.601 + 443.175i 1.07658 + 0.621563i
\(714\) 0 0
\(715\) −395.688 685.352i −0.553410 0.958534i
\(716\) 356.840 + 206.022i 0.498380 + 0.287740i
\(717\) 0 0
\(718\) −82.5198 142.928i −0.114930 0.199065i
\(719\) −20.7034 + 11.9531i −0.0287947 + 0.0166246i −0.514328 0.857593i \(-0.671959\pi\)
0.485534 + 0.874218i \(0.338625\pi\)
\(720\) 0 0
\(721\) −826.780 + 364.921i −1.14671 + 0.506131i
\(722\) −1026.83 592.838i −1.42220 0.821106i
\(723\) 0 0
\(724\) 136.132 0.188028
\(725\) 289.820i 0.399751i
\(726\) 0 0
\(727\) 185.455 321.217i 0.255096 0.441839i −0.709826 0.704377i \(-0.751226\pi\)
0.964921 + 0.262539i \(0.0845597\pi\)
\(728\) −327.502 35.4883i −0.449865 0.0487477i
\(729\) 0 0
\(730\) −20.9944 36.3633i −0.0287594 0.0498128i
\(731\) −2.01300 + 1.16220i −0.00275376 + 0.00158988i
\(732\) 0 0
\(733\) 309.948 536.846i 0.422849 0.732396i −0.573368 0.819298i \(-0.694363\pi\)
0.996217 + 0.0869020i \(0.0276967\pi\)
\(734\) 363.257 209.726i 0.494900 0.285731i
\(735\) 0 0
\(736\) 74.2858 128.667i 0.100932 0.174819i
\(737\) 1048.47 605.336i 1.42262 0.821352i
\(738\) 0 0
\(739\) −304.105 + 526.725i −0.411508 + 0.712754i −0.995055 0.0993262i \(-0.968331\pi\)
0.583546 + 0.812080i \(0.301665\pi\)
\(740\) 428.830i 0.579501i
\(741\) 0 0
\(742\) −403.741 + 178.202i −0.544126 + 0.240164i
\(743\) −723.866 + 417.924i −0.974248 + 0.562482i −0.900529 0.434797i \(-0.856820\pi\)
−0.0737195 + 0.997279i \(0.523487\pi\)
\(744\) 0 0
\(745\) 201.630 + 349.234i 0.270645 + 0.468770i
\(746\) 509.624 + 294.232i 0.683142 + 0.394412i
\(747\) 0 0
\(748\) −444.112 −0.593732
\(749\) −746.337 80.8737i −0.996445 0.107976i
\(750\) 0 0
\(751\) −521.619 + 903.470i −0.694566 + 1.20302i 0.275761 + 0.961226i \(0.411070\pi\)
−0.970327 + 0.241797i \(0.922263\pi\)
\(752\) 167.918i 0.223295i
\(753\) 0 0
\(754\) −495.494 −0.657153
\(755\) 247.103i 0.327289i
\(756\) 0 0
\(757\) 441.367 0.583047 0.291524 0.956564i \(-0.405838\pi\)
0.291524 + 0.956564i \(0.405838\pi\)
\(758\) 446.745i 0.589374i
\(759\) 0 0
\(760\) −328.363 −0.432056
\(761\) 257.357 + 148.585i 0.338182 + 0.195249i 0.659468 0.751733i \(-0.270782\pi\)
−0.321286 + 0.946982i \(0.604115\pi\)
\(762\) 0 0
\(763\) −211.977 + 93.5615i −0.277820 + 0.122623i
\(764\) 516.285i 0.675765i
\(765\) 0 0
\(766\) 284.805 493.297i 0.371808 0.643990i
\(767\) 597.373 344.893i 0.778843 0.449665i
\(768\) 0 0
\(769\) −79.6447 137.949i −0.103569 0.179387i 0.809584 0.587005i \(-0.199693\pi\)
−0.913153 + 0.407618i \(0.866360\pi\)
\(770\) −277.989 + 380.039i −0.361024 + 0.493558i
\(771\) 0 0
\(772\) −319.201 −0.413473
\(773\) −767.592 443.170i −0.993004 0.573311i −0.0868334 0.996223i \(-0.527675\pi\)
−0.906171 + 0.422912i \(0.861008\pi\)
\(774\) 0 0
\(775\) 232.233 + 402.240i 0.299656 + 0.519019i
\(776\) 157.715 + 91.0566i 0.203241 + 0.117341i
\(777\) 0 0
\(778\) −257.026 445.182i −0.330367 0.572213i
\(779\) −188.469 108.813i −0.241938 0.139683i
\(780\) 0 0
\(781\) −400.396 693.505i −0.512670 0.887971i
\(782\) −503.406 + 290.641i −0.643741 + 0.371664i
\(783\) 0 0
\(784\) 59.3657 + 186.793i 0.0757215 + 0.238257i
\(785\) 765.224 + 441.802i 0.974808 + 0.562805i
\(786\) 0 0
\(787\) 989.314 1.25707 0.628535 0.777781i \(-0.283655\pi\)
0.628535 + 0.777781i \(0.283655\pi\)
\(788\) 347.594i 0.441109i
\(789\) 0 0
\(790\) 69.0737 119.639i 0.0874351 0.151442i
\(791\) 1174.22 + 127.239i 1.48447 + 0.160858i
\(792\) 0 0
\(793\) −133.101 230.538i −0.167845 0.290717i
\(794\) −79.3992 + 45.8412i −0.0999991 + 0.0577345i
\(795\) 0 0
\(796\) −96.6164 + 167.345i −0.121377 + 0.210232i
\(797\) 1020.06 588.934i 1.27988 0.738939i 0.303054 0.952973i \(-0.401994\pi\)
0.976826 + 0.214034i \(0.0686605\pi\)
\(798\) 0 0
\(799\) −328.487 + 568.956i −0.411123 + 0.712085i
\(800\) 67.4242 38.9274i 0.0842803 0.0486592i
\(801\) 0 0
\(802\) 351.407 608.654i 0.438163 0.758920i
\(803\) 125.673i 0.156504i
\(804\) 0 0
\(805\) −66.3931 + 612.704i −0.0824759 + 0.761123i
\(806\) −687.694 + 397.040i −0.853218 + 0.492606i
\(807\) 0 0
\(808\) 131.829 + 228.335i 0.163155 + 0.282592i
\(809\) −240.690 138.963i −0.297516 0.171771i 0.343810 0.939039i \(-0.388282\pi\)
−0.641326 + 0.767268i \(0.721616\pi\)
\(810\) 0 0
\(811\) −594.387 −0.732906 −0.366453 0.930437i \(-0.619428\pi\)
−0.366453 + 0.930437i \(0.619428\pi\)
\(812\) 119.043 + 269.709i 0.146605 + 0.332154i
\(813\) 0 0
\(814\) −641.748 + 1111.54i −0.788388 + 1.36553i
\(815\) 243.926i 0.299296i
\(816\) 0 0
\(817\) 5.14378 0.00629594
\(818\) 698.613i 0.854050i
\(819\) 0 0
\(820\) −42.1294 −0.0513773
\(821\) 135.048i 0.164492i 0.996612 + 0.0822460i \(0.0262093\pi\)
−0.996612 + 0.0822460i \(0.973791\pi\)
\(822\) 0 0
\(823\) 383.153 0.465557 0.232778 0.972530i \(-0.425218\pi\)
0.232778 + 0.972530i \(0.425218\pi\)
\(824\) 316.240 + 182.581i 0.383787 + 0.221579i
\(825\) 0 0
\(826\) −331.253 242.303i −0.401033 0.293345i
\(827\) 1194.80i 1.44474i −0.691504 0.722372i \(-0.743052\pi\)
0.691504 0.722372i \(-0.256948\pi\)
\(828\) 0 0
\(829\) 484.580 839.318i 0.584536 1.01245i −0.410397 0.911907i \(-0.634610\pi\)
0.994933 0.100539i \(-0.0320567\pi\)
\(830\) 231.598 133.713i 0.279033 0.161100i
\(831\) 0 0
\(832\) 66.5527 + 115.273i 0.0799912 + 0.138549i
\(833\) 164.263 749.046i 0.197195 0.899214i
\(834\) 0 0
\(835\) −668.297 −0.800356
\(836\) 851.125 + 491.397i 1.01809 + 0.587796i
\(837\) 0 0
\(838\) −187.131 324.120i −0.223306 0.386778i
\(839\) 766.287 + 442.416i 0.913334 + 0.527314i 0.881502 0.472180i \(-0.156533\pi\)
0.0318317 + 0.999493i \(0.489866\pi\)
\(840\) 0 0
\(841\) −198.780 344.297i −0.236361 0.409390i
\(842\) −100.957 58.2877i −0.119902 0.0692253i
\(843\) 0 0
\(844\) −17.3634 30.0743i −0.0205727 0.0356330i
\(845\) 313.034 180.730i 0.370455 0.213882i
\(846\) 0 0
\(847\) 514.408 227.047i 0.607329 0.268061i
\(848\) 154.430 + 89.1600i 0.182110 + 0.105142i
\(849\) 0 0
\(850\) −304.605 −0.358359
\(851\) 1679.92i 1.97406i
\(852\) 0 0
\(853\) −91.3479 + 158.219i −0.107090 + 0.185486i −0.914590 0.404382i \(-0.867487\pi\)
0.807500 + 0.589867i \(0.200820\pi\)
\(854\) −93.5098 + 127.838i −0.109496 + 0.149693i
\(855\) 0 0
\(856\) 151.666 + 262.692i 0.177179 + 0.306884i
\(857\) 1043.89 602.693i 1.21808 0.703259i 0.253573 0.967316i \(-0.418394\pi\)
0.964507 + 0.264058i \(0.0850610\pi\)
\(858\) 0 0
\(859\) 518.743 898.489i 0.603892 1.04597i −0.388334 0.921519i \(-0.626949\pi\)
0.992226 0.124452i \(-0.0397174\pi\)
\(860\) 0.862359 0.497883i 0.00100274 0.000578934i
\(861\) 0 0
\(862\) −334.640 + 579.613i −0.388213 + 0.672405i
\(863\) 908.692 524.634i 1.05295 0.607919i 0.129473 0.991583i \(-0.458671\pi\)
0.923473 + 0.383664i \(0.125338\pi\)
\(864\) 0 0
\(865\) 418.179 724.308i 0.483444 0.837350i
\(866\) 199.216i 0.230042i
\(867\) 0 0
\(868\) 381.338 + 278.939i 0.439330 + 0.321358i
\(869\) −358.082 + 206.739i −0.412062 + 0.237904i
\(870\) 0 0
\(871\) 709.825 + 1229.45i 0.814955 + 1.41154i
\(872\) 81.0804 + 46.8118i 0.0929821 + 0.0536832i
\(873\) 0 0
\(874\) 1286.35 1.47179
\(875\) −537.005 + 734.141i −0.613720 + 0.839018i
\(876\) 0 0
\(877\) 532.536 922.379i 0.607224 1.05174i −0.384471 0.923137i \(-0.625616\pi\)
0.991696 0.128606i \(-0.0410504\pi\)
\(878\) 360.843i 0.410983i
\(879\) 0 0
\(880\) 190.256 0.216200
\(881\) 963.331i 1.09345i −0.837312 0.546726i \(-0.815874\pi\)
0.837312 0.546726i \(-0.184126\pi\)
\(882\) 0 0
\(883\) −1212.68 −1.37336 −0.686681 0.726959i \(-0.740933\pi\)
−0.686681 + 0.726959i \(0.740933\pi\)
\(884\) 520.771i 0.589108i
\(885\) 0 0
\(886\) 659.561 0.744426
\(887\) −404.747 233.681i −0.456310 0.263450i 0.254182 0.967157i \(-0.418194\pi\)
−0.710491 + 0.703706i \(0.751527\pi\)
\(888\) 0 0
\(889\) 425.346 + 311.129i 0.478454 + 0.349977i
\(890\) 29.7288i 0.0334031i
\(891\) 0 0
\(892\) −294.546 + 510.169i −0.330209 + 0.571939i
\(893\) 1259.07 726.923i 1.40993 0.814024i
\(894\) 0 0
\(895\) 345.310 + 598.095i 0.385822 + 0.668263i
\(896\) 46.7563 63.9207i 0.0521833 0.0713400i
\(897\) 0 0
\(898\) −541.963 −0.603522
\(899\) 615.449 + 355.330i 0.684593 + 0.395250i
\(900\) 0 0
\(901\) −348.836 604.202i −0.387166 0.670591i
\(902\) 109.200 + 63.0469i 0.121065 + 0.0698968i
\(903\) 0 0
\(904\) −238.616 413.295i −0.263956 0.457185i
\(905\) 197.601 + 114.085i 0.218344 + 0.126061i
\(906\) 0 0
\(907\) 525.571 + 910.316i 0.579461 + 1.00366i 0.995541 + 0.0943280i \(0.0300702\pi\)
−0.416080 + 0.909328i \(0.636596\pi\)
\(908\) −388.448 + 224.271i −0.427806 + 0.246994i
\(909\) 0 0
\(910\) −445.639 325.973i −0.489714 0.358213i
\(911\) −1182.79 682.886i −1.29835 0.749601i −0.318228 0.948014i \(-0.603088\pi\)
−0.980118 + 0.198413i \(0.936421\pi\)
\(912\) 0 0
\(913\) −800.409 −0.876681
\(914\) 683.764i 0.748101i
\(915\) 0 0
\(916\) −103.470 + 179.215i −0.112958 + 0.195649i
\(917\) 442.337 + 1002.18i 0.482374 + 1.09289i
\(918\) 0 0
\(919\) 87.7536 + 151.994i 0.0954881 + 0.165390i 0.909812 0.415020i \(-0.136225\pi\)
−0.814324 + 0.580410i \(0.802892\pi\)
\(920\) 215.657 124.510i 0.234410 0.135336i
\(921\) 0 0
\(922\) −319.793 + 553.898i −0.346847 + 0.600757i
\(923\) 813.214 469.509i 0.881055 0.508677i
\(924\) 0 0
\(925\) −440.158 + 762.377i −0.475847 + 0.824191i
\(926\) 384.979 222.268i 0.415744 0.240030i
\(927\) 0 0
\(928\) 59.5611 103.163i 0.0641822 0.111167i
\(929\) 1052.24i 1.13266i 0.824179 + 0.566329i \(0.191637\pi\)
−0.824179 + 0.566329i \(0.808363\pi\)
\(930\) 0 0
\(931\) −1143.60 + 1253.77i −1.22836 + 1.34669i
\(932\) −374.877 + 216.435i −0.402229 + 0.232227i
\(933\) 0 0
\(934\) −211.292 365.969i −0.226223 0.391829i
\(935\) −644.644 372.185i −0.689458 0.398059i
\(936\) 0 0
\(937\) 1548.61 1.65274 0.826368 0.563131i \(-0.190403\pi\)
0.826368 + 0.563131i \(0.190403\pi\)
\(938\) 498.685 681.753i 0.531647 0.726816i
\(939\) 0 0
\(940\) 140.722 243.738i 0.149705 0.259296i
\(941\) 572.102i 0.607972i −0.952677 0.303986i \(-0.901682\pi\)
0.952677 0.303986i \(-0.0983176\pi\)
\(942\) 0 0
\(943\) 165.040 0.175016
\(944\) 165.832i 0.175670i
\(945\) 0 0
\(946\) −2.98034 −0.00315047
\(947\) 959.484i 1.01318i 0.862186 + 0.506591i \(0.169095\pi\)
−0.862186 + 0.506591i \(0.830905\pi\)
\(948\) 0 0
\(949\) −147.366 −0.155285
\(950\) 583.765 + 337.037i 0.614490 + 0.354776i
\(951\) 0 0
\(952\) −283.468 + 125.116i −0.297761 + 0.131425i
\(953\) 1308.52i 1.37305i 0.727104 + 0.686527i \(0.240866\pi\)
−0.727104 + 0.686527i \(0.759134\pi\)
\(954\) 0 0
\(955\) −432.669 + 749.405i −0.453057 + 0.784717i
\(956\) −774.149 + 446.955i −0.809779 + 0.467526i
\(957\) 0 0
\(958\) 356.348 + 617.213i 0.371971 + 0.644273i
\(959\) 575.485 + 62.3600i 0.600089 + 0.0650261i
\(960\) 0 0
\(961\) 177.906 0.185126
\(962\) −1303.41 752.522i −1.35489 0.782247i
\(963\) 0 0
\(964\) −82.7511 143.329i −0.0858413 0.148682i
\(965\) −463.331 267.504i −0.480136 0.277207i
\(966\) 0 0
\(967\) 85.8474 + 148.692i 0.0887770 + 0.153766i 0.906994 0.421143i \(-0.138371\pi\)
−0.818217 + 0.574909i \(0.805037\pi\)
\(968\) −196.759 113.599i −0.203264 0.117354i
\(969\) 0 0
\(970\) 152.619 + 264.344i 0.157339 + 0.272519i
\(971\) −803.642 + 463.983i −0.827644 + 0.477840i −0.853045 0.521837i \(-0.825247\pi\)
0.0254013 + 0.999677i \(0.491914\pi\)
\(972\) 0 0
\(973\) −76.0950 + 702.238i −0.0782066 + 0.721724i
\(974\) 358.693 + 207.092i 0.368268 + 0.212620i
\(975\) 0 0
\(976\) 63.9981 0.0655718
\(977\) 1422.61i 1.45610i −0.685523 0.728051i \(-0.740426\pi\)
0.685523 0.728051i \(-0.259574\pi\)
\(978\) 0 0
\(979\) −44.4893 + 77.0577i −0.0454436 + 0.0787107i
\(980\) −70.3696 + 320.888i −0.0718057 + 0.327437i
\(981\) 0 0
\(982\) 302.473 + 523.898i 0.308017 + 0.533501i
\(983\) 244.614 141.228i 0.248844 0.143670i −0.370391 0.928876i \(-0.620776\pi\)
0.619235 + 0.785206i \(0.287443\pi\)
\(984\) 0 0
\(985\) 291.299 504.545i 0.295735 0.512228i
\(986\) −403.622 + 233.031i −0.409353 + 0.236340i
\(987\) 0 0
\(988\) −576.219 + 998.041i −0.583218 + 1.01016i
\(989\) −3.37825 + 1.95043i −0.00341583 + 0.00197213i
\(990\) 0 0
\(991\) 587.805 1018.11i 0.593143 1.02735i −0.400663 0.916226i \(-0.631220\pi\)
0.993806 0.111129i \(-0.0354465\pi\)
\(992\) 190.906i 0.192445i
\(993\) 0 0
\(994\) −450.941 329.852i −0.453663 0.331843i
\(995\) −280.484 + 161.938i −0.281894 + 0.162751i
\(996\) 0 0
\(997\) 357.930 + 619.953i 0.359007 + 0.621818i 0.987795 0.155758i \(-0.0497821\pi\)
−0.628788 + 0.777577i \(0.716449\pi\)
\(998\) −252.776 145.940i −0.253283 0.146233i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.r.a.305.10 32
3.2 odd 2 126.3.r.a.11.1 yes 32
7.2 even 3 378.3.i.a.359.15 32
9.4 even 3 126.3.i.a.95.6 yes 32
9.5 odd 6 378.3.i.a.179.10 32
21.2 odd 6 126.3.i.a.65.6 32
63.23 odd 6 inner 378.3.r.a.233.2 32
63.58 even 3 126.3.r.a.23.9 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.6 32 21.2 odd 6
126.3.i.a.95.6 yes 32 9.4 even 3
126.3.r.a.11.1 yes 32 3.2 odd 2
126.3.r.a.23.9 yes 32 63.58 even 3
378.3.i.a.179.10 32 9.5 odd 6
378.3.i.a.359.15 32 7.2 even 3
378.3.r.a.233.2 32 63.23 odd 6 inner
378.3.r.a.305.10 32 1.1 even 1 trivial